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A High-Quality Analog Oscillator Using
Oversampling D/A Conversion Techniques
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Abstract—This paper describes a high-quality analog oscillator
for low-frequency applications, which uses a combination of over-
sampling and delta-sigma modulation. With the exception of a
lowpass filter and a 1-bit D/A, the proposed circuit is entirely
digital, providing accurate control over the oscillation frequency
and amplitude. At the core of the oscillator is a digital simulation
of an LC-tank circuit consisting of two cascaded integrators. This
arrangement guarantees oscillation by constraining the poles of
the resonator to locations on the z-plane unit-circle, even in a
finite-precision implementation. To minimize circuit complexity,
the entire oscillator is operated at the oversampled rate, thereby
eliminating the associated interpolation filter. Furthermore, the
incorporation of a delta-sigma modulator inside the resonator
loop leads to a very efficient implementation requiring only 4
multi-bit adders and a 2-input multiplexor. The desired analog
signal may be recovered by lowpass filtering the 1-bit output of
the delta-sigma modulator. Experiments performed thus far have
indicated an effective dynamic range exceeding 80 dB.

1. INTRODUCTION

S a result of advancements in Digital-to-Analog (D/A)
converter technology, analog sinusoidal signals are com-
monly generated using a combination of Digital Signal Pro-
cessing (DSP) and D/A conversion. Furthermore, for low-
frequency applications, oversampling delta-sigma D/A con-
verters have gained in popularity due to their high linearity [1].
For this reason, the task of generating analog signals can be
reduced to one of generating the equivalent digital waveforms.
Arbitrary digital sinusoidal signals may be generated using
Direct Digital Frequency Synthesis Techniques (DDFS). These
circuits offer the advantage of fast switching speeds and good
frequency resolution. Nonetheless, the sine function, which
is computationally intensive to calculate, must be computed
using a ROM-based look-up table approach [2]. Although
generalized compression algorithms {3] and noise-shaping
techniques [4] can be used to minimize the size of the ROM,
the resulting hardware requirement may still be unacceptable
in applications such as Built-In-Self-Test (BIST) [5]. In another
approach, a Lossless Discrete Integrator (LDI) biquad filter [6]
is constructed as a component simulation of an LC-tank circuit.
In doing so, the poles of the circuit are constrained to lie on the
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unit-circle of the z-plane, and the desired oscillation frequency
can be selected through precise adjustment of the pole loca-
tions [7]. While this approach incorporates programmability,
it requires at least 1 multi-bit multiplier and an interpolation
filter.

This paper describes a high-quality analog oscillator for
low-frequency applications, which uses a combination of over-
sampling and delta-sigma modulation. The oscillator structure
is based on the LDI biquad circuit described earlier. However,
in this case, no interpolation filter is required since the entire
circuit is operated at the oversampled rate. Furthermore, by
incorporating a delta-sigma modulator inside the resonator
loop, multi-bit multiplications can be avoided resulting in an
efficient implementation. If the output is taken at the delta-
sigma output, multi-bit D/A conversion is not necessary and
the analog signal may be recovered by lowpass filtering the
single-bit stream.

The outline of this paper is as follows. Section II begins
by developing the fundamental concepts which support the
proposed design. Here, parallels are drawn between the well-
known LC-tank circuit and the proposed oscillator. Equations
relating the frequency and amplitude of the oscillatory tone are
derived and presented in terms of the programmable circuit
parameters. In Section III, a realization of the oscillator is
presented. At this point, techniques used to minimize the total
circuit area are discussed. Finally, simulated and experimental
results of the design are presented in Sections IV and V
respectively.

[I. BACKGROUND THEORY

A complete synthesis procedure exists for the design of
digital filters based on LC-ladder networks [8]. The structure
of the resulting digital filter is generally formed from a
set of coupled second-order resonators. These resonators are
formed by cascading two discrete-time integrators of the form
z71/(1—27%)and 1/(1—271) in a loop with the sign of one
integrator being positive and the other negative. This arrange-
ment is shown in Fig. 1. As a result of this approach, digital
filter circuits with excellent noise and sensitivity properties
are known to exist [9].

As a special case of this synthesis procedure, a digital
oscillator may be realized by eliminating the effect of damping
in the filter. By doing so, the resonant circuit of Fig. 1 may
be used as a digital oscillator. In studying this circuit, it is
useful to consider its analog counterpart, the LC-tank circuit
in Fig. 2, as it reveals many of its interesting properties. Being
a lossless circuit, it follows that once the LC-tank is excited,
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Register 1
z1(n+1) z1(n)

z2(n+1)

Register 2

Fig. 1. A second-order digital resonator circuit consisting of a cascade of
two integrators in a loop.

||

Fig. 2. A simple harmonic oscillator: a parallel LC tank circuit.

no energy is lost but instead alternates between electric and
magnetic forms. The resulting capacitor voltage and inductor
current waveforms represent ideal sinusoids with frequency
wo = 1/ VIC.

Two facts are important to note about the energized LC-tank

circuit:

1) variations in the capacitor or inductor values do not
prevent the circuit from oscillating, but merely shift the
frequency of oscillation

2) The amplitude of oscillation is a function of the initial
conditions imposed on the capacitor and inductor.

Returning to the second-order digital resonator of Fig. 1,

it appears from the first observation that variations in the
coefficients a,2 and ag; (corresponding to L and C in the
tank circuit) may cause shifts in the oscillation frequency but
will not prevent the circuit from oscillating. Furthermore, the
second observation suggests that the amplitude of the oscilla-
tory tone will be a function of the initial conditions imposed on
registers 1 and 2. These conclusions are easily verified through
careful observation of the resonator’s characteristic equation.
Denoting the values in registers 1 and 2 of Fig. 1 at time
t = nT by z1(n) and z3(n) respectively, the two difference
equations characterizing the oscillator are,

z1(n+ 1) = z1(n) + a12z2(n + 1) )

z2(n+ 1) = —azz1(n) + z2(n). )

Using z-transforms, z3(n) may be eliminated resulting in a
single equation in z1(n). The result, with X;(z) representing
the z-transform of z1(n), is the following

22 X1(2) + (a12a21 — 2)2X1(2) + X1(2) =0.  (3)

Furthermore, the characteristic equation is given by
Z2 + (a12a21 - 2)2 +1=0. (4)

The location of the circuit poles may be determined by
finding the roots of the above equation. Solving the quadratic
in z yields,

120 1
—%) + 3 a12091(a12a21 — 4).  (5)
If the product ajza0; is restricted to values between 0 and
4, the discriminant of the above expression will always be
negative, yielding complex roots. Moreover, for

212 = (1 -

0 < aiza01 £ 2,

corresponding to roots in the right-half plane, the two roots
may be written using polar notation as,

21,2 = gicos™ (1-2472L) ©)

Similarly, for
2 < ajp09 < 4,

corresponding to solutions in the left-half plane, the roots are
positioned according to the following equation,

212 = e:tj(wfcos’1 (1—11-32321-)) )
From (6) and (7) it is evident that the roots of the characteristic
equation must lie on the unit-circle for all values of the
product ajzaz; between 0 and 4. As a result, oscillation is
guaranteed. In addition, the precise frequency of oscillation
w, may be obtained directly from the phase terms of (6) and
(7). Assuming the resonator is clocked at a rate f,, = %, the
expression for w, will take the following form:

08 cos™1 (1 — &a2821 for 0 < a12a021 < 2
2 -

Wo =

fos® — foscos™! (1~ #2220} for 2 < ajzan < 4.
(

Fig. 3 illustrates the relationship between the oscillation fre-
quency and the product aj2a2:. For values of ajaaz; between
0 and 4, the oscillation frequency varies continuously between
0 and f,s/2. If however, the coefficients are limited to discrete
values (which is the case in a finite-precision implementation),
the selectable oscillation frequencies will also be limited to
discrete values. Nonetheless, as mentioned earlier, because the
poles of the circuit remain on the unit circuit for all values of
a12a91 betwen 0 and 4, the circuit is guaranteed to oscillate
even in a finite-precision implementation.

The second point, which may be drawn from the LC-tank
analogy, is the fact that the amplitude of oscillation may be
controlled through the initial conditions of the circuit. To see
this, consider once again the two difference equations given in
(1) and (2). From the previous z-plane analysis, it is apparent
that the solution of these difference equations is a single tone
of frequency w,. By assuming a solution of the form,

z1(n) = Asin(wonT + @), %)
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Oscillation Frequency vs. Coefficient a12*a21

0.5 T T T T

Tone Frequency (as a fraction of Fos)

Fig. 3. Mlustrating the functional relationship between oscillation frequency
(as a fraction of the sampling frequency fo,) and the product ajsaz;.

with T = 7, the values contained in registers 1 and 2 at
sampling instants n = 0 and n = 1 are

1(0) = Asin(¢) (10)
and z1(1) = Asin(w,T + ¢). (11

Furthermore, by combining (1) and (2), an expression relating
the state of register 1 at sampling instant n = 1 to the values
initially stored in registers 1 and 2 may be obtained, and is
given by

z1(1) = (1 — a12a21)71(0) + a1222(0). (12)

Finally, by combining (10), (11), and (12), the two unknown
constants, A and ¢, may be solved for in terms of the two
initial register values. The resulting equations are given below.

1- a12a21).’1:1(0) + alzzz([))

_
A= sin (w,T + ¢)

(13)

_ _ z1(0) sin{w,T)
¢ = tan 1( ! 24

(1 — a12a21 — COS(on)).Z‘l(O) + a12T2 (0)(

To demonstrate the properties of (13), two graphs are
presented in Figs. 4 and 5 which show the sinusoidal amplitude
as a function of the initial register conditions. Here, the
coefficients a12 and ag; have been chosen arbitrarily and do
not affect the general characteristics of the relationship. Specif-
ically, the values a1z = 27% and ay; = 0.0068796752790
were selected, corresponding to an oscillation frequency of
0.00165301 x f,,. Fig. 4 illustrates how the amplitude of
oscillation varies with the initial value of register 1. In this
plot, register 2 has been assigned an initial value of zero. In
a similar way, Fig. 5 illustrates the reverse situation: how the
amplitude varies with the initial value set in register 2. Here,
the initial value of register 1 has been set equal to zero. As
indicated by both plots, the relation is very near linear with
respect to the initial conditions.

Realization of a digital oscillator in this manner has recently
been demonstrated by Turner [7]. The following section ex-
plains how this digital oscillator may be incorporatated in the
design of a low-frequency, analog oscillator.

Sinusoidal Amplitude vs. Initial Value of Register 1
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Fig. 4. Oscillation amplitude as a function of the initial value in register 1.

III. AN AREA-EFFICIENT OSCILLATOR CIRCUIT

The generation of an analog tone may be achieved easily by
passing the output of the digital resonator through a Digital-to-
Analog Converter (DAC). A typical 1-bit oversampling DAC
is illustrated in Fig. 6 and consists of a digital interpolation
filter, a delta-sigma modulator, and an analog reconstruction
filter. As shown, the interpolation filter receives an N-bit word
at rate f, and upsamples it to a rate f,, (the oversampling
frequency). This signal is then passed to the delta-sigma
modulator where it is converted to a single-bit stream (at the
same rate f,,) containing the original signal information plus
shaped quantization noise. While the majority of this noise
resides at high frequencies, it is the in-band component of the
noise which ultimately limits the signal-to-noise ratio of the
analog output signal after filtering. Defining the oversampling
ratio (OSR) as the ratio of the oversampling frequency to the
Nyquist rate

& fos

OSR o (15)
it can been shown {1] that for a second-order modulator, the

rms signal-to-noise ratio is related to the OSR according to
SN Rypms = ‘{r—i_o(osz%)%. (16)
Equivalently, the in-band noise falls by 15 dB for every
doubling of the sampling frequency, providing 2.5 extra bits of
resolution. In practice, an OSR=128 makes in-band quantiza-
tion noise consistent with 16-bit resolution possible [1]. With
this in mind, both the oversampling frequency f,, and the
signal bandwidth fgy should be selected carefully to yield

an acceptable OSR.

While cascading a digital resonator with a 1-bit DAC is
a simple and viable method of analog signal generation, the
large amount of silicon area required by the interpolation filter
may be unacceptable in many applications (including BIST).
An alternate design, described next, alleviates this problem by
operating the entire resonator at the oversampling rate thereby
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Sinusoidal Amplitude vs. Initial Value of Register 2
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Fig. 5. Oscillation amplitude as a function of the initial value in register 2.
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Fig. 6. Block diagram of a typical oversampled DAC.
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Fig. 7. Delta-sigma attenuator circuit. Except for the additional quantization
noise at the output of the delta-sigma attenuator, the circuit performs the same
muitiplication operation as the N-by-N bit multiplier circuit.

eliminating the need for arn interpolation filter. Furthermore, by
moving the delta-sigma modulator inside the resonator loop,
the two multi-bit multiplications may be simplified drastically
resulting in a very efficient implementation.

Fig. 7 demonstrates how a unit-delay in series with an N-
by-N multiplication, may be approximated by a delta-sigma
modulator followed by a 1-by-N multiplication. As the output
spectra indicate, the latter circuit, known as a delta-sigma
attenuator [10], approximates the former accurately at low
frequencies. Consequently, in cases where the signal informa-
tion resides at low frequencies relative to the oversampling
frequency f,;, the delta-sigma attenuator may be used to
perform N-by-N bit multiplication. As will be seen later, this
substitution is very advantageous since it simplifies the design
drastically.

X ) z7!
a2 Z-1
A
\r
7-1 T —ag
(a)
~ /_p @ Output
app =271 z!
9
Z-1 —as
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Fig. 8. (a) Re-arranged form of the digital resonator circuit of Fig. 1. (b)
Replacing the N-by-N bit multiplier in series with the unit delay of part (a)
by a delta-sigma attenuator circuit. The remaining N-by-N bit multiplier may
be simplified by setting coefficient a2 to a fixed power of two.

Output
T EE e

Fig. 9. A second-order digital delta-sigma modulator. The block g(e) rep-
resents a one-bit quantizer.

With the in-band model of the delta-sigma attenuator cir-
cuit in mind, the digital resonator circuit of Fig. 1 may be
rearranged using a simple signal-flow-graph manipulation.
Referring to the top integrator of Fig. 1, the unit-delay in
the feedforward path may be moved into the feedback path
if another unit delay is placed in series with the output. The
resulting configuration is shown in Fig. 8(a). At this point,
the unit-delay in series with the N-by-N bit multiplier may be
replaced by the delta-sigma attenuator. The resulting circuit
is shown in Fig. 8(b) where the delta-sigma modulator is
assumed to be a second-order modulator of the type shown
in Fig. 9. Notice that if the output of the resonator is taken
directly from the output of the delta-sigma modulator, D/A
conversion may be carried out by lowpass filtering the output
bit-stream. The complexity of the analog filter will depend
largely on the oversampling ratio and therefore may be reduced
by increasing the oversampling frequency fos.

To further reduce the complexity of the design, we recognize
from (8) that the oscillation frequency w,, is a function of the
product aizag;. This property has been exploited in Fig. 10
where aio has been set to a fixed integer power of 2 and
therefore may be implemented using a fixed shift of L to the
right. Furthermore, because the delta-sigma output may only
take on the values +1 and —1, the multiplication by a2; may
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TABLE 1
PARAMETERS USED IN THE SIMULATION OF THE RESONATOR IN FIG. 10

Comdisco Simulation Parameters

fo=2 Tap an z1(0) [ 2,(0) fos Precision
4998 Hz | 2-° [ 0.00668796752790 | 0.0 | 0.015625 | 3.072 MHz | 32 bits

To Lowpass Filter

X o) —{a-x
a2 = 9-1 \L zZ-1
Select

1 f— — 21
®

Op— a9y

z-1

Fig. 10. Replacing the 1-by-N bit multiplier in the circuit of Fig. 8(b) with
a 2-input multiplexor.

be achieved with a two-input multiplexor. The result, shown
in Fig. 10, is a very efficient implementation requiring only 4
adders, 4 registers, and a 2-input multiplexor.

At this point, it should be noted that (13) and (14) describing
the amplitude and phase of the oscillatory tone were derived
for the original digital resonator of Fig. 1 and do not necessar-
ily characterize the modified resonator of Fig. 10. Nonetheless,
provided the analog oscillator is operated within the passband
of the delta-sigma modulator, these equations have been
found to approximate the modified circuit’s behavior with
exceptional accuracy. Experiments have confirmed amplitude
accuracy exceeding 0.02% for a12a2; < 10™* (corresponding
to the delta-sigma passband).

IV. SIMULATION RESULTS

This section presents the results of digital simulations per-
formed on the circuit in Fig. 10, using Comdisco Systems’ DSP
simulation tool [11]. The simulations were performed using
32-bit precision, and a two’s complement number system with
values ranging from —1 to +1.

With the coefficients and initial conditions as indicated in
Table I, a transient analysis was executed for approximately 85
ms at a clock frequency f,, = 3.072 MHz. On completion, the
spectral content of the single-bit output was studied using the
Fast Fourier Transform (FFT). Although the exact dynamics
of the system could not be characterized analytically, the
simulated results were sufficient to verify that any start-up
transient associated with the oscillator, only lasted for a short
period of time and was of no great significance. For this reason,
the FFTs shown in this section have been taken from time-zero
with little consequence. Furthermore, Blackman windowing
was incorporated in all cases to reduce the effects of spectral
smearing. Fig. 11 shows the simulated output spectrum over
a 20 kHz bandwidth. In this plot, the oscillatory tone may be
seen roughly 80 dB above the distortion and noise. In Fig. 12,

Power Density Spectrum (1 Mohm system)
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Fig. 11. Simulated output spectrum of the circuit in Fig. 10, clocked at 3.072
MHz.
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Fig. 12. Simulated broad-band output spectrum of the circuit in Fig. 10,
clocked at 3.072 MHz.

the same output spectrum is shown over a 1 MHz bandwidth.
Here, the noise-shaping characteristic of the second-order
modulator may be observed.

To further investigate the circuit’s performance, the simu-
lation described above was repeated with a clock frequency
fos = 15 MHz. The resulting in-band spectrum is shown
in Fig. 13. As expected, the increased sampling frequency
improved the performance of the oscillator, increasing the
dynamic range to approximately 110 dB.
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TABLE I
PARAMETERS USED IN THE SIMULATION OF THE RESONATOR IN FIG. 10

FPGA Experimental Oscillator Parameters

fo=%2 [ ap ag fos Precision
5000 Hz [ 27° | 0.0066931955 | 3.07 MHz | 33 bits
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Fig. 13. Simulated output spectrum of the circuit in Fig. 10, clocked at 15
MHz.
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Fig. 14. Measured results of the delta-sigma
wave—time-domain signal prior to lowpass filtering.

sine

V. EXPERIMENTAL RESULTS

At this point, the results of a Field-Programmable Gate-
Array (FPGA) implementation of the oscillator are discussed.
These results were collected using FPGA technology to realize
the digital portion of the oscillator with a modified, commer-
cially available evaluation board [12] performing the 1-bit D/A
conversion and lowpass filtering operations.

Oscilloscope Trace

Magnitude (volts)

08 ; i i ; H

-2 -1 0 1 2
Time (s) x10*
Fig. 15. Measured results of the delta-sigma modulated sine

wave—time-domain signal after lowpass filtering.
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Fig. 16. Measured results of the delta-sigma modulated sine wave in-band
spectrum over 25 kHz.

1 1.5
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Figs. 14-16 contain the resulting waveforms of an experi-
ment performed using the parameters listed in Table II. Fig. 14
depicts an actual oscilloscope trace of the 1-bit delta-sigma
modulated output of the oscillator. Here, a return-to-zero
coding scheme was adopted to minimize distortion. Therefore,
during a logic 1, the signal was held high for 75% of the
clock cycle before returning to zero for the remaining interval.
During a logic 0, the signal simply remained low.

Fig. 15 illustrates the time waveform of the bit-stream in
Fig. 14 after lowpass filtering by the 6th-order, Butterworth
filter supplied on the evaluation board [12]. As expected,
the output signal is indeed sinusoidal with an amplitude of
approximately 0.35 V and a period of 0.2 ms, corresponding
to a 5 kHz tone. The measured spectral plot of the output is
given in Fig. 16. Here, the 5 kHz tone is visible with 2nd and
3rd harmonics, respectively roughly 88 dB and 86 dB below
the fundamental.
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Power Density Spectrum
T T T T T T T T

Power (dB)

' L

: L L
4] 0.2 0.4 0.6 0.8 1 12 1.4 16 1.8 2
Frequency (Hz) x10°

-110/ L 1 {

Fig. 17. Sample spectrum of a sinewave generated by an HP3314A signal
generator.
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Fig. 18. Sample spectrum of a sinewave generated by an HP3245A signal
generator.

It is worth noting that even at a resolution bandwidth of
88 mHz, no deviation in the oscillation frequency could be
observed. Furthermore, the oscillator was operated continu-
ously for over 24 hours at 5 kHz without difficulty. However,
increasing the oscillation frequency to 20 kHz caused the
circuit to overflow within a few minutes. The exact cause
of this behavior is not presently known and is the topic
of continued investigation. Nonetheless, if the oscillator is
operated at low frequencies, relative to the oversampling
frequency f,s, no problems should arise.

For the purpose of comparison, the output spectra of two
reasonably-priced, low-frequency, sinewave generators have
been included in Figs. 17 and 18. Fig. 17 shows the spec-
trum of an HP3314A Function Generator while the spectrum
in Fig. 18 corresponds to the HP3245A Universal Source.
Comparison of both plots with the results obtained in Fig. 16
indicates that the proposed design is indeed comparable to
both sources.

VI. CONCLUSIONS

This paper has demonstrated a new technique for creating a
high-quality analog oscillator using oversampling techniques.
With the exception of an analog reconstruction filter, the circuit
is completely digital, providing accurate control over -the
oscillation frequency and amplitude. Experiments performed
to date have indicated an effective dynamic range exceeding
80 dB.
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