
© Copyright IBM Corporation 2001 Trademarks
Charming Python: Functional programming in Python, Part 3 Page 1 of 9

Charming Python: Functional programming in Python,
Part 3
Currying and other higher-order functions

David Mertz (mertz@gnosis.cx)
Applied Metaphysician
Gnosis Software, Inc.

01 June 2001

Author David Mertz touched on many basic concepts of functional programming in earlier
Charming Python articles: "Functional programming in Python", Part 1 and Part 2. Here he
continues the discussion by illustrating additional capabilities, like currying and other higher-
order functions contained in the Xoltar Toolkit.

View more content in this series

Expression bindings

Never content with partial solutions, one reader -- Richard Davies -- raised the issue of whether
we might move bindings all the way into individual expressions. Let's take a quick look at why we
might want to do that, and also show a remarkably elegant means of expression provided by a
comp.lang.python contributor.

Let's first recall the Bindings class of the functional module. Using the attributes of that class, we
were able to assure that a particular name means only one thing within a given block scope:

Listing 1: Python FP session with guarded rebinding

>>> from functional import *
>>> let = Bindings()
>>> let.car = lambda lst: lst[0]
>>> let.car = lambda lst: lst[2]
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 File "d:\tools\functional.py", line 976, in __setattr__

raise BindingError, "Binding '%s' cannot be modified." % name
functional.BindingError: Binding 'car' cannot be modified.
>>> let.car(range(10))
0

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/
mailto:mertz@gnosis.cx
http://www.ibm.com/developerworks/library/l-prog/
http://www.ibm.com/developerworks/library/l-prog2/
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?site_id=1&contentarea_by=Linux&sort_by=Title&sort_order=1&start=1&end=3&topic_by=-1&product_by=&type_by=All%20Types&show_abstract=true&search_by=Functional%20programming%20in%20Python,&industry_by=-1&series_title_by=

developerWorks® ibm.com/developerWorks/

Charming Python: Functional programming in Python, Part 3 Page 2 of 9

The Bindings class does what we want within a module or function def scope, but there is no way
to make it work within a single expression. In ML-family languages, however, it is natural to create
bindings within a single expression:

Listing 2: Haskell expression-level name bindings

-- car (x:xs) = x -- *could* create module-level binding
list_of_list = [[1,2,3],[4,5,6],[7,8,9]]

-- 'where' clause for expression-level binding
firsts1 = [car x | x <- list_of_list] where car (x:xs) = x

-- 'let' clause for expression-level binding
firsts2 = let car (x:xs) = x in [car x | x <- list_of_list]

-- more idiomatic higher-order 'map' technique
firsts3 = map car list_of_list where car (x:xs) = x

-- Result: firsts1 == firsts2 == firsts3 == [1,4,7]

Greg Ewing observed that it is possible to accomplish the same effect using Python's list
comprehensions; we can even do it in a way that is nearly as clean as Haskell's syntax:

Listing 3: Python 2.0+ expression-level name bindings

>>> list_of_list = [[1,2,3],[4,5,6],[7,8,9]]
>>> [car_x for x in list_of_list for car_x in
 (x[0],)]
[1, 4, 7]

This trick of putting an expression inside a single-item tuple in a list comprehension does not
provide any way of using expression-level bindings with higher-order functions. To use the higher-
order functions, we still need to use block-level bindings, as with:

Listing 4: Python block-level bindings with 'map()'

>>> list_of_list = [[1,2,3],[4,5,6],[7,8,9]]
>>> let = Bindings()
>>> let.car = lambda l: l[0]
>>> map(let.car,list_of_list)
[1, 4, 7]

Not bad, but if we want to use map(), the scope of the binding remains a little broader than we
might want. Nonetheless, it is possible to coax list comprehensions into doing our name bindings
for us, even in cases where a list is not what we finally want:

ibm.com/developerWorks/ developerWorks®

Charming Python: Functional programming in Python, Part 3 Page 3 of 9

Listing 5: "Stepping down" from Python list comprehension
Compare Haskell expression:
result = func car_car
where
car (x:xs) = x
car_car = car (car list_of_list)
func x = x + x^2
>>> [func for x in list_of_list
...
for car in (x[0],)
...
for func in (car+car**2,)][0]
2

We have performed an arithmetic calculation on the first element of the first element of
list_of_list while also naming the arithmetic calculation (but only in expression scope). As an
"optimization" we might not bother to create a list longer than one element to start with, since we
choose only the first element with the ending index 0:

Listing 6: Efficient stepping down from list comprehension
>>> [func for x in list_of_list[:1]
... for car in (x[0],)
... for func in (car+car**2,)][0]
2

Higher-order functions: currying
Three of the most general higher-order functions are built into Python: map(), reduce(), and
filter(). What these functions do -- and the reason we call them "higher-order" -- is take other
functions as (some of) their arguments. Other higher-order functions, but not these built-ins, return
function objects.

Python has always given users the ability to construct their own higher-order functions by virtue of
the first-class status of function objects. A trivial case might look like this:

Listing 7: Trivial Python function factory
>>> def foo_factory():
...
def foo():
...
print
"Foo function from factory"
...
return foo
...
>>> f = foo_factory()
>>> f()
Foo function from factory

The Xoltar Toolkit, which I discussed in Part 2 of this series, comes with a nice collection of
higher-order functions. Most of the functions that Xoltar's functional module provides are ones
developed in various traditionally functional languages, and whose usefulness have been proven
over many years.

http://www.ibm.com/developerworks/library/l-prog2/

developerWorks® ibm.com/developerWorks/

Charming Python: Functional programming in Python, Part 3 Page 4 of 9

Possibly the most famous and most important higher-order function is curry(). curry() is named
after the logician Haskell Curry, whose first name is also used to name the above-mentioned
programming language. The underlying insight of "currying" is that it is possible to treat (almost)
every function as a partial function of just one argument. All that is necessary for currying to work
is to allow the return value of functions to themselves be functions, but with the returned functions
"narrowed" or "closer to completion." This works quite similarly to the closures I wrote about in Part
2 -- each successive call to a curried return function "fills in" more of the data involved in a final
computation (data attached to a procedure).

Let's illustrate currying first with a very simple example in Haskell, then with the same example
repeated in Python using the functional module:

Listing 8: Currying a Haskell computation

computation a b c d = (a + b^2+ c^3 + d^4)
check = 1 + 2^2 + 3^3 + 5^4

fillOne = computation 1
-- specify "a"
fillTwo = fillOne 2
-- specify "b"
fillThree = fillTwo 3
-- specify "c"
answer = fillThree 5
-- specify "d"
-- Result: check == answer == 657

Now in Python:

Listing 9: Currying a Python computation

>>> from functional import curry
>>> computation = lambda a,b,c,d: (a + b**2 + c**3 + d**4)
>>> computation(1,2,3,5)
657
>>> fillZero = curry(computation)
>>> fillOne = fillZero(1)
specify "a"
>>> fillTwo = fillOne(2)
specify "b"
>>> fillThree = fillTwo(3)
specify "c"
>>> answer = fillThree(5)
specify "d"
>>> answer
657

It is possible to further illustrate the parallel with closures by presenting the same simple tax-
calculation program used in Part 2 (this time using curry()):

http://www.ibm.com/developerworks/library/l-prog2/
http://www.ibm.com/developerworks/library/l-prog2/
http://www.ibm.com/developerworks/library/l-prog2/

ibm.com/developerWorks/ developerWorks®

Charming Python: Functional programming in Python, Part 3 Page 5 of 9

Listing 10: Python curried tax calculations
from functional import *

taxcalc = lambda income,rate,deduct: (income-(deduct))*rate

taxCurry = curry(taxcalc)
taxCurry = taxCurry(50000)
taxCurry = taxCurry(0.30)
taxCurry = taxCurry(10000)
print "Curried taxes due =",taxCurry

print "Curried expression taxes due =", \
 curry(taxcalc)(50000)(0.30)(10000)

Unlike with closures, we need to curry the arguments in a specific order (left to right). But note that
functional also contains an rcurry() class that will start at the other end (right to left).

The second print statement in the example at one level is a trivial spelling change from simply
calling the normal taxcalc(50000,0.30,10000). In a different level, however, it makes rather clear
the concept that every function can be a function of just one argument -- a rather surprising idea to
those new to it.

Miscellaneous higher-order functions
Beyond the "fundamental" operation of currying, functional provides a grab-bag of interesting
higher-order functions. Moreover, it is really not hard to write your own higher-order functions --
either with or without functional. The ones in functional provide some interesting ideas, at the
least.

For the most part, higher-order functions feel like "enhanced" versions of the standard map(),
filter(), and reduce(). Often, the pattern in these functions is roughly "take a function or
functions and some lists as arguments, then apply the function(s) to list arguments." There are a
surprising number of interesting and useful ways to play on this theme. Another pattern is "take
a collection of functions and create a function that combines their functionality." Again, numerous
variations are possible. Let's look at some of what functional provides.

The functions sequential() and also() both create a function based on a sequence of component
functions. The component functions can then be called with the same argument(s). The main
difference between the two is simply that sequential() expects a single list as an argument, while
also() takes a list of arguments. In most cases, these are useful for function side effects, but
sequential() optionally lets you choose which function provides the combined return value:

Listing 11: Sequential calls to functions (with same args)
>>> def a(x):
... print x,
... return "a"
...
>>> def b(x):
... print x*2,
... return "b"
...
>>> def c(x):
... print x*3,

developerWorks® ibm.com/developerWorks/

Charming Python: Functional programming in Python, Part 3 Page 6 of 9

... return "c"

...
>>> r = also(a,b,c)
>>> r
<functional.sequential instance at 0xb86ac>
>>> r(5)
5 10 15
'a'
>>> sequential([a,b,c],main=c)('x')
x xx xxx
'c'

The functions disjoin() and conjoin() are similar to sequential() and also() in terms of
creating new functions that apply argument(s) to several component functions. But disjoin()
asks whether any component functions return true (given the argument(s)), and conjoin() asks
whether all components return true. Logical shortcutting is applied, where possible, so some side
effects might not occur with disjoin(). joinfuncs() is similar to also(), but returns a tuple of the
components' return values rather than selecting a main one.

Where the previous functions let you call multiple functions with the same argument(s), any(),
all(), and none_of() let you call the same function against a list of arguments. In general
structure, these are a bit like the built-in map(), reduce(), filter() functions. But these particular
higher-order functions from functional ask Boolean questions about collections of return values.
For example:

Listing 12: Ask about collections of return values

>>> from functional import *
>>> isEven = lambda n: (n%2 == 0)
>>> any([1,3,5,8], isEven)
1
>>> any([1,3,5,7], isEven)
0
>>> none_of([1,3,5,7], isEven)
1
>>> all([2,4,6,8], isEven)
1
>>> all([2,4,6,7], isEven)
0

A particularly interesting higher-order function for those with a little bit of mathematics background
is compose(). The composition of several functions is a "chaining together" of the return value of
one function to the input of the next function. The programmer who composes several functions
is responsible for making sure the outputs and inputs match up -- but then, that is true any time a
programmer uses a return value. A simple example makes it clear:

ibm.com/developerWorks/ developerWorks®

Charming Python: Functional programming in Python, Part 3 Page 7 of 9

Listing 13: Creating compositional functions

>>> def minus7(n): return n-7
...
>>> def times3(n): return n*3
...
>>> minus7(10)
3
>>> minustimes = compose(times3,minus7)
>>> minustimes(10)
9
>>> times3(minus7(10))
9
>>> timesminus = compose(minus7,times3)
>>> timesminus(10)
23
>>> minus7(times3(10))
23

Until next time

I hope this latest look at higher-order functions will arouse readers' interest in a certain style of
thinking. By all means, play with it. Try to create some of your own higher-order functions; some
might well prove useful and powerful. Let me know how it goes; perhaps a later installment of this
ad hoc series will discuss the novel and fascinating ideas that readers continue to provide.

developerWorks® ibm.com/developerWorks/

Charming Python: Functional programming in Python, Part 3 Page 8 of 9

Resources

Learn

• Read all three parts in this series.
• Read more installments of Charming Python.
• Bryn Keller's "xoltar toolkit", which includes the module functional, adds a large number

of useful FP extensions to Python. Since the functional module is itself written entirely in
Python, what it does was already possible in Python itself. But Keller has figured out a very
nicely integrated set of extensions, with a lot of power in compact definitions.

• Peter Norvig has written an interesting article, Python for Lisp Programmers. While his focus
is somewhat the reverse of my column, it provides very good general comparisons between
Python and Lisp.

• A good starting point for functional programming is the Frequently Asked Questions for
comp.lang.functional.

• I've found it much easier to get a grasp of functional programming in the language Haskell
than in Lisp/Scheme (even though the latter is probably more widely used, if only in Emacs).
Other Python programmers might similarly have an easier time without quite so many
parentheses and prefix (Polish) operators.

• In the developerWorks Linux zone, find hundreds of how-to articles and tutorials, as well as
downloads, discussion forums, and a wealth of other resources for Linux developers and
administrators.

• Stay current with developerWorks technical events and webcasts focused on a variety of IBM
products and IT industry topics.

• Attend a free developerWorks Live! briefing to get up-to-speed quickly on IBM products and
tools, as well as IT industry trends.

• Watch developerWorks on-demand demos ranging from product installation and setup demos
for beginners, to advanced functionality for experienced developers.

• Follow developerWorks on Twitter, or subscribe to a feed of Linux tweets on developerWorks.

Get products and technologies

• Evaluate IBM products in the way that suits you best: Download a product trial, try a product
online, use a product in a cloud environment, or spend a few hours in the SOA Sandbox
learning how to implement Service Oriented Architecture efficiently.

Discuss

• Get involved in the developerWorks community. Connect with other developerWorks users
while exploring the developer-driven blogs, forums, groups, and wikis.

http://www.ibm.com/developerworks/views/linux/libraryview.jsp?site_id=1&contentarea_by=Linux&sort_by=Title&sort_order=1&start=1&end=3&topic_by=-1&product_by=&type_by=All%20Types&show_abstract=true&search_by=Functional%20programming%20in%20Python,&industry_by=-1&series_title_by=
http://www.ibm.com/developerworks/views/linux/articles.jsp?sort_order=desc&expand=&sort_by=Date&show_abstract=true&view_by=Search&search_by=charming+python%3A
http://sourceforge.net/projects/xoltar-toolkit
http://www.norvig.com/python-lisp.html
http://www.cs.nott.ac.uk/~gmh//faq.html#functional-languages
http://www.cs.nott.ac.uk/~gmh//faq.html#functional-languages
http://www.haskell.org/
http://www.ibm.com/developerworks/linux/index.html
http://www.ibm.com/developerworks/views/linux/libraryview.jsp
http://www.ibm.com/developerworks/offers/techbriefings/events.html
http://www.ibm.com/developerworks/offers/techbriefings/index.html
http://www.ibm.com/developerworks/offers/lp/demos/index.html
http://www.twitter.com/developerworks/
http://search.twitter.com/search?q=%23linux+from%3Adeveloperworks+-RT+
http://www.ibm.com/developerworks/downloads/index.html
http://www.ibm.com/developerworks/downloads/soasandbox/index.html
http://www.ibm.com/developerworks/community

ibm.com/developerWorks/ developerWorks®

Charming Python: Functional programming in Python, Part 3 Page 9 of 9

About the author

David Mertz

Since conceptions without intuitions are empty, and intuitions without conceptions,
blind, David Mertz wants a cast sculpture of Milton for his office. Start planning for
his birthday. David may be reached at mertz@gnosis.cx; his life pored over at http://
gnosis.cx/dW/. Suggestions and recommendations on this, past, or future columns
are welcome.

© Copyright IBM Corporation 2001
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

mailto:mertz@gnosis.cx
http://gnosis.cx/dW/.
http://gnosis.cx/dW/.
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Expression bindings
	Higher-order functions: currying
	Miscellaneous higher-order functions
	Until next time
	Resources
	About the author
	Trademarks

