University of Toronto

Term Test 2

Date - Mar 16, 2011

Duration: 1.5 hrs

ECE334 — Digital Electronics Lecturer - D. Johns

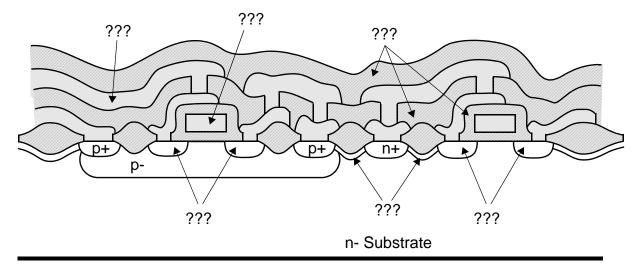
ANSWER QUESTIONS ON THESE SHEETS USING BACKS IF NECESSARY

- 1. Equation sheet is on last page of test.
- 2. Only tests written in pen will be considered for a re-mark.
- 3. Calculator type unrestricted
- 4. Grading indicated by []. Attempt all questions since a blank answer will certainly get 0.

	Question	Mark
	1	
	2	
	3	
	4	
Last Name:	 5	
	Total	
First Name:		
		Ja 3 0)

Student #: _____

(max grade = 29)


[5] Question 1: Each correct answer is worth 0.5 marks.

For the questions below, circle one of True [T] or False [F].

Т	F	In a 45nm CMOS process, the subthreshold leakage current is due to current leaking in and out of the mosfet gates due to very thin gate oxides.
Т	F	Dynamic direct-path power dissipation increases as clock and data edge slew-rates decrease.
Т	F	CMOS gates are made out of polysilicon so they will not melt during annealing.
Т	F	A self-aligned process means that the different masks are self-aligned with each other.
Т	F	A CMOS schmitt trigger is often used at the outputs of a digital chip to reduce noise.
Т	F	When creating metal wires on a chip, first silicon dioxide is grown and photoresist is used to etch where wires should exist. Next, aluminum is sprayed on using silicon dioxide as a mask.
Т	F	The silicon dioxide layer formed under the gate region is grown using wet oxidation instead of dry oxidation.
Т	F	Tungsten is used in via and contact holes due to its low resistance.
Т	F	The lowest level metal on a microchip is thicker than the highest level metal.
_	-	

T F For interconnect metal wires, the fringe capacitance is usually larger than the parallel plate capacitance.

[6] Question 2: Given that a minimum size inverter has a gate capacitance of 4fF and it's inherent delay equals 15ps, find the number of inverters for an inverter chain that minimizes the propogation delay to drive a 10pF load when using a fan-out factor of 4 for inverter sizing. Also, what is the propogation delay?

[6] Question 3: Consider the following cross-section of a p-well process (not n-well)

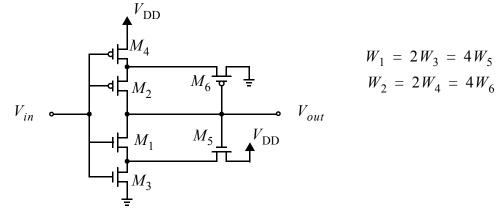
a) On the above diagram, label all the "???" signs with the material name (i.e. polysilicon, silicon dioxide, metal, p+, n+, p-, n-, etc.).

b) How is **annealing** performed and why is it performed after ion implantation?

c) Name a dopant that can be used to make p-type silicon.

d) Name a dopant that can be used to make n-type silicon.

[6] Question 4:


a) A metal wire has a thickness of 480nm, a width of 250nm and is 800nm above the p- substrate. Find the capacitance per unit length in units of $fF/\mu m$. Also, out of the total capacitance, find the percentage capacitance that relates to the parallel plate model and the percentage that relates to the fringe capacitance (the sum of the 2 should equal 100%).

b) A metal wire has a sheet resistance of 0.08 Ω/\Box and a capacitance of 0.2 fF/ μ m. Given that the wire is 1 μ m wide and 2mm long, construct a 3 segment π -model for the wire.

c) For the above model in part b), what would be the Elmore time-constant for a source driving a resistor of size $1k\Omega$ at one end of the wire with a capacitive load at the other end of 67 fF.

Last Name:

[6] Question 5: Consider the Schmitt trigger below. All transistors have minimum channel length and transistor relative widths are shown. Derive an expression for the switching threshold as V_{in} is increased from 0V. Ignore the body effect.

Last Name: _____

(blank sheet for scratch calculations)

ECE334

Equation Sheet

Digital Electronics Constants: $k = 1.38 \times 10^{-23} \text{ JK}^{-1}$; $q = 1.602 \times 10^{-19} \text{ C}$; $V_T = kT/q \approx 26 \text{ mV}$ at 300 °K; $\varepsilon_0 = 8.854 \times 10^{-12} \text{ F/m}$; $k_{ox} = 3.9$; **caps:** $C_{ox} = (k_{ox}\varepsilon_0)/t_{ox}$; $C_j = C_{j0}/(1 + V_R/\phi_0)^{M_j}$; **NMOS:** $\beta_n = \mu_n C_{ox}(W/L)$; $V_{tn} > 0$; $V_{DS} \ge 0$; (triode) $I_D = \beta_n((V_{GS} - V_{tn})V_{DS} - (V_{DS}^2/2))$; (active) $I_D = 0.5\beta_n(V_{GS} - V_{tn})^2$; (triode) $V_{\text{DS}} \leq (V_{\text{GS}} - V_{tn})$; (active) $V_{\text{DS}} \geq (V_{\text{GS}} - V_{tn})$; $V_{tn} = V_{tn0} + \gamma(\sqrt{V_{\text{SB}} + \phi_s} - \sqrt{\phi_s})$; (subthreshold) $I_D = I_{DD} e^{((V_{GS} - V_{tn})/(nV_T))} (1 - e^{-V_{DS}/V_T});$ **PMOS:** $\beta_p = \mu_p C_{ox}(W/L)$; $V_{tp} < 0$; $V_{DS} \le 0$; (triode) $I_D = \beta_p((V_{GS} - V_{tp})V_{DS} - (V_{DS}^2/2))$; (active) $I_D = 0.5\beta_p(V_{GS} - V_{tp})^2$; (triode) $V_{\text{DS}} \ge (V_{\text{GS}} - V_{tp})$; (active) $V_{\text{DS}} \le (V_{\text{GS}} - V_{tp})$; Simple cap model: $C_g = C_{ox}WL$; if L_{min} ; $C_{gu} = C_{ox}L_{min}$; $C_g = C_{gu}W$; $C_d = C_s = C_{du}W$; **CMOS inverter:** $V_{\text{TH}} = (V_{\text{DD}} + V_{tp} + V_{tn}r)/(1+r)$; $r = \sqrt{(\mu_n (W/L)_n)/(\mu_p (W/L)_p)}$ **RC delay est:** $t_{dr} = t_{df} = 1.2\tau$; $\tau = R_{eq}C$; $R_{eqn} = 2.5/(\mu_n C_{ox}(W/L)_n(V_{DD} - V_{tn}))$; $R_{eqp} = 2.5/(\mu_p C_{ox}(W/L)_p(V_{DD} + V_{tp}))$; $(W_p/W_n)_{opt} = \sqrt{\mu_n/\mu_p} \quad \text{Unit delay est:} \quad t_{dt2}/t_{df1} = (C_{L2}/C_{L1}) \times ((W/L)_{n1}/(W/L)_{n2})$ Min delay: $t_{delay} = \tau_{inv}(C_{out}/C_{in})$; $\text{total}_{delay} = Nf\tau_{inv}$; $f^N = C_{out}/C_{in}$; usually f = 4**Power diss:** $P_{dyn} = P_{1 \to 0} f C_L V_{DD}^2$; $P_{dp} = 0.5 P_{1 \to 0} f V_{DD} I_{peak} (t_r + t_f)$; $I_{peak} = 0.5 \beta_n (V_{TH} - V_{tn})^2$; **Elmore Delay:** $\tau_i \cong \sum C_k R_{ik}$; dist RC, $\tau \cong RC/2$; **Interconnect:** $R = {k \choose \rho} / (tw)$; $R_{\Box} = \rho / t$; $C = (\varepsilon_{ox} w l) / t$; $C = \varepsilon_{ox} l (w / h + 0.77 + 1.06 (w / h)^{0.25} + 1.06 (t / h)^{0.5})$; **Max delay constraint:** $T_c \ge t_{pcq} + t_{pd} + t_{setup}$ **Min Delay constraint:** $t_{hold} \le t_{ccq} + t_{cd}$ **Metastability:** MTBF = $e^{T/\tau_s} / (t_{rd}F_DF_{CLK})$ SRAM: M3 is cell access transistor, M1 is inverter NMOS, M5 is inverter PMOS, $W_1/W_3 \ge (V_{\rm DD} - V_{\rm A} - V_{\rm tn})^2 / (2((V_{\rm DD} - V_{\rm tn})V_{\rm A} - V_{\rm A}^2/2)) \quad ; \quad I_{\rm cell} = ((\mu_n C_{\rm ox})/2)(W_3/L)(V_{\rm DD} - 2V_{\rm tn})^2$ SRAM read: $\Delta V_{\rm BL} = (I_{\rm cell} \Delta t) / C_{\rm BL}$

SRAM write: $W_3/W_5 \ge (\mu_p (V_{DD} + V_{tp})^2)/(2\mu_n ((V_{DD} - V_{tp})V_A - V_A^2/2))$

	V _{T0} (V)	γ (V ^{0.5})	μC_{ox} $(\mu A/V^2)$	λ (V^{-1})	$\frac{C_{ox}}{(fF/\mu m^2)}$	C_o (fF/µm)	$\frac{C_j}{(fF/\mu m^2)}$	C_{jsw} (fF/ μm)
NMOS	0.4	0.4	120	0.06	6	0.3	2	0.3
PMOS	-0.4	0.4	30	0.1	6	0.3	2	0.3

MOS Transistor; CMOS basic parameters. Channel length = $0.25 \mu m$, $m_i = 0.5$, $\phi_o = 0.9 V$

 V_{T0} is the threshold voltage with zero bulk-source voltage; γ is used to account for non-zero bulk-source voltage; μC_{ox} is the transistor current gain parameter; λ is to account for the transistor finite output impedance (channel length modulation); C_{ox} is the gate capacitance per unit area; C_o is the gate overlap capacitance per unit length; C_i is the drain/source junction capacitance per unit area; C_{isw} is the drain/source junction capacitance per unit length to account for drain/source perimeter capacitance. Assume this value is the same for all perimeters