ECE334S

- 2.9 An nMOS transistor has a threshold voltage of 0.4 V and a supply voltage of V_{DD} = 1.2 V. A circuit designer is evaluating a proposal to reduce V_t by 100 mV to obtain faster transistors.
 - a) By what factor would the saturation current increase (at $V_{gs} = V_{ds} = V_{DD}$) if the transistor were ideal?
 - b) By what factor would the subthreshold leakage current increase at room temperature at $V_{gs} = 0$? Assume n = 1.4.
 - c) By what factor would the subthreshold leakage current increase at 120° C? Assume the threshold voltage is independent of temperature.
- 2.10 As temperature rises, does the current through an ON transistor increase or decrease? Does current through an OFF transistor increase or decrease? Will a chip operate faster at high temperature or low temperature? Explain.
- 1) Consider the following resistor transistor logic (RTL) inverter where switch S1 represents the transistor and R_s represents the switch on resistance (it's off resistance is infinite).

a) Sketch the output waveform for the switch toggling from open to closed. What is the time-constant in this case?

b) Sketch the output waveform for the switch toggling from closed to open. What is the time-constant in this case?

2) Consider the following inverter circuit.

$$V_{dd} = 2V$$

 $V_{I} \longrightarrow V_{O}$
 $V_{I} \longrightarrow V_{O}$
 $W_{L} = 10$

$$\mu_n = 3\mu_p = 0.06 \text{ m}^2/\text{Vs}$$
$$C_{\text{ox}} = 8\text{fF}/\mu\text{m}^2$$
$$V_{\text{tn}} = 0.3\text{V}$$

a) Sketch the input/output transfer curve.

b) Find the threshold, V_{th}, of this inverter.

- c) Find the output logic high and output logic low levels (assume the current source cannot drive the output above V_{dd}).
- For questions 3-4 below, assume $\mu_n = 3\mu_p = 0.06 \text{ m}^2/\text{Vs}$, $V_{tn} = -V_{tp} = 0.3 \text{V}$, $C_{ox} = 8 \text{fF}/\mu \text{m}^2$, and $V_{dd} = 2 \text{V}$.
- 3) Given a CMOS inverter with $\left(\frac{W}{L}\right)_n = \left(\frac{W}{L}\right)_p = 10$, where the input is at V_{dd} , find the maximum current that the output can sink before the output rises above 0.2V.
- 4) Given a CMOS inverter with $\left(\frac{W}{L}\right)_n = \left(\frac{W}{L}\right)_p = 10$, where the input is at 0, find the maximum current that the output can source before the output falls below 1.8V.