## Problem Set 2-Small Signal Model

## Question 1

An NMOS transistor is operated with a small $v_{D S}$ voltage in the triode region and the drain source resistance is measured to be $r_{D S}$. What will be the new $r_{D S}^{\prime}$ under each of the following situations? (give $r_{D S}^{\prime}$ relationship to $r_{D S}$ ).
Assume the only change is the one(s) discussed in each situation.
(a) The overdrive voltage is increased by a factor of 1.5.
(b) The transistor width is increased by a factor of 1.8.
(c) The transistor width and length are both increased by a factor of 3.
(d) The transistor gate oxide thickness is reduced by a factor of 2.

## Solution

For a small $v_{D S}$ voltage, the transistor is in triode and the drain-to-source resistance, $r_{D S}$, can be approximated by

$$
r_{d s}=\frac{1}{\mu_{n} C_{o x}(W / L) V_{O V}}
$$

(a) If $V_{O V}^{\prime}=1.5 V_{O V}$, then $r_{D S}^{\prime}=r_{D S} / 1.5$
(b) If $W^{\prime}=1.8 W$, then $r_{D S}^{\prime}=r_{D S} / 1.8$
(c) If $W^{\prime}=3 W$ and $L^{\prime}=3 L$, then $r_{D S}^{\prime}=r_{D S}$
(d) If the oxide thickness $t^{\prime}{ }_{o x}=t_{o x} / 2$, then $C_{o x}=\epsilon_{o x} / t_{o x}$ is multiplied by 2 resulting in $r_{D S}^{\prime}=r_{D S} / 2$

## Question 2

Consider a CMOS technology with the following parameters:
NMOS: $V_{t n}=0.4 \mathrm{~V} ; \mu_{n} C_{o x}=240 \mu \mathrm{~A} / \mathrm{V}^{2} ; \lambda^{\prime}{ }_{n}=40 \mathrm{~nm} / \mathrm{V}$
(a) For an NMOS transistor with $W_{n}=2 \mu \mathrm{~m}$ and $L_{n}=200 \mathrm{~nm}$, find $I_{D n}$ when the overdrive voltage is 0.3 V and $V_{D S}=0.5 \mathrm{~V}$. For this question, do NOT assume $\lambda=0$.
(b) Find the value of $r_{o}$ for the transistor (a)
(c) For the transistor in (a), find the change in $I_{D n}$ if $V_{D S}$ is increased by 0.4 V by using $r_{0}$ found in (b)

## Solution

(a) $I_{D n}=\frac{\mu_{n} C_{o x}}{2}\left(\frac{W_{n}}{L_{n}}\right) V_{o v}^{2}\left(1+\lambda_{n}\left(V_{D S}-V_{o v}\right)\right)$
so we need to find $\lambda_{n}$ from

$$
\lambda_{n}=\lambda^{\prime}{ }_{n} / L_{n}=(40 e-9) /(200 e-9)=0.2 \mathrm{~V}^{-1}
$$

resulting in

$$
\begin{gathered}
I_{D n}=\frac{240 e-6}{2}\left(\frac{2 e-6}{200 e-9}\right) 0.3^{2}(1+0.2 \times(0.5-0.3)) \\
I_{D n}=112.3 \mu \mathrm{~A}
\end{gathered}
$$

(b) $r_{0}=L_{n} /\left(\lambda_{n}{ }_{n} * I_{D n}\right)=(200 e-9) /((40 e-9) *(112.3 e-6))=44.52 \mathrm{k} \Omega$
(c) $\Delta I_{D n}=\Delta V_{D S} / r_{0}=(0.4) /(44.52 e 3)=8.986 \mu \mathrm{~A}$

COMMENT: Note that if $\lambda_{n}=0$ was used for part (a), it would only change the answers by less than $5 \%$ and this is often done for dc bias analysis. However, $\lambda_{n}$ must then be taken into account for parts (b) and (c) otherwise gross errors would occur.

## Question 3

For the NMOS amplifier below, replace the transistor with its T equivalent circuit and assume $\lambda=0$. Derive expressions for small-signal voltage gains $v_{s} / v_{i}$ and $v_{d} / v_{i}$ given $g_{m}$ for the transistor.


## Solution

For small-signal analysis, all dc independent sources are set to zero. As a result, we have the following circuit


For $v_{s} / v_{i}$, there is a simple resistor divider between the applied voltage $v_{i}$ and the measured output voltage $v_{s}$. As a result, we have

$$
\begin{gathered}
\frac{v_{s}}{v_{i}}=\frac{R_{S}}{R_{S}+r_{s}}=\frac{R_{S}}{R_{S}+\left(1 / g_{m}\right)} \\
\frac{v_{s}}{v_{i}}=\frac{R_{S}}{R_{S}+\left(1 / g_{m}\right)}
\end{gathered}
$$

For $v_{d} / v_{i}$, we first find $i_{s}$ and then since all of $i_{s}$ goes through $R_{D}$, we can find $v_{d}$.

$$
\begin{gathered}
i_{s}=\frac{v_{i}}{r_{s}+R_{S}} \\
v_{d}=\left(-i_{s}\right) \times R_{D} \\
v_{d}=\frac{-v_{i}}{r_{s}+R_{S}} \times R_{D} \\
\frac{v_{d}}{v_{i}}=\frac{-R_{D}}{r_{s}+R_{S}}=\frac{-R_{D}}{R_{S}+\left(1 / g_{m}\right)} \\
\frac{v_{d}}{v_{i}}=\frac{-R_{D}}{R_{S}+\left(1 / g_{m}\right)}
\end{gathered}
$$

## Question 4

For the common-source amplifier shown below, find the small signal gain, $v_{o} / v_{i}$.


## Solution

We first need to find the dc operating values.

$$
\begin{gathered}
V_{G S}=V_{G}=(0.6)=0.6 \mathrm{~V} \\
V_{o v}=V_{G}-V_{t n}=(0.6)-(0.3)=0.3 \mathrm{~V}
\end{gathered}
$$

and for dc analysis, we let $\lambda=0$ so

$$
\begin{gathered}
I_{D}=0.5 * \mu_{n} C_{o x} *(W / L) * V_{o v}{ }^{2}=0.5 *(240 e-6) *((2 e-6) /(200 e-9)) *(0.3)^{2}=108 \mu \mathrm{~A} \\
V_{D}=V_{D D}-I_{D} * R_{D}=(2)-(108 e-6) *(1 e 3)=1.892 \mathrm{~V}
\end{gathered}
$$

Since $V_{D S}>V_{o v}$, the transistor is indeed in the active region. Now, we find the small signal parameters:

$$
\begin{gathered}
g_{m}=2 * I_{D} / V_{o v}=2 *(108 e-6) /(0.3)=720 e-6 \\
r_{o}=L /\left(\lambda_{n}{ }_{n} * I_{D}\right)=(200 e-9) /((40 e-9) *(108 e-6))=46.3 \mathrm{k} \Omega
\end{gathered}
$$

and we have the following small signal circuit


$$
v_{o}=-g_{m} v_{g s}\left(R_{D} \| r_{o}\right)
$$

$$
\begin{gathered}
v_{g s}=v_{i} \\
v_{o} / v_{i}=-g_{m}\left(R_{D} \| r_{o}\right) \\
v_{o} / v_{i}=-g_{m} *\left(R_{D} \| r_{o}\right)=-(720 e-6) *((1 e 3) \|(46.3 e 3))=-0.7048 \mathrm{~V} / \mathrm{V}
\end{gathered}
$$

## Question 5

For the common-source PMOS amplifier shown below, find the small signal gain, $v_{o} / v_{i}$.


## Solution

We first need to find the dc operating values.

$$
V_{o v}=V_{S G}-\left|V_{t p}\right|=(0.6)-|(0.3)|=0.3 \mathrm{~V}
$$

and for dc analysis, we let $\lambda=0$ so

$$
\begin{gathered}
I_{D}=0.5 * \mu_{P} C_{o x} *(W / L) * V_{o v}{ }^{2}=0.5 *(120 e-6) *((4 e-6) /(200 e-9)) *(0.3)^{2}=108 \mu \mathrm{~A} \\
V_{D}=I_{D} * R_{D}=(108 e-6) *(1 e 3)=0.108 \mathrm{~V} \\
V_{S D}=V_{D D}-V_{D}=(2)-(0.108)=1.892 \mathrm{~V}
\end{gathered}
$$

Since $V_{S D}>V_{o v}$, the transistor is indeed in the active region. Now, we find the small signal parameters:

$$
\begin{gathered}
g_{m}=2 * I_{D} / V_{o v}=2 *(108 e-6) /(0.3)=720 e-6 \\
r_{o}=L /\left(\left|\lambda_{p}^{\prime}\right| * I_{D}\right)=(200 e-9) /(|(-40 e-9)| *(108 e-6))=46.3 \mathrm{k} \Omega
\end{gathered}
$$

and we have the following small signal circuit


$$
\begin{gathered}
v_{o}=-g_{m} v_{g s}\left(R_{D} \| r_{o}\right) \\
v_{g s}=v_{i} \\
v_{o} / v_{i}=-g_{m}\left(R_{D} \| r_{o}\right) \\
v_{o} / v_{i}=-g_{m} *\left(R_{D} \| r_{o}\right)=-(720 e-6) *((1 e 3) \|(46.3 e 3))=-0.7048 \mathrm{~V} / \mathrm{V}
\end{gathered}
$$

## Question 6

For the common-source amplifier shown below, find the small signal gain, $v_{o} / v_{i}, R_{\text {in }}$ and $R_{\text {out }}$.


## Solution

We begin by finding the dc operating values assuming $M_{1}$ is in the active region. Since we are given $\lambda=0$, therefore

$$
I_{1}=I_{D}=0.5 \mu_{n} C_{o x}(W / L) V_{o v}^{2}
$$

$$
V_{o v}=\sqrt{I_{1} /\left(0.5 \mu_{n} C_{o x}(W / L)\right)}=0.2887 \mathrm{~V}
$$

The gate voltage is given by $V_{G}=0$ and since

$$
V_{G S}=V_{\text {ov }}+V_{t n}=(0.2887)+(0.3)=0.5887 \mathrm{~V}
$$

we have $V_{S}=V_{G}-V_{G S}=(0)-(0.5887)=-0.5887 \mathrm{~V}$. We also have

$$
V_{D}=V_{D D}-I_{D} * R_{D}=(2)-(500 e-6) *(3 e 3)=0.5 \mathrm{~V}
$$

So that

$$
V_{D S}=V_{D}-V_{S}=(0.5)-(-0.5887)=1.089 \mathrm{~V}
$$

and since $V_{D S}>V_{o v}$, the transistor is indeed in the active region.
Now, we find the small signal parameters:

$$
\begin{gathered}
g_{m}=2 * I_{D} / V_{o v}=2 *(500 e-6) /(0.2887)=3.464 e-3 \\
r_{s}=1 / g_{m}=1 /(3.464 e-3)=288.7 \Omega \\
r_{o}=L /\left(\lambda_{n}^{\prime} * I_{D}\right) \rightarrow \infty
\end{gathered}
$$

and we have the following small signal circuit

and replacing $M_{1}$ with its small signal model, we have


Since there is no current going into the gate of the transistor,

$$
R_{i n}=R_{G}=(10 e 3)=10 \mathrm{k} \Omega
$$

For $R_{\text {out }}$, we set $v_{i}=0$ which results in $i_{s}=0$ so

$$
R_{\text {out }}=R_{D}=(3 e 3)=3 \mathrm{k} \Omega
$$

Now we have

$$
v_{g} / v_{i}=R_{i n} /\left(R_{i n}+R_{S}\right)=(10 e 3) /((10 e 3)+(1 e 3))=0.9091 \mathrm{~V} / \mathrm{V}
$$

We also have

$$
\begin{aligned}
& i_{s}=v_{g} /\left(r_{s}+R_{2}\right) \\
& v_{o}=-i_{s}\left(R_{D} \| R_{L}\right)
\end{aligned}
$$

So

$$
v_{o} / v_{g}=-\left(R_{D} \| R_{L}\right) /\left(r_{s}+R_{2}\right)=-((3 e 3) \|(10 e 3)) /((288.7)+(300))=-3.92 \mathrm{~V} / \mathrm{V}
$$

So the overall gain is given by

$$
v_{o} / v_{i}=\left(v_{g} / v_{i}\right) *\left(v_{o} / v_{g}\right)=((0.9091)) *((-3.92))=-3.564 \mathrm{~V} / \mathrm{V}
$$

