University of Toronto

Term Test 2

Date — Nov 21, 2022: 12:10pm

Duration — 50 min

ECE 331 — Analog Electronics

Lecturer — D. Johns

ANSWER QUESTIONS ON THESE SHEETS USING BACKS IF NECESSARY

- Equation sheet is on the last page of this test.
- Unless otherwise stated, assume $g_m r_o \gg 1$
- Notation: 15e3 is equivalent to 15×10^3
- Non-programmable calculator is allowed; No other aids are allowed
- Grading indicated by []. Attempt all questions since a blank answer will certainly get 0.
- If you need more space, write on the back of pages.

Last Name: _____

First Name: _____

Student #: _____

Question	1	2	3	Total
Points:	5	5	5	15
Score:				

Grading Table

Q1. A transfer-function has the equation

$$T(s) = \frac{1e4(1+s/1.2e5)}{(1+s/1e2)(1+s/3e3)}$$

- [3] (a) Estimate the gain (in dB) at $\omega = 1.2$ Mrad/s. For this estimate, assume $\omega = 1.2$ Mrad/s is much greater than all the pole/zero frequencies.
 - (b) Estimate the phase (in degrees) at $\omega = 1.2$ Mrad/s. For this estimate, take into account the zero at 1.2e5 while assuming $\omega = 1.2$ Mrad/s is much greater than the pole frequencies.

Solution

[2]

(a) Since $\omega = 1.2$ Mrad/s is much greater than each of 1.2e5, 1e2, 3e3 so we can ignore the "1" in each term so

$$\begin{split} |T(j\omega)| &\approx \frac{|1e4(j\omega/1.2e5)|}{|(j\omega/1e2)(j\omega/3e3)|} \\ |T(j\omega)| &\approx \frac{|1e4(j1.2e6/1.2e5)|}{|(j1.2e6/1e2)(j1.2e6/3e3)|} \\ |T(j\omega)| &\approx 2.08e-2 \\ \text{and in dB, we have} \\ T_{dB} &= 20 * \log_{10}(|T(j\omega)|) = -33.6 \text{ dB} \\ \end{split}$$
(b) Since $\omega = 1.2$ Mrad/s is much greater than each of $1e2, 3e3$ we can write $\angle T(j\omega) = \angle (1e4) + \angle (1 + j\omega/1.2e5) - \angle (1 + j\omega/1e2) - \angle (1 + j\omega/3e3) \\ \angle T(j\omega) \approx 0^\circ + \angle (1 + j1.2e6/1.2e5) - 90^\circ - 90^\circ \\ \text{where we have used } \angle (1 + jk) \approx 90^\circ \text{ when } k \gg 1 \\ \angle T(j\omega) \approx \operatorname{arctan}[(1.2e6/1.2e5)/(1)] - 180^\circ \\ \angle T(j\omega) \approx 84.29^\circ - 180^\circ \\ \angle T(j\omega) \approx -95.71^\circ \end{split}$

Q2. Consider the amplifier shown below where the current source I_B is ideal.

[4] [1] (a) Find the value for C_S so that the low frequency cutoff is at 1kHz.

(b) Is there a zero in the transfer-function? If so, what is the frequency location for the zero?

Solution

(a) The pole frequency for C_S is

 $F_{3dB} = 1/(2\pi C_S R_x)$

where R_x is the small-signal resistance seen by C_S .

Since $r_{o1} \rightarrow \infty$, the impedance looking into the source of M_1 is $1/g_{m1}$ and since the current source I_B is ideal, we have

$$R_x = 1/g_{m1} = 1/(1e-3) = 1k\Omega$$

Using the F_{3dB} equation above, we find C_S as

 $C_{S} = 1/(2 * \pi * F_{3dB} * R_{x}) = 1/(2 * (3.142) * (1e3) * (1e3)) = 159.2$ nF

(b) Since the current source is ideal (with infinite output impedance), the gain for this circuit is zero at dc. As a result, there is a zero in the transfer-function and the zero frequency is at 0 Hz.

Q3. The small signal model for a common-source amp is shown below.

(a) Find the midBand gain A_M

(b) Use Millers Theorem to find the 2 pole locations, F_1 and F_2 in Hz.

Solution

(a) For the midband gain, we assume all the capacitors limiting the high freq gain are open circuited (in this case, all the capacitors in this circuit).

$$A_M = -g_m * R_L = -(2e-3) * (30e3) = -60 \text{V/V}$$

(b) Using Millers Theorem, we break C_{gd} into 2 grounded capacitors, C_{m1}/C_{m2}

$$R_{1}$$

$$v_{i} \bigoplus_{\underline{-}}^{+} \underbrace{V_{gs}}_{-\underline{-}} \underbrace{C_{gs}}_{\underline{-}} \underbrace{C_{m1}}_{\underline{-}} \underbrace{f_{m2}}_{\underline{-}} \underbrace{f_{m2}}_$$

$$\begin{split} C_{m1} &= C_{gd} * (1 - A_M) = (100e - 15) * (1 - (-60)) = 6.1 \text{pF} \\ C_{m2} &= C_{gd} * (1 - (1/A_M)) = (100e - 15) * (1 - (1/(-60))) = 101.7 \text{fF} \\ \text{So we have 2 poles and the 2 nodes in the circuit resulting in} \\ F_1 &= 1/(2 * \pi * (C_{gs} + C_{m1}) * R_1) = 1/(2 * (3.142) * ((1e - 12) + (6.1e - 12)) * (10e3)) = 2.242 \text{MHz} \\ F_2 &= 1/(2 * \pi * (C_{m2} + C_L) * R_L) = 1/(2 * (3.142) * ((101.7e - 15) + (1e - 12)) * (30e3)) = 4.816 \text{MHz} \end{split}$$

Equation Sheet

