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Introduction FBDD is a Binary Decision Diagram (BDD) [1] based combinational logic optimization system targeting area
and runtime. It takes a gate level circuit described in Berkeley Logic Interchange Format (BLIF) and produces
an area optimized circuit in BLIF and structural Verilog formats.
FBDD is inspired by the BDD-based Logic Synthesis system (BDS) developed at University of Mas-
sachusetts [2, 3]. In contrast to traditional logic synthesis systems exemplified by SIS [4], which use cube
set to represent logic functions of the gates, and literal count as the area metric, BDS uses BDD to represent
logic functions, and the corresponding BDD node count as the area metric. A comprehensive set of decom-
position methods exploiting the structural properties of BDDs have been developed in BDS, leading to good
results in area for some benchmarks, and better runtime result in general.
FBDD builds a similar flow as BDS and implements its core set of decomposition algorithms. In addition,
FBDD attempts to produce much better runtime and more competitive area based on two ideas. First, FBDD
attempts to exploit the inherent regularity contained in logic networks to dramatically improve runtime by
amortizing the cost of logic transformations over equivalent classes of subnetworks. Described in [5], this
strategy is referred to as logic folding and is applied in almost all logic transformations in FBDD. Second,
FBDD attempts to perform sharing extraction in the same spirit of SIS by explicitly enumerating divisors in
each gate and selectively extracting those that profit area. Our algorithm, described in [6], performs multiple
variable disjunctive extraction and operates directly on BDDs.

Installation and Compilation

Software
Requirements

Before installing FBDD, you need to install the CUDD package by Fabio Somenzi [7].
FBDD performs only technology independent logic optimizations and needs an external technology mapper
to complete the logic synthesis flow. For standard cell technology, one can use the Berkeley SIS mapper. For
FPGA, one can use the UCLA rasp syn mapper. Note that although the latter is not required to build and run
FBDD, the path to the rasp syn executable needs to be pointed to by the PATH environment variable in order
to run the provided scripts and automatically produce benchmark results.



Building FBDD software uses the standard GNU build system based on the Autotool set (autoconf/automake) as well as
the GCC compiler suite. A helpful tutorial is maintained by Eleftherios Gkioulekas.
To build FBDD in release mode, type the following under a Unix (e.g. solaris) or Unix-like environment (e.g.,
Linux or Cygwin for Windows):

>aclocal
>autoheader
>autoconf
>automake
>./configure --with-cudd=/your/cudd/path --with-prefix=/your/install/path
>gmake

To build FBDD in debug mode:

>aclocal
>autoheader
>autoconf
>automake
>./configure --enable-debug --with-cudd=/your/cudd/path \
--with-prefix=/your/install/path
>gmake

Installation To install FBDD:

>gmake install

This should install the executable file fbdd on the path specified by the with-prefix argument during
configuration.

Usage FBDD performs a series of logic transformations on a logic network in an effort to improve its quality. It first
performs the “simplify” operation to reduce the logic complexity of each gate. Since the gate logic functions
are represented by BDDs, the simplification can be achieved by BDD variable reordering to find a BDD repre-
sentation with less node count. It then performs the “sweep” operation to clean up the network by propagating
constants, merging repeating support variables and removing dangling gates. This is followed by the “elimi-
nate” operation to selectively collapsing some gates into their fanouts in order to remove redundancy between
gates, after which another “sweep” operation is performed. Next, the “sharing extraction” operation and the
“decomposition” operation are applied. The former identifies common logic expressions among and selectively
extract them as new gates. The latter decomposes a large gate into smaller gates. The two operations are inter-
leaved: extractions are performed first to find as much logic sharing as possible; when no more extractors can
be found, decomposition is applied, which may lead to more extractors to be found. This process is repeated
until the circuit is fully decomposed, after which another “sweep” pass is applied.
FBDD can be invoked as follows, where ckt.blif corresponds to the input logic network.

>fbdd [-options] ckt.blif
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Command
Line Options

The default synthesis flow can be altered using the following options.

• -ne skip elimination pass;

• -ntwe skip sharing extraction pass;

• -nd skip decomposition pass.

These options can be used to understand the contributions on synthesis quality for different logic transforma-
tions.
The following options configure the sharing extraction algorithm.

• -maxextsize size: find extractors up to size ’size’ (default 2);

• -tweexact: perform exact sharing extraction;

• -twefast: perform fast sharing extraction (default).

FBDD performs sharing extraction by matching disjunctive extractors from among gates in the network. Dis-
junctive extractors are functions with decompositions of the form F(X) = R(E(Xr),Xe)) such that Xr and Xe

do not share supports. FBDD puts a limit on the size of extractors considered. The maximum extractor size
is specified using the -maxextsize option and can be set from size 2 to 5. Be warned however, that the
runtime grows exponentially with the extractor size. There is also a choice between two sharing extraction
algorithms. The exact algorithm -tweexact finds all extractors up to the size specified. The fast algorithm
-twefast only applies when -maxextsize is 2. It sacrifices finding ALL two variable extractors in exchange for,
on average, a 3X runtime improvement. For best area-runtime trade-off, We recommend running FBDD with
default options of -maxextsize=2 and -twefast. Our experimental results show that the area penalty for
using default options is negligible. The extra options were left in to demonstrate this finding.
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Input File FBDD takes a logic network description in Berkeley Logic Interchange Format (BLIF). BLIF is used widely
as an academic standard.
FBDD supports the subset of BLIF that can specify a technology independent combinational or sequential logic
network. All standard benchmarks are specified within this subset.
The supported commands include:

• .model

• .inputs

• .outputs

• .clock

• .names

• .latch

• .end

The unsupported commands include:

• .exdc

• .subckt

• .gate

• .mlatch

• .search

• kiss FSM descriptions

• clock constraints

• delay constraints

FBDD typically supports BLIF commands written out by SIS. If your circuit contains unsupported BLIF com-
mands, you may be able to rewrite the circuit to work with FBDD by simply reading and then writing the
circuit using SIS. Do this by typing:

>sis -sxc "read_blif ckt.blif; write_blif ckt.blif;"

Output Files FBDD outputs an optimized logic network either in BLIF format or a restricted form of verilog file. The latter
can be used to interface with commercial CAD tools.

Benchmark The MCNC [8] and ITC [9] benchmarks are included in this distribution. Also included are scripts to automate
optimization with FBDD, apply FPGA and standard cell technology mapping, and tabulate the results in a
report file. To run the benchmark scripts, type

>make benchmark

Both the fbdd and rasp syn executables must be pointed to by the PATH environment variable.

Reporting
Bugs

Please send bug reports and comments to jzhu@eecg.toronto.edu.

Credits The primary contributor of FBDD release 1.0 goes to Dennis Wu, who implemented the core algorithms and
completed a master thesis [?] on the subject. Other contributors include Jianwen Zhu.
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