University of Toronto

Term Test 2

Date - Mar 17, 2010

Duration: 1.5 hrs

ECE334 — Digital Electronics Lecturer - D. Johns

ANSWER QUESTIONS ON THESE SHEETS USING BACKS IF NECESSARY

- 1. Equation sheet is on last page of test.
- 2. Only tests written in pen will be considered for a re-mark.
- 3. Calculator type unrestricted
- 4. Grading indicated by []. Attempt all questions since a blank answer will certainly get 0.

		Question	Mark
	Ξ	1	
	-	2	
	-	3	
	-	4	
Last Name:	_	5	
		Total	
First Name:	-		

Student #: _____

(max grade = 29)

- **[5] Question 1:** Answer the True [T] or False [F] questions below by **circling** the correct answer. Each correct answer is worth 0.5 marks.
- T F When creating metal wires on a chip, first silicon dioxide is grown and photoresist is used to etch where wires should exist. Next, aluminum is sprayed on using silicon dioxide as a mask.
- T F When creating metal wires on a chip, first aluminum is sprayed on the entire microchip, then photoresist and silicon oxide is used to mask where wires should exist and the rest is etched off.
- T F In a self-aligned process, the drain/source junctions are first formed and then the gate is formed above the drain/source junctions so that it is self-aligned.
- T F The silicon dioxide layer formed under the gate region is grown using wet oxidation instead of dry oxidation.
- T F Tungsten is used in via and contact holes due to its low resistance.
- T F P-type silicon is made by doping pure silicon with boron.
- T F The dynamic power of a digital chip is due to the energy being dissipated across capacitors in the chip.
- T F In CMOS circuits, to keep all the drain/source diodes reverse biased, the substrate (or bulk) of all NMOS transistors should be tied to V_{dd} while the substrate (or bulk) of all PMOS transistors should be tied to ground.
- T F A pseudo-NMOS gate with power supplies 0 and V_{dd} has it's output high level equal to V_{dd} while it's output low level is a value greater than 0.
- T F V_{TH} for an inverter is defined to be the input voltage where the inverter's gain is largest.

[6] Question 2: Consider the following cross-section of a p-well process (not n-well)

- a) On the above diagram, label all the "???" signs with the material name (i.e. polysilicon, silicon dioxide, metal, p+, n+, p-, n-, etc.).
- b) What is the purpose of the p+ in the p-well and the n+ in the n- substrate?

c) What is the purpose of field-implants?

d) Explain clearly why metal is not used as the gate material in a self-aligned process.

[6] Question 3: Find the dynamic power dissipation, P_{dyn} , for the following CMOS circuit assuming the clock is 1GHz, $V_{DD} = 2.5$ V and the inputs have the following probability values that change on the rising edge of the clock.

P(A=1) = 0.5, P(B=1) = 0.4, P(C=1) = 0.7

[6] Question 4: Consider a metal 1 (first layer of metal) aluminum wire that is $0.8\mu m$ above the substrate, is $0.5\mu m$ in height and has a width of $0.25\mu m$ and has a length of 5 mm.Recall that the resistivity of aluminum is $2.8 \ \mu\Omega \bullet cm$

a) Find the resistance per μ m, R_w and the capacitance per μ m, C_w .

 $t_d =$

a) Estimate the delay, t_d , of this wire assuming the delay is 1.2τ .

b) Estimate the delay of this wire if the width is increased to $1\mu m$ and other parameters are unchanged.

[6] Question 5: It is desired to drive a 1pF capacitive load given that a minimum size inverter has a gate capacitance of 4fF and it's inherent delay is 15ps.a) Find the delay if a single inverter is used.

b) Find the delay if an inverter chain is used where a fanout factor of 4 is used for inverter sizing.

c) Explain why a fanout factor of 4 is generally used for inverter sizing in an inverter chain instead of a factor of e which was derived in class to be optimum. (hint: what was overlooked in the class derivation?)

ECE334

Digital Electronics

Equation Sheet

Constants: $k = 1.38 \times 10^{-23}$ JK⁻¹; $q = 1.602 \times 10^{-19}$ C; $V_T = kT/q \approx 26$ mV at 300 °K;

 $\begin{aligned} & \varepsilon_{0} = 8.854 \times 10^{-12} \text{ F/m}; \ k_{ox} = 3.9; \ \text{caps:} \ C_{ox} = (k_{ox}\varepsilon_{0})/t_{ox}; \ C_{j} = C_{j0}/(1 + V_{R}/\phi_{0})^{M_{j}}; \\ & \text{NMOS:} \ \beta_{n} = \mu_{n}C_{ox}(W/L); \ V_{tn} > 0; V_{DS} \ge 0; (\text{triode}) \ I_{D} = \beta_{n}((V_{GS} - V_{tn})V_{DS} - (V_{DS}^{2}/2)); (\text{active}) \ I_{D} = 0.5\beta_{n}(V_{GS} - V_{tn})^{2}; \\ & (\text{triode}) \ V_{DS} \le (V_{GS} - V_{tn}); (\text{active}) \ V_{DS} \ge (V_{GS} - V_{tn}); \ V_{tn} = V_{tn0} + \gamma(\sqrt{V_{SB} + \phi_{s}} - \sqrt{\phi_{s}}); \\ & (\text{subthreshold}) \ I_{D} = I_{D0}e^{((V_{GS} - V_{tn})/(nV_{T}))}(1 - e^{-V_{DS}/V_{T}}); \end{aligned}$

PMOS:
$$\beta_p = \mu_p C_{ox}(W/L)$$
; $V_{tp} < 0$; $V_{DS} \le 0$; (triode) $I_D = \beta_p((V_{GS} - V_{tp})V_{DS} - (V_{DS}^2/2))$; (active) $I_D = 0.5\beta_p(V_{GS} - V_{tp})^2$; (triode) $V_{DS} \ge (V_{GS} - V_{tp})$; (active) $V_{DS} \le (V_{GS} - V_{tp})$;

Simple cap model: $C_g = C_{ox}WL$; if L_{min} ; $C_{gu} \equiv C_{ox}L_{min}$; $C_g = C_{gu}W$; $C_d = C_s = C_{du}W$;

CMOS inverter: $V_{\text{TH}} = (V_{\text{DD}} + V_{tp} + V_{tn}r)/(1+r)$; $r = \sqrt{(\mu_n (W/L)_n)/(\mu_p (W/L)_p)}$;

RC delay est: $t_{dr} = t_{df} = 1.2\tau$; $\tau = R_{eq}C$; $R_{eqn} = 2.5/(\mu_n C_{ox}(W/L)_n (V_{DD} - V_{tn}))^r$; $R_{eqp} = 2.5/(\mu_p C_{ox}(W/L)_p (V_{DD} + V_{tp}))$; $(W_p/W_n)_{opt} = \sqrt{\mu_n/\mu_p}$ Unit delay est: $t_{df2}/t_{df1} = (C_{L2}/C_{L1}) \times ((W/L)_{n1}/(W/L)_{n2})$ **Min delay:** $t_{delay} = \tau_{inv}(C_{out}/C_{in})$; $total_{delay} = Nf\tau_{inv}$; $f^N = C_{out}/C_{in}$; usually f = 4

Min delay: $t_{\text{delay}} = \tau_{\text{inv}}(C_{\text{out}}/C_{\text{in}})$; $\text{total}_{\text{delay}} = Nf\tau_{\text{inv}}$; $f' = C_{\text{out}}/C_{\text{in}}$; usually f = 4 **Power diss:** $P_{\text{dyn}} = P_{1 \rightarrow 0}fC_L V_{\text{DD}}^2$; $P_{\text{dp}} = 0.5P_{1 \rightarrow 0}fV_{\text{DD}}I_{\text{peak}}(t_r + t_f)$; $I_{\text{peak}} = 0.5\beta_n(V_{\text{TH}} - V_{tn})^2$; **Elmore Delay:** $\tau_i \cong \sum C_k R_{ik}$; dist RC, $\tau \cong RC/2$;

Interconnect: $R = {k \choose \rho} / (tw)$; $R_{\Box} = \rho / t$; $C = (\varepsilon_{ox} w l) / t$; $C = \varepsilon_{ox} l (w / h + 0.77 + 1.06 (w / h)^{0.25} + 1.06 (t / h)^{0.5})$;