### **University of Toronto**

### Term Test 2

Date — Nov 20, 2023: 4:10pm

Duration — 50 min

ECE 331 — Analog Electronics

Lecturer — D. Johns

### ANSWER QUESTIONS ON THESE SHEETS USING BACKS IF NECESSARY

- Equation sheet is on the last page of this test.
- Notation: 15e3 is equivalent to  $15\times10^3$
- · Non-programmable calculator is allowed; No other aids are allowed
- Write using a non-erasable ink.
- Grading indicated by []. Attempt all questions since a blank answer will certainly get 0.

Last Name: \_\_\_\_\_

First Name: \_\_\_\_\_

Student #: \_\_\_\_\_

| Question | 1 | 2 | 3 | Total |
|----------|---|---|---|-------|
| Points:  | 5 | 5 | 5 | 15    |
| Score:   |   |   |   |       |

### **Grading Table**

**Q1.** Consider the circuit shown below where  $v_o$  is defined to be  $v_{op} - v_{on}$  and all pmos transistors have  $V_{ovp} = 0.11V$  while all nmos transistors have  $V_{ovn} = 0.25V$ . Also,  $V_{CM} = 0.88V$  and  $I_{D5} = 100\mu$ A.

$$V_{DD} = 1.8V$$

$$V_{tp} = -0.39V$$

$$r_{o3} = r_{o4} = 54k\Omega$$

$$V_{cM} + v_{id}/2$$

$$M_{1}$$

$$M_{2}$$

$$V_{CM} - v_{id}/2$$

$$V_{cM} - v_{id}/2$$

$$V_{tn} = 0.19V$$

$$r_{o1} = r_{o2} = 50k\Omega$$

$$r_{o5} = 60k\Omega$$

[3] [2]

- (a) Find the small-signal gain  $v_o/v_{id}$
- (b) Assuming the small-signal gain is so large that you can ignore the voltage swing on the input differential signal, find the max and minimum output voltage for v<sub>op</sub> such that transistors remain in the active region.

## Solution

(a) This a balanced circuit so we can find the gain of the half circuit  $M_1/M_3$  assuming the source of  $M_1$  is grounded.

In this circuit,  $v_o/v_{id} = -(v_{on}/(v_{id}/2))$  due to the following... Define  $A_1 = v_{on}/(v_{id}/2)$  ( $A_1$  is a negative gain)  $v_{on} = A_1(v_{id}/2)$  and  $v_{op} = A_1(-v_{id}/2)$   $v_o = v_{op} - v_{on} = -A_1(v_{id}/2) - A_1(v_{id}/2) = -A_1v_{id}$ So  $v_o/v_{id} = -A_1$  where  $A_1$  is the negative gain of the half circuit. Carrying on, we have  $I_{D1} = I_{D5}/2 = (100e-6)/2 = 50\mu A$   $g_{m1} = (2 * I_{D1})/V_{ovn} = (2 * (50e-6))/(0.25) = 400\mu A/V$  $R_o = r_{o1}||r_{o3} = (50e3)||(54e3) = 25.96k\Omega$   $v_{on}/(v_{id}/2) = -g_{m1} * R_o = -(400e-6) * (25.96e3) = -10.38V/V$  $v_o/v_{id} = -v_{on}/(v_{id}/2) = -(-10.38) = 10.38V/V$ 

 $v_o/v_{id} = 10.38 V/V$ 

(b) With the assumption of a very large small-signal gain, we can assume the input voltage remains at the common-mode voltage,  $V_{CM}$ .

The maximum voltage for  $v_{op}$  occurs when  $M_4$  is at the edge of triode/active. This occurs when the drain of  $M_4$  one threshold voltage higher than the gate of  $M_4$  (in other words, higher by  $|V_{tp}|$ ).

 $v_{op,max} = V_{B2} + |V_{tp}| = (1.3) + |(-0.39)| = 1.69V$ 

 $v_{op,max} = 1.69V$ 

(another approach is to look for  $V_{SD}$  of  $M_4$  reaching the overdrive voltage)

The minimum voltage for  $v_{op}$  occurs when  $M_2$  is at the edge of triode/active. This occurs when the drain of  $M_2$  is one threshold voltage below the gate of  $M_2$ 

 $v_{op,min} = V_{CM} - V_{tn} = (0.88) - (0.19) = 0.69 V$ 

| $v_{op,min} = 0.6$ | <u>ور</u> | V |
|--------------------|-----------|---|
|--------------------|-----------|---|

[2]

Q2. A transfer-function has the equation

$$T(s) = \frac{8.8e3(1 + s/1.19e5)}{(1 + s/8.8e1)(1 + s/2.29e3)}$$

- [3] (a) Estimate the gain (in dB) at  $\omega = 1.19$  Mrad/s. For this estimate, assume  $\omega = 1.19$  Mrad/s is much greater than all the pole/zero frequencies.
  - (b) Estimate the phase (in degrees) at  $\omega = 1.19$  Mrad/s. For this estimate, take into account the zero at 1.19e5 while assuming  $\omega = 1.19$  Mrad/s is much greater than the pole frequencies.

# Solution

(a) Since  $\omega = 1.19$  Mrad/s is much greater than each of 1.19e5, 8.8e1, 2.29e3 so we can ignore the "1" in each term so

$$\begin{split} |T(j\omega)| &\approx \frac{|8.8e3(j\omega/1.19e5)|}{|(j\omega/8.8e1)(j\omega/2.29e3)|} \\ |T(j\omega)| &\approx \frac{|8.8e3(j1.19e6/1.19e5)|}{|(j1.19e6/8.8e1)(j1.19e6/2.29e3)|} \\ |T(j\omega)| &\approx 1.25e-2 \\ \text{and in dB, we have} \\ T_{dB} &= 20 * log_{10}(|T(j\omega)|) = -38 \text{ dB} \\ \text{(b) Since } \omega &= 1.19 \text{Mrad/s is much greater than each of } 8.8e1, 2.29e3 \text{ we can write} \\ &\angle T(j\omega) &= \angle (8.8e3) + \angle (1 + j\omega/1.19e5) - \angle (1 + j\omega/8.8e1) - \angle (1 + j\omega/2.29e3) \\ &\angle T(j\omega) \approx 0^\circ + \angle (1 + j1.19e6/1.19e5) - 90^\circ - 90^\circ \\ \text{where we have used } \angle (1 + jk) \approx 90^\circ \text{ when } k \gg 1 \\ &\angle T(j\omega) \approx \arctan[(1.19e6/1.19e5)/(1)] - 180^\circ \\ &\angle T(j\omega) \approx -95.71^\circ \end{split}$$

[2]

[3]

Q3. The small signal model for a common-source amp is shown below.



(a) Find the midBand gain  $A_M$ 

(b) Use Millers Theorem to find the 2 pole locations,  $F_1$  and  $F_2$  in Hz.

### Solution

(a) For the midband gain, we assume all the capacitors limiting the high freq gain are open circuited (in this case, all the capacitors in this circuit).

 $A_M = -g_m * R_L = -(1.8e-3) * (26e3) = -46.8V/V$ 

(b) Using Millers Theorem, we break  $C_{gd}$  into 2 grounded capacitors,  $C_{m1}/C_{m2}$ 



 $\begin{aligned} C_{m1} &= C_{gd} * (1 - A_M) = (77e - 15) * (1 - (-46.8)) = 3.681 \text{pF} \\ C_{m2} &= C_{gd} * (1 - (1/A_M)) = (77e - 15) * (1 - (1/(-46.8))) = 78.65 \text{fF} \\ \text{So we have 2 poles and the 2 nodes in the circuit resulting in} \\ F_1 &= 1/(2 * \pi * (C_{gs} + C_{m1}) * R_1) = 1/(2 * (3.142) * ((1.3e - 12) + (3.681e - 12)) * (8.8e3)) = 3.631 \text{MHz} \\ F_2 &= 1/(2 * \pi * (C_{m2} + C_L) * R_L) = 1/(2 * (3.142) * ((78.65e - 15) + (770e - 15)) * (26e3)) = 7.213 \text{MHz} \end{aligned}$ 

#### **Equation Sheet**

