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Fig. 1. Comparison of frequency response functions. 

variation with N in the measured values of A. All were within 1% 
of the specified value. The point of the comparison, however, is 
not to claim that the proposed design is better, but that it 
combines respectable performance with both formal simplicity 
and computational economy. 
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State-Space Simulation of LC Ladder Filters 

D. A. JOHNS AND A. S. SEDRA 

Ahtract -A new design method to obtain a state-space system which 
simulates the operation of an LC ladder prototype is introduced. The 
state-space system is relatively sparse and can be found using simple 
algebraic manipulations. Through the use of an example, it is shown that 
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the resulting filter maintains the low-sensitivity properties of the ladder 
prototype. 

I. INTR~DUC~~N 

Properly designed doubly-terminated LC ladder networks are 
known to have low element sensitivities in their filter passband 
[l], [2]. Because of this fact, many papers have been written 
proposing methods for the design of filters based on the oper- 
ational simulation of LC ladder prototypes [3]-[6]. In the case of 
all-pole filters, almost all these methods (including the one pre- 
sented in this letter) yield the well-known leap-frog filter strud- 
ture. However, structures obtained from different methods vary 
significantly when the filter is derived from a noncanonic LC 
ladder which has finite transmission zeros. This letter proposes a 
simple method to obtain a canonic state-space system wl$ch 
maintains the low-sensitivity properties of a canonic or non- 
canonic LC ladder. 

II. DESIGN PROCEDURE 

A Nth-order state-space system is described by the equations 
sx=Ax+bu 

y = cTx + du (1) 
where u is the input signal, x is a vector of N states, which in 
fact are the integrator outputs, y is the output signal, and A, 6, 
c, and d are coefficients relating these variables. 

Given an LC ladder prototype we wish to simulate, we first 
choose a set of, N states from the ladder. With a canonic ladder, 
we choose all the capacitor voltages and inductor currents as the 
states. In the case of a noncanonic ladder with N, finite loss 
poles, we choose N linearly independent states from the set of 
N + N, capacitor voltages and inductor currents. Requiring that 
the N states be linearly independent implies we must not choose 
all the capacitor voltages or inductor currents in a reactive cutset 
or tieset. However, even with this constraint satisfied, there are 
still many ways to choose N linearly independent states from a 
noncanonic ladder. Since it has been shown that different selec- 
tions for the states from the LC ladder can lead to structures 
with dramatically different performance [7], care must be ex- 
ercised in this selection. It has been found that’ good filter 
realizations are obtained if the element in each resonant tank 
which is part of a cutset or tieset is not chosen as one of the 
states to be simulated. In the eighth-order LC ladder of Fig. 1, 
VC, and Vc, are the element voltages which should not be 
simulated. This simple method of choosing states to simulate has 
given good results on all filters simulated to date. 

Once a choice of states from the LC ladder has been made, we 
proceed to find the state-space system which will simulate these 
states. For each capacitor whose voltage has been chosen as a 
state, we write a node equation expressing the current through 
the capacitor in terms of the other state variables. Similarly, for 
each chosen inductor current, we write a loop equation ex- 
pressing the voltage across the inductor in terms of the other 
state variables. Using cutset and tieset dependencies, all equa- 
tions can be written containing only element voltages or currents 
which are states. These equations can be put in the following 
form: 

Msx=Nx+Ry (2) 

where x is, as before, an N x 1 vector of states, 5 is the input 
voltage, &I and N are N X N real matrices, and R is an N X 1 
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Fig. 1. An eighth-order bandpass LC ladder to be simulated 

Fig. 2.’ Transfer function of eighth-order design example 

real matrix. Multiplying the above equation by M-’ results in a 
canonic state-space equation where A and b are given by 

A=M-‘N (3) 

b=M-‘R. (4) 

The c vector and d scalar of the state-space system can then 
be easily obtained by writing the final output voltage as a sum of 
states and the input. 

I -0.1816 3.855 0 -0.1816 -0.0414 0 0 0 0 -0.1816 2.2895 0 0 
0 0 0 1 c 0.1816 

0 0 0 0 0 
0 0.0534 0 0 

A= 0.2998 0 - 0.2998 0 2 0.1463 0 - 0.0089 - 0.0165 
0 0 0 0.4914 0 

b= 
- 0.4914 - 0.4914 0 

0.1374 0 -0.1374 0 1.3893 0 0.0838 0.1582 
0.0166 0 - 0.0166 0 0.1680 0 -0.1816 - 0.3428 

0 0 0 0 0 0 2.0777 0 

of (2) separated, the standard state-space system description can 
be obtained using simple algebraic manipulations. 

III. DESIGN EXA~~PLE AND SENSITIVITY COMPARISON 

In this section, an eighth-order canonic state-space simulation 
of the ladder shown in Fig. 1 will be designed and the simulation’s 
integrator sensitivities compared with the ladder’s element sensi- 
tivities. The denormalized transfer function of the ladder is 
shown in Fig. 2. 

Using the guidelines of the previous section, we choose not to 
simulate I$, and Vc-, and use the following equivalents found 
from cutset and tieset dependencies’ : 

6, = vc, - Kz6 - 6,. (6) 
Eight independent equations are then written involving the eight 
chosen states as follows: 

sL, IL1 + R,Z,, + Vc2 + V& = v, (7) 

sc,vc2 - Z& = 0 (8) 

i 

c2 G G 
sL3zL,+ cVc2-cvc4-cvc6 -vc-=o (9) 

3 3 3 i 

~~~~~+z~~-zL,+zILs+~~~(1/c-~~-vc7)=o (10) 

WL. 5 - vc, + V& + vc, = 0 (11) 

qG6 - Z& - SC, ( vc4 - V& - vc,) = 0 (12) 

sc,v,6 - SC,&., - Z& - > = 0 (13) 
/ 

SL8ZL, - vc, = 0. (14) 

Substituting the values of the capacitors, inductors, and resis- 
tors in the above equations and using the approach in Section II 
to obtain the state-space system, we find the following matrices: 

cT=[O 0 0 0 0 0 1 0] d=O. 

Before leaving this section, it is interesting to note that (2) 
describes a noncanonic system which simulates an LC ladder. 
The system would consist of N integrators with resistive and 
capacitive feed-ins to the integrators. For low-pass filters, the 
structures obtained would be equivalent to those derived by the 
capacitor-splitting technique described in [5]. Also of interest is 
the fact that for most LC ladder simulations, matrix M is close 
to being diagonal and thus keeping the left- and right-hand sides 

0 
0 
0 
0 
0 

_ 0 

In order to compare the sensitivity properties of the state-space 
simulation with the original LC ladder, we define maximum 
integrator sensitivity, max S, as 

(15) 

‘In the capkitive cutset formed by Vcl, Vc,, I+-, and Vc , the capacitor 
currents add to zero and thus the capacitor voltages weighted 6y their element 
values add to a constant. This constant can be forced to zero since the ladder 
being simulated has at least one loss pole at dc. 
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Fig. 3. Maximum integrator sensitivity: LC ladder versus state-space simu- 
lation. 

where integ, is the i th integrator of either the ladder or state-space 
system. For the ladder, each of the reactive elements are consid- 
ered integrators and thus maximum integrator sensitivity is 
equivalent to maximum element sensitivity. 

Shown in Fig. 3 are the maximum integrator sensitivities of the 
ladder and state-space simulation for the eighth-order design 
example. The ladder’s sensitivities were found using SPICE and 
post-processing the SPICE output, whereas analytic formulas 
presented in [7] were used to calculate the state-space system’s 
sensitivities. 

IV. CONCLUSIONS 

This letter presented a simple, systematic method to obtain a 
state-space system which simulaies the operation of an LC 
ladder prototype. The states of the system are chosen from an 
LC ladder and then node and loop equations are written around 
elements of the ladder using only the chosen states. The system 
matrices A, b, c, and d are then found using simple algebraic 
manipulations. An example illustrated that the sensitivity proper- 
ties of filters obtained from this design method closely approxi- 
mate that of the original Li= ladder prototype. 
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Some Results on Two-Dimensional Pseudoquadrature 
Mirror Filters 

A. TABATABAI 

Abstract -One-dimensional (1-D) pseudoquadrature mirror filters 
(PQMF’s) have been introduced as a generalization of quadrature mirror, 
filter (QMF) concepts. U&z of such filters allows one to split directly the 
spectrum of an input signal into N equally spaced subbands which can be 
decimated by N: 1, then inteipolakd and recombined to reproduce the 
original signal. In this paper, a detailed derivation of conditions specifying 
2-D PQMF design constraints for a distortion-free (i.e., aliasing and 
amplitude distortions) reconstruction of the original signal are obtained. 
Potential applications fo; such filters include efficient subband coding of 
digital pictures. 

I. INTRODUCTION 

Since its introduction [l], conventional quadrature mirror filter 
(QMF) banks have received considerable attention for subband 
coding of speech [2], [3]. In this technique, by parallel application 
of a low-pass and a high-pass filter, the input signal spectrum is 
split into two overlapping subbands where each band is then 
decimated by a factor two, and coded separately. For reconstruc- 
tion, decimated signals are decoded, interpolated, and filtered by 
a similar set of filters before being added to reproduce the 
original signal. Note that, in the absence of channel and quanti- 
zation noise, QMF design requirements allow a near-perfect 
reconstruction of the input signal. Decomposition of the input 
signal into .more than two bands can similarly be accomplished 
by repeating the above process in a tree-type filter structure. This 
approach, however, demands N to be a power of two if N 
equally spaced subbands are desired. 

As an alternative, Nussbaumer [4] and Rothweiler [5] have 
presented a parallel bandpass filter structure that can be sub- 
stituted directly for the &nary tree QMF structure. This tech- 
nique is based upon using N equally spaced adjacent bandpass 
filters to split the input signal into N equally spaced bands, and 
subsampling each band at l/iv the original rate, where N may 
not n&essarily be a power of 2. The reconstruction is done by 
inserting N - 1 zero-valued samples between successive samples 
of individual bands. The resulting sequences are then passed 
through a set of parallel bandpass filters, and added to reproduce 
the original signal. For N equally spaced subbands, the paralle! 
bandpass filters are formed by 1) designing a low-pass prototype 
filter satisfying certain design requirements, and 2) modulating 
the low-pass prototype filter by a sinusoid whose center frequen- 
cies are at odd multiples of n/2N. Subsequent papers [6]-[8] 
have provided detailed derivations tid computationally efficient 
methods for realizing such filters. In this paper, we shall refer to 
such parallel bandpass filters as pseudoquadrature mirror filters 
(PQMF’s). 

Vetterli [9] and Wackersreuther [lo] have extended the PQMF 
concept to multidimensional case. They have not, however, pro- 
vided detailed derivations of conditions leading to a distortion- 
free reconstruction of the input signal in a back-to-back arrange- 
ment of analysis and synthesis filter banks. In this paper, depend- 
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