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Overview of Some Signal Spectra
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Example Signal Spectra
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Example Signal Spectra

. XS(/) has same spectra as X c(f) but repeats every fS

(assuming no aliasing occurs).

* X(w) has same spectra as X (f) freq axis normalized.

SINX

* Spectra for X ,(f) equals X (f) multiplied by —

response — 1n effect, filtering out high frequency images.
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Laplace Transform & Discrete-Time

single pulse at
szn(t) (single p nT)

* x(#) scaled by 7 such that the area under the pulse at nT
equals the value of x _(n7).

* In other words, atr = n7, we have

x(nT)

T

x(nT) = (1)
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( Laplace Transform & Discrete-Time

* Thus as 1 — 0, height of x (#) at time nT goes to o and so
we plot tx (7) instead.

* Define 9(¢) to be the step function,

ﬁ(t)z{ 1 (120) 2)
0 (tr<0)
* then single-pulse signal, x (), can be written as
x(nT)
x () = . [O(t—nT)—t—nT—-1)] (3)

and the entire signal x (7) as

X0 = Y x,0 (4)
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Laplace Transform & Discrete-Time

« Above signals are defined for all time — we can find
Laplace transforms of these signals.

« The Laplace transform X_ (s) for x (7) 1s

X (s) = 1(1 _e_S‘>x (nT)e_MT (5)
SN T S C
and X(s) 1s simply a linear combination of x_ (¢), which
results 1n
(1-¢’™ —snT

X (s) = E( Se T) Z x (nT)e > (6)
%i
@
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Laplace Transform & Discrete-Time

2

« Using the expansion ¢ = 1+x+%+...,whenre0,the

term before the summation in (6) goes to unity.

e Therefore, as 1 — 0,

oo

X (s) = Z xc(nT)e_SnT (7)

n — —oo

e This Laplace transform only depends on sample points,
x (nT) which in turn depends on the relative sampling-

rate, 7.
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Spectra of Discrete-Time Signals
* x(?) spectra can be found by replacing s = jo in (7)
« However, a more intuitive approach is ...

* Define a periodic pulse train, s(¢) as

(S )

s(t) = Z o(t—nT) (8)

N = A"

where d(7) 1s the unit impulse function.

* Then x () can be written as
x() = x(O)s(7) )

X (jo) = %IXC(/‘O)) ® S(o) (10)

where ® denotes convolution.
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Spectra of Discrete-Time Signals

* Since the Fourier transform of a periodic impulse train is
another periodic impulse train we have

S(jo) = 2—; 3 S(m—kz—}‘) (11)

I = _~n

* Thus, the spectra X (jo) 1s found to be

X (o) = % Z i szn (12)

 or equivalently,

oo

X (f) = lT S X (2nf - jk2nf) (13)

k = —oo
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Spectra for Discrete-Time Signals

 The spectra for the sampled signal x (¢) equals a sum of
shifted spectra of x (7).

* No aliasing will occur if X (jm) 1s bandlimited to f./2 .

 Note that x (f) can not exist is practice as it would require

an infinite amount of power (seen by integrating X (f)
over all frequencies).
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Spectra Example
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Z-Transform
e The z-transform 1s merely a shorthand notation for (7).

» Specifically, defining

z=el (14)
* W€ can write
Xz)= Y xn Nz " (15)
* where X(z) 1s called the z-transform of the samples x (n7).
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Z-Transform

e 2 properties of the z-transform are:

—If x(n) <> X(z), then x(n—k) <>z “X(z)

— Convolution in the time domain 1s equivalent to
multiplication 1n the frequency domain.

X(z) is not a function of the sampling-rate!

* A 1Hz signal sampled at 10Hz has the same transform as a
similar 1kHz signal sampled at 10kHz

* X(z) 1s only related to the numbers, x (»7) while X (s) 1s
the Laplace transform of the signal x (r) as T — 0.
e Think of the series of numbers as having a sample-rate
normalizedto T = 1 (i.e. f, = 1Hz).
%
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Z-Transform

e Such a normalization results in

X,(f) = X(zjl‘f) (16)
or equivalently, a frequency scaling of
2nf
= —Z 17
7 (17)

o Thus, discrete-time signals have o in units of radians/
sample.

« Continuous-time signals have frequency units of cycles/
second (hertz) or radians/second.
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(
Example Sinusoidal Signals
x(n) 1x(n)
|| 10 s
‘ T t
1 5 10 5,
0 rad/sample = 0 cycles/sample 7t/ 8 rad/sample = 1/ 16 cycles/sample
+x(n) 2 x(n)
5 15 R
I 10 n
1t/ 4 rad/sample = 1/8 cycles/sample 7t/ 2 rad/sample = 1/4 cycles/sample
;“ﬁ
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Example Sinusoidal Signals

* A continuous-time sinusoidal signal of 1£Hz when

sampled at 4kHz will change by n/2 radians between each
sample.

* Such a discrete-time signal 1s defined to have a frequency
of /2 rad/sample.

* Note that discrete-time signals are not unique since the
addition of 27 will result in the same signal.

* For example, a discrete-time signal having a frequency of
n/4 rad/sample 1is identical to that of 9m/4 rad/sample.

« Normally discrete-time signals are defined to have

frequency components only between -t and ©
rad/sample.
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Downsampling
Al N ----- m I ) o )
St el e
A & WAG U
G 21 0 5 2n

« Keep every L‘th sample and throw away L — 1 samples.
[t expands the original spectra by L.

* For aliasing not to occur, original signal must be bandlimited
to /L.
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........................................ v psamp lin 5
P A e
YN A MMM
0 = 2m z 2m

e Insert L —1 zero values between samples

e The frequency axis 1s scaled by L such that 2w now occurs
where L27m occurred in the original signal.

« No worry about aliasing here.
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Discrete-Time Filters

u(n) —— H(z) —— y(1)
((n) equals i(n)ifu(n) is an impulse)

(discrete-time filter)

* An input series of numbers 1s applied to a discrete-time
filter to create an output series of numbers.

e This filtering of discrete-time signals 1s most easily
visualized with the shorthand notation of z-transforms.

Transfer-Functions

e Similar to those for continuous-time filters except instead

(1 e _9%

of polynomials 1n “s”, polynomials 1in “z” are obtained.
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Low-pass continuous-time filter, H (s),

The poles are the roots of the denominator polynomial
Poles: — 1.0 £ 1.7321; for this example.

Zeros: Defined to have two zeros at - since the den poly
1s two orders higher than the numerator poly.

Cont-Time Transfer-Function

4
H(s) = (18)
s +2s+4
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Cont-Time Frequency Response
\ high-frequency

s-plane 4
jo = e
1 jq)

X
>

X

™ dc
(poles) jo =

* Poles and zeros plotted 1n the s-plane.

* Substitution s = jo 1s equivalent to finding the magnitude
and phase of vectors from a point along the jo axis to all
the poles and zeros.

University of Toronto 22040

© D. Johns, K. Martin, 1997




Discrete-Time Transfer-Function

HE) - = 0.05 (19)

z —1.6z+0.65

e Poles: 0.8 £0.1; in the z-plane and two zeros are again at

co ,

e To find the frequency response of H(z), the poles and
zeros can be plotted in the z-plane, and the unit circle

. Q)
contour is used, z = ¢
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Discrete-Time Frequency Response

® = /2 . J®  z-plane

0):3_7[
2

* Note that poles or zeros occurring at z = 0 do not affect
the magnitude response of H(z) since a vector from the
origin to the unit circle always has a length of unity.
However, they would affect the phase response.
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Discrete-Time Frequency Response

e z = 1 corresponds to the frequency response at both dc
(1.e. ® = 0) and for o = 2m.

* The time normalization of setting 7 = 1 implies that
® = 21 1s equivalent to the sampling-rate speed (i.¢.

f=1f)tor X(f).

» As with cont-time filter, 1f filter coefficients are real,
poles and zeros occur 1in complex-conjugate pairs —
magnitude 1s symmetric, phase 1s anti-symmetric.

* Going around the circle again would give the same result
as the first time implying that the frequency response
repeats every 2.
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Stability of Discrete-Time Filters
5 y(n+1)

) .?_. o . V(1)

a

* To realize rational polynomials in “z”, discrete-time filters

use delay elements (i.e. “ple building blocks) much the
same way that analog filters can be formed using

integrators (i.c. g building blocks).

e The result 1s finite difference equations describing
discrete-time filters
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Stability of Discrete-Time Filters

A finite difference equation can be written for above

system
y(n+1) = bx(n) + ay(n) (20)
* In the z-domain, this equation 1s written as
zY(z) = bX(z) + aX(z) (21)
 We find H(z) given by
_Yz) _ b
Hz) = X(Z) z—a (22)
which has a pole on the real axis at z = a.
University of Toronto 27040
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Stability of Discrete-Time Filters
« To test for stability, let the input x(n) be an impulse

v0) =k
where k 1s some arbitrary initial state value for y.
y(1) = b+ ak
y2) = ab+a’k
v3) = ab+ak
4) = ab+ak

\ University of Toronto
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Stability of Discrete-Time Filters

e The response, i(n), 1s seen to be given by

hn) = - 0 (n<1) (23)

@ 'b+d) (n21)

* This response remains bounded only when |a| <1 for this
first-order filter and 1s unbounded otherwise.

e In general, a linear time-invariant discrete-time filter,
H(z), is stable if and only if all its poles are located
within the unit circle.
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IIR Filters

* Infinite-Impulse-Response (IIR) filters are those discrete-
time filters that when excited by an impulse, their outputs
remain non-zero assuming infinite precision arithmetic.

e The above example is IIR when a # 0

« [IR filters can be more efficient when long impulse
responses are needed.

* They have some unusual behaviors due to finite-precision
effects such as limit-cycles.
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FIR Filters

Finite-Impulse-Response (FIR) filters are those discrete-
time filters that when excited by an impulse, their outputs
go precisely to zero (and remain zero) after a finite value
of n.

Example — running average of 3

y(n) = %(x(n) +x(n—1)+x(n—2)) (24)
1 —i
H(z) = 3 Z z (25)
i=0

Has poles but they all occur at z = 0.

FIR filters are always stable and exact linear phase filters
can be realized.

ale
P o

University of Toronto 31040 )

© D. Johns, K. Martin, 1997



Bilinear Transform

 Consider H (p) as a continuous-time transfer-function

¢6__ 9

(where “p” 1s the complex variable equal to ¢ , TJQ ), the
bilinear transform is defined to be given by,

_z—1
p_z-l—l (26)

« The inverse transformation 1s given by,

_ 1 +p
2= 1 — (27)

* The z-plane locations of 1 and -1 (i.e. dc and f,/2) are
mapped to p-plane locations of 0 and -, respectively.
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Bilinear Transform

e The unit circle, z = eiw, in the z-plane 1s mapped to the
entire jQ axis in the p-plane.

_ ejco_l _ ej(u)/z)(e/'((o/z)_e—j(u)/Z))

P Ol SO gD D) (28)
_ 2jsin(w/2) _ .
5 005(®/2) jtan(®/2) (29)
e Results in the following frequency “warping”.
Q = tan(w/2) (30)
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Bilinear Transform Filter Design

* Design a continuous-time transfer-function, H (p), and
choose the discrete-time transfer-function, H(z), such that

H(z)=H ((z—1)/(z+ 1)) (31)
so that
H({®) = H (jtan(0/2)) (32)

* The response of H(z) is seen to be equal to the response of
H (p) except with a frequency “warping”

 Order of the cont-time and discrete-time also same.
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Bilinear Design Example
* Find a first-order H(z) that has a 3db frequency at f,/20, a

zero at -1 and a dc gain of one.

* Using (30), the frequency value, f,/20, or equivalently,
® = (2m)/20 = 0.314159 1s mapped to Q = 0.1584.

* Thus, H (p) should have a 3dB frequency value of 0.1584
rad/s.

e Such a 3db frequency value i1s obtained by having a p-
plane zero equal to « and pole equal to -0.1584.
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Bilinear Design Example

e Transforming these continuous-time pole and zero back

using (27) results 1n a z-plane zero at -1 and a pole at
0.7265.

e Therefore, H(z) appears as

(33)

e The constant £ can be determined by setting the dc gain to
one, or equivalently, [H(1)] = 1 which results in
k = 0.1368.
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Sample-and-Hold Response

A sample-and-held signal, x_,(?), 1s related to its sampled
signal by the mathematical relationship,

o0

x () = Z x (nD) [t —nT) -0t —nT-1T1)] (34)
* x(1) 1s well-defined for all time and thus the Laplace
transform can be found to be equal to

l —-e
S

Xsh(S) -

s (35)
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Sample-and-Hold Response
 The hold transfer-function, H,(s), 1s equal to

1 —sT
H (s) = 1= (36)

A)

 The spectra for H ,(s) 1s found by substituting s = j

T JjoT sin(m—T)
H_(jo) = e = Txe * x - (37)
2
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Sample-and-Hold Response

« The magnitude of this response is given by

. (@
sm—‘

’ h(lw)| ‘0)_T

()
ﬂ

or | h(f)|—T

X

University of Toronto

(38)

sm .
e and 1s often referred to as the > or “sinc” response.
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Sample-and-Hold Response
_Hsh(iw)!

S,

3 2 o 0 S Ay 3

e This frequency shaping of a sample-and-hold only occurs
for a continuous-time signal.

N

A

« Specifically, a sample-and-hold before an A/D converter
does not aid in any anti-aliasing requirement since the A/
D converter has a true discrete-time output.
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