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Q1. A transfer-function has the equation

T (s) =
1e4(1 + s/1.2e5)

(1 + s/1e2)(1 + s/3e3)

(a)[3] Estimate the gain (in dB) at ω = 1.2Mrad/s. For this estimate, assume ω = 1.2Mrad/s is much greater
than all the pole/zero frequencies.

(b)[2] Estimate the phase (in degrees) at ω = 1.2Mrad/s. For this estimate, take into account the zero at 1.2e5
while assuming ω = 1.2Mrad/s is much greater than the pole frequencies.

Solution

(a) Since ω = 1.2Mrad/s is much greater than each of 1.2e5, 1e2, 3e3 so we can ignore the ”1” in each term so

|T (jω)| ≈ |1e4(jω/1.2e5)|
|(jω/1e2)(jω/3e3)|

|T (jω)| ≈ |1e4(j1.2e6/1.2e5)|
|(j1.2e6/1e2)(j1.2e6/3e3)|

|T (jω)| ≈ 2.08e−2

and in dB, we have

TdB = 20 ∗ log10(|T (jω)|) = −33.6 dB

(b) Since ω = 1.2Mrad/s is much greater than each of 1e2, 3e3 we can write

∠T (jω) = ∠(1e4) + ∠(1 + jω/1.2e5)− ∠(1 + jω/1e2)− ∠(1 + jω/3e3)

∠T (jω) ≈ 0° + ∠(1 + j1.2e6/1.2e5)− 90°− 90°

where we have used ∠(1 + jk) ≈ 90° when k � 1

∠T (jω) ≈ arctan[(1.2e6/1.2e5)/(1)]− 180°

∠T (jω) ≈ 84.29°− 180°

∠T (jω) ≈ −95.71°
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Q2. Consider the amplifier shown below where the current source IB is ideal.

M1

vi

CS

VDD

VSS

vo

RD

10kΩ

IB

gm1 = 1mA/V

ro1 →∞

(a)[4] Find the value for CS so that the low frequency cutoff is at 1kHz.

(b)[1] Is there a zero in the transfer-function? If so, what is the frequency location for the zero?

Solution

(a) The pole frequency for CS is
F3dB = 1/(2πCSRx)

where Rx is the small-signal resistance seen by CS .

Since ro1 →∞, the impedance looking into the source of M1 is 1/gm1 and since the current source IB is ideal,
we have

Rx = 1/gm1 = 1/(1e−3) = 1kΩ

Using the F3dB equation above, we find CS as

CS = 1/(2 ∗ π ∗ F3dB ∗ Rx) = 1/(2 ∗ (3.142) ∗ (1e3) ∗ (1e3)) = 159.2nF

(b) Since the current source is ideal (with infinite output impedance), the gain for this circuit is zero at dc. As
a result, there is a zero in the transfer-function and the zero frequency is at 0 Hz.
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Q3. The small signal model for a common-source amp is shown below.

R1 = 10kΩ

R1

vi Cgs

Cgd

gmvgs
vgs

vo

RLCL

Cgs = 1pF

Cgd = 100fF

gm = 2mA/V

CL = 1pF

RL = 30kΩ

(a)[2] Find the midBand gain AM

(b)[3] Use Millers Theorem to find the 2 pole locations, F1 and F2 in Hz.

Solution

(a) For the midband gain, we assume all the capacitors limiting the high freq gain are open circuited (in this
case, all the capacitors in this circuit).

AM = −gm ∗ RL = −(2e−3) ∗ (30e3) = −60V/V

(b) Using Millers Theorem, we break Cgd into 2 grounded capacitors, Cm1/Cm2

R1

vi Cgs gmvgs
vgs

vo

RLCLCm1 Cm2

Cm1 = Cgd ∗ (1− AM) = (100e−15) ∗ (1− (−60)) = 6.1pF

Cm2 = Cgd ∗ (1− (1/AM)) = (100e−15) ∗ (1− (1/(−60))) = 101.7fF

So we have 2 poles and the 2 nodes in the circuit resulting in

F1 = 1/(2 ∗ π ∗ (Cgs + Cm1) ∗ R1) = 1/(2 ∗ (3.142) ∗ ((1e−12) + (6.1e−12)) ∗ (10e3)) = 2.242MHz

F2 = 1/(2 ∗ π ∗ (Cm2 + CL) ∗ RL) = 1/(2 ∗ (3.142) ∗ ((101.7e−15) + (1e−12)) ∗ (30e3)) = 4.816MHz
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Equation Sheet

Constants: k = 1.38× 10−23 J K−1; q = 1.602× 10−19 C; VT = kT/q ≈ 26mV at 300 K; ε0 = 8.85× 10−12 F m−1; kox =
3.9; Cox = (koxε0)/tox ; ω = 2πf

NMOS: kn = µnCox(W /L); Vtn > 0; vDS ≥ 0; Vov = VGS − Vtn

(triode) vDS ≤ Vov ; vD < vG − Vtn; iD = kn(VovvDS − (v2
DS/2)); rds = 1/(µpCox(W /L)Vov )

(active) vDS ≥ Vov ; iD = 0.5knV
2
ov (1 + λnv

′
DS); v ′DS = vDS − Vov ;

gm = knVov = 2ID/Vov =
√

2knID ; rs = 1/gm; ro = L/(|λn′|ID)

PMOS: kp = µpCox(W /L); Vtp < 0; vSD ≥ 0; Vov = VSG − |Vtp|
(triode) vSD ≤ Vov ; vD > vG + |Vtp|; iD = kp(VovvSD − (v2

SD/2)); rds = 1/(µpCox(W /L)Vov )

(active) vSD ≥ Vov ; iD = 0.5kpV
2
ov (1 + |λp|v ′SD); v ′SD = vSD − Vov

gm = kpVov = 2ID/Vov =
√

2kpID ; rs = 1/gm; ro = L/(|λp ′|ID)

RS

vi

Rout

RDvi

Rout

vi

vo

Rout

Accurate: Rout = ro + (1 + gmro)RS

isc = (−gmrovi )/(ro + (1 + gmro)RS)
voc = −gmrovi

Rout = (ro + RD)/(1 + gmro)
isc = (gmrovi )/(ro + RD)
voc = (gmrovi )/(1 + gmro)

Rout = ro
isc = ((1 + gmro)/ro)vi
voc = (1 + gmro)vi

gmro � 1 Rout = (1 + gmRS)ro
isc = −vi/((1/gm) + RS)
voc = −gmrovi

Rout = (1/gm) + (RD/gmro)
isc = (gmrovi )/(ro + RD)
voc = vi

Rout = ro
isc = gmvi
voc = gmrovi

Diff Pair: Ad = gmRD ; ACM = −(RD/(2RSS))(∆RD/RD); ACM = −(RD/(2RSS))(∆gm/gm);
VOS = ∆Vt ; VOS = (VOV /2)(∆RD/RD); VOS = (VOV /2)(∆(W /L)/(W /L))

Large signal: iD1 = (I/2) + (I/Vov )(vid/2)(1− (vid/2Vov )2)1/2

1st order: step response y(t) = Y∞ − (Y∞ − Y0+)e−t/τ ;
unity gain freq for T (s) = AM/(1 + (s/ω3dB)) for AM � 1⇒ ωt ' |AM |ω3dB

Freq: for real axis poles/zeros T (s) = kdc
(1 + s/z1)(1 + s/z2) ... (1 + s/zm)

(1 + s/ω1)(1 + s/ω2) ... (1 + s/ωn)

OTC estimate ωH ' 1/(
∑
τi ); dominant pole estimate ωH ' 1/(τmax)

STC estimate ωL '
∑

1/τi ; dominant pole estimate ωL ' 1/(τmin)

Miller: Z1 = Z/(1− K ); Z2 = Z/(1− 1/K )

Mos caps: Cgs = (2/3)WLCox + WLovCox ; Cgd = WLovCox ; Cdb = Cdb0/
√

1 + Vdb/V0;
ωt = gm/(Cgs + Cgd); for Cgs � Cgd ⇒ ft ' (3µVov )/(4πL2)

Feedback: Af = A/(1 + Aβ); xi = (1/(1 + Aβ))xs ; dAf /Af = (1/(1 + Aβ))dA/A; ωHf = ωH(1 + Aβ); ωLf = ωL/(1 + Aβ);
Loop Gain L ≡ −sr/st ; Af = A∞(L/(1 + L)) + d/(1 + L); Zport = Zpo ((1 + LS)/(1 + LO)): PM = ∠L(jωt) + 180;
GM = −|L(jω180)|db;
Pole splitting ω′p1 ' 1/(gmR2Cf R1); ω′p2 ' (gmCf )/(C1C2 + Cf (C1 + C2))

Pole Pair: s2 + (ωo/Q)s + ω2
o ; Q ≤ 0.5⇒ real poles; Q > 1/

√
2⇒ freq resp peaking

Power Amps: Class A : η = (1/4)(V̂O/IRL)(V̂O/VCC ); Class B : η = (π/4)(V̂O/VCC ); PDN max = V 2
CC/(π2RL);

Class AB : inip = I 2Q ; IQ = (IS/α)eVBB/(2VT ); i2n − iLin − I 2Q = 0

2-stage opamp: ωp1 ' (R1Gm2R2Cc)−1; ωp2 = Gm2/C2; ωz = (Cc(1/Gm2 − R))−1;

SR = I/Cc = ωtVov1; will not SR limit if ωtV̂O < SR


