JOURNAL OF KTEX CLASS FILES, VOL. X, NO. XX, XXX 200X

Scalable Synthesis and Clustering Techniques using
Decision Diagrams

Andrew C. Ling, Member, IEEE, Jianwen Zhu, Member, IEEE, and Stephen D. Brown, Member, IEEE

Abstract— BDDs have proven to be an efficient means to repre-
sent and manipulate Boolean formulae due to their compactness
and canonicality. In this work, we exploit the efficiency of BDD
operations for new areas in CAD including cut generation and
clustering by reducing these problems to BDDs and solving them
using Boolean operations. Furthermore, we will show that apply-
ing BDD reduction to cut generation and clustering dramatically
improves their scalability. As a consequence, our technique is
an order of magnitude faster than previous techniques and, as
a result, this allows us to apply our work to new areas in the
CAD flow previously not possible. Specifically, we introduce a
new method to solve the elimination problem found in FBDD,
a recently reported BDD synthesis engine with an order of
magnitude speedup over SIS. Our new elimination algorithm
results in an overall speedup of 6x in FBDD with no impact on
circuit area.

Index Terms—FPGAs, Cut Generation, Clustering, BDD.

I. INTRODUCTION

S the FPGA capacity grows with each chip generation,

the scalability of FPGA CAD tools is a growing concern.
This is a result of the exponential space and time complexity
many CAD algorithms have in relation to the circuit size,
n. Scalability problems have traditionally been handled by
divide and conquer techniques where the circuit is partitioned
into several smaller circuits [1], [2]. This reduces the problem
size and, as a result, dramatically reduces the solution space
the CAD tool must explore. Although partitioning has proven
to improve the scalability of CAD algorithms, partitioning a
design will lead to solutions much further from optimal when
compared to non-partitioning based techniques.

As an alternative to partitioning techniques, we propose
using heuristics that improve the scalability of CAD algorithms
by removing redundant operations and data. Specifically, we
propose reducing CAD algorithms to reduced-ordered binary-
decision diagrams (BDDs) and, as a consequence of this,
leverage efficient BDD managers to solve our problems [3],
[4]. BDDs have been traditionally used to manipulate Boolean
functions [5] since BDDs can represent Boolean functions
compactly and canonically. This has led to efficient BDD rep-
resentations which reuse existing BDDs to form new ones [4].
This, along with dynamic programming, can dramatically
reduce the runtime and space complexity of many BDD
operations.

Leveraging efficient BDD operations to other complex prob-
lems can potentially reduce the complexity of the problem

Manuscript received December 20, 2006. This work was supported by the
IEEE.

Andrew C. Ling, Jianwen Zhu, and Stephen D. Brown are with the
University of Toronto. Stephen D. Brown is also with Altera Corporation.

on average. In this work, we will describe two problems: cut
generation and clustering for FPGAs. Cut generation has been
traditionally applied to iterative technology mappers, such
as DAOmap [6] and IMap [7]. However, there has been a
renewed interest in the cut generation problem [8], [9] due to
its growing use in several CAD problems including:

o Boolean matching of PLBs [10], [11]
« resynthesis of LUTs [12]

« synthesis rewriting [13]

« synthesis elimination [14], [15]

Unfortunately, due to the exponential number of cuts generated
with respect to the circuit size, traditional methods of cut
generation do not scale beyond a cut size of 6. This has
been the primary barrier for migrating cut generation to other
areas in CAD. As a solution, we will show that reducing
cut generation to BDDs dramatically improves its scalability
and as a result, expands the application of cut generation to
new problems previously not thought possible. As a practical
example, we will show how we apply cut generation in a BDD-
based synthesis flow which leads to a 6x speedup in runtime
without any degradation to circuit area.

The second area we focus on is LUT clustering. Modern
FPGAs are hierarchical in nature where LUTs are grouped
into regular logic array blocks (LABs), also known as clustered
logic blocks (CLBs) or more simply, clusters. Deciding how
to pack a given LUT netlist into an array of clusters is the
clustering problem and it has a significant impact on the final
performance of the circuit. Clustering has typically not been a
bottleneck during the CAD flow where traditionally clustering
has been solved using greedy algorithms [16]. Although this
produces good clustering solutions in a reasonable amount
of time, a recently reported study has shown that solving
the clustering problem from a global perspective leads to
significant performance gains [17]. In [17], the authors com-
bine clustering and technology mapping into a single phase.
During this process, several alternate clustering solutions are
stored and evaluated. This allows the tool to explore a much
larger solution space than solving technology mapping and
clustering disjointly. Also, while evaluating each clustering
solution, an optimal delay value is maintained. The results
are fairly impressive where the authors are able to get a 25%
improvement in circuit delay on average. However, this comes
at a cost of a 100x runtime penalty. In our approach, we
adopt a similar global heuristic as in [17] since we feel that
this is a significant factor leading to performance gains found
in [17]. However, we perform clustering as a disjoint step
after technology mapping to reduce the search space of our

JOURNAL OF KTEX CLASS FILES, VOL. X, NO. XX, XXX 200X

clustering tool. We suspect that maintaining global information
during clustering is an important factor to improve the final
performance of the circuit. however, this requires storing a
large set of clustering solutions which is the main factor
for the runtime penalty reported in [17]. To alleviate this
problem, we propose using zero-suppressed BDDs (ZDDs),
which are extremely efficient in representing sets, to represent
our clusters. In sections IV and V, we will prove that this will
have a significant runtime advantage when compared to [17]
while maintaining some of its performance gains.

The rest of the paper will be organized as follows. Section II
will give problem preliminaries and background material. Sec-
tion III will describe our cut generation approach. Section IV
will describe our clustering approach. Section V will give an
overview of our results followed by some concluding remarks
in Section VI

II. BACKGROUND
A. Terminology

Before we can describe our problem, we first review
some basic terminology here. The combinational portion of
a Boolean circuit can be represented as a directed acyclic
graph (DAG) G = (Vg, Eg). A node in the graph v € Vg
represents a logic gate, primary input or primary output, and
a directed edge in the graph e € E¢ with head, u = head(e),
and tail, v = tail(e), represents a signal in the logic circuit
that is an output of gate v and an input of gate v. The set of
fanin edges for a node v, fanine(v), is defined to be the set
of edges with v as a tail. Similarly, the set of fanout edges
for v, fanoute(v), is defined to be the set of edges with v
as a head. A primary input (PI) node has no fanin edges and
a primary output (PO) node has no fanout edges. The set of
distinct nodes that supply fanin edges to v are referred to as
fanins and is denoted fanin(v). Similarly, the set of distinct
nodes that connect to fanout edges from v are referred to as
fanouts and is denoted fanout(v). A node v is K-feasible if
|fanin(v)| < K. If every node in a graph is K -feasible then
the graph is K-bounded.

Each edge e has an associated delay, delay(e). The length
of a path is the sum of the delays of the edges along the path.
At a node v, the depth, depth(v), is the length of the longest
path from a primary input to v and the height, height(v), is
the length of the longest path from a primary output to v. Both
the depth for a PI node and the height for a PO node are zero.
At an edge e, the depth, depth(e), is the length of the longest
path from a primary input to e and the height, height(e), is
the length of the longest path from a primary output to e. Both
the depth and the height of an edge include the delay due to
the edge itself. The depth or height of a graph is the length
of the longest path in the graph.

A cone of v, C,, is a subgraph consisting of v and some
of its nonPI predecessors such that any node v € C, has a
path to v that lies entirely in C',. Node v is referred to as the
root of the cone. The size of a cone is the number of nodes
and edges in the cone. At a cone C,, the set of fanin edges,
fanine(Cy), is the set of edges with a tail in C,, and the set
of fanout edges, fanoute(C,), is the set of edges with v as a

head. The set of fanins to the cone are also known as a cut in a
graph. Thus, there is a one to one correlation between all cuts
and cones in a graph. With fanin edges and fanout edges so
defined, a cone can be viewed as a node, and notions that were
previously defined for nodes can be extended to handle cones.
Notions such as fanin(-), fanout(-), depth(-), height(-) and
K -feasibility all have similar meanings for cones as they do
for nodes.

B. The Covering Problem

The covering problem seeks to find a set of covers to cover
a graph such that a given characteristic of the final covered
graph is optimized. For example, when applied to K-LUT
technology mapping, the covering problem returns a covered
graph such that the number of distinct covers in the graph
is minimized where each cover gets mapped directly into a
single LUT. This is illustrated in Fig. 1.

’

(b) (©

Fig. 1. TIllustration of the covering problem when applied to K-LUT
technology mapping. (a) Initial network. (b) A covering of the network. (c)
Conversion of the covering into 4-LUTs.

A common framework to solve the covering problem is
shown in Fig. 2. The covering problem starts by generating all

1 GENERATECUTS(K)

2 for i+« 1 upto Maxl
3 TRAVERSEFWD()
4 TRAVERSEBWD()
5 end for

Fig. 2. High-level overview of network covering.

K -feasible cuts in the graph (line 1). This is followed by a set
of forward and backward traversals (line 3-4) which attempt
to find a subset of cuts to cover the graph such that a given
cost function is minimized. Iteration is necessary (Mazl > 1)
if the covering found in TRAVERSEBWD() influences the cost
function used in TRAVERSEFWD(). A detailed description of
this algorithm when applied to technology mapping can be
found in [7].

1 foreach v € TSORT(G(V, E))
2 cut, < MINCOSTCUT(v)
3 cost, «— COST(cuty)

4 end foreach

Fig. 3. High-level overview of forward traversal.

JOURNAL OF KTEX CLASS FILES, VOL. X, NO. XX, XXX 200X

1) Forward Traversal: Fig. 3 illustrates the high-level
overview of the forward traversal. Here, each node is visited
in topological order. For each node, the minimum cost cut is
found (line 2). After the minimum cost cut is found, the cost
of the root node v is assigned the cost of the cut (line 3). Note
that MINCOSTCUT is dependent on the goal of the algorithm.
In later sections, we will describe the cost function used when
we apply the covering problem to elimination.

MARKPOASVISIBLE()
foreach v € RTSORT(G(V, E))
if VISIBLE(v)
foreach u € fanin(cuty)
MARKASVISIBLE(u)
end if
end foreach

NN kAW —

Fig. 4. High-level overview of backward traversal.

2) Backward Traversal: Fig. 4 illustrates the high-level
overview of the backward traversal. First, all POs are marked
as visible (line 1). Next, the graph is traversed in reverse
topological order. If a node is visible, its minimum cost cut
found in the preceding forward traversal, cut,, is selected and
all of its fanins are marked as visible (line 4-5). After the
backward traversal completes, the minimum cost cuts of all
visible nodes in the graph are converted to cones to cover the

network.

3) Cut Generation: Generating all cuts is the first step to
solve the covering problem and was first presented in [18].
Here, the authors define the set relation to generate all K-
feasible cuts shown in equation 1. For a detailed explanation of
equation 1, please refer to [18]. This contrasts with incremental
cut generation methods based on network flow [19], [20] and
has proven to be much faster.

D(v) ={cu*cw | cu € {{u} UP(u)|u € fanin(v)}, @)
cw € {w} U P(w)|w € fanin(v)},u # w, ||cu * cw| < K}

In equation 1, ®(v) represents the cut set for node v; {u}
represent the trivial cut (contains u only); ¢, represents a cut
from the cut set {{u}U®(u)}; and ®(u) represents the cut set
for fanin node w. Traditional methods generate cuts by visiting
each node in topological order from PIs to POs and merging
cut sets as defined by equation 1. Two cut sets are merged by
performing a concatenation (c,, * ¢,,) of all cuts found in each
fanin cut set, and removing any newly formed cuts that are
no longer K-feasible (||c, * ¢, || < K). For example, referring
to Fig. 5, cut ¢y is generated by combining the cut ¢; with
the trivial cut vy (co = c1 * v4 = v1V2v4). Generating cuts
this way is not scalable to large cut sizes (K > 6) and for
circuits containing a large degree of reconvergent paths. For
example, in IMap [7], which utilizes a popular technology
mapping framework, cut generation takes more than 99% of
the runtime for K = 7. In [21], the authors address this
problem by selectively pruning cuts that they deem to be
wasteful. However, for large cut sizes, pruning tends to remove
too many cuts that may be valuable in the final mapping
solution.

The main reason equation 1 is not scalable for large cut
sizes is because subcuts must be duplicated every time a new

TV,

62:V1V2V4

Fig. 5. Example of two cuts in a netlist where cg dominates cj.

cut is generated. For example, referring to Fig. 5, cut ¢; must
be duplicated to generate cut co. Furthermore, equation 1 can
generate redundant cuts. A cut, cs, is redundant if it completely
contains all the input nodes of another cut, ¢q, in which case
co is known as a dominator cut. Fig. 5 illustrates this relation.
These cuts can be removed because they will not affect the
final quality of a mapping solution. In ABC [8], the authors
address this problem by assigning all cuts a signature such that
dominator cuts can be quickly identified and removed. This,
along with several other optimization, results in an order of
magnitude runtime reduction over previous techniques. As a
consequence, ABC is currently the fastest LUT technology
mapper available with competitive depth and area results.
However, even with its clever heuristics, ABC cut generation
time slows down significantly for cuts sizes of 8 or larger.
Although this is not a problem for commercial FPGAs that
restrict their LUT size to 6 or less [22], migrating the cov-
ering problem to larger problems, such as elimination region
identification in SIS and FBDD, requires a more scalable cut
generation solution.

C. Clustering

Modern FPGAs are hierarchical in nature consisting of
regular groups of LUTS called clusters. Clusters dramatically
improve FPGA performance since the interconnect delay
within a cluster is much smaller than the interconnect delay
between clusters. In fact, intra-cluster delays are an order of
magnitude smaller than inter-cluster delays and as a result,
clusters dramatically improve the overall performance of an
FPGA by implementing critical portions of a circuit within a
small number of clusters. The clustering problem is defined
as the task of packing a LUT level netlist into clusters such
that circuit performance is optimized [16]. Current clustering
tools solve clustering using a greedy algorithm where LUTSs
are successively packed together. These have been tuned to op-
timize for routability and delay [16]. However, [17] has shown
the benefit of solving the clustering problem using global
heuristics. Here, the authors combine technology mapping
and clustering into a single step and propose maintaining the
optimal delay during this process. Their clustering algorithm
is analogous to the iterative technology mapping algorithm
shown in Fig. 2 where the clusterer leverages dynamic pro-
gramming to maintain an optimal depth of the circuit while
technology mapping and clustering their netlist. During the
forward traversal, nodes are visited in topological order. For
each node v, a cut, ¢, which minimizes the clustering depth

JOURNAL OF KTEX CLASS FILES, VOL. X, NO. XX, XXX 200X

of the circuit is chosen for v. The clustering depth is found
by forming a cone rooted at node v such that the cone is
large enough to cluster v and some of its predecessors. The
cone with the smallest depth is chosen for v and its depth is
recorded. After the forward traversal, a backward traversal fol-
lowed by a packing phase is applied to create the LUT netlist
and perform clustering. The netlist and clustering is driven
by the delay information gathered in the previous forward
traversal. Although a significant performance improvement
is achievable with this method, solving technology mapping
and clustering together explores a much larger search space
than disjoint methods. Furthermore, a large set of clustering
solutions must be computed and explored during the forward
traversal of the algorithm. Both these factors has led to a 100x
runtime penalty when compared to previous techniques and
thus it is questionable if this technique will scale to large
designs.

In section V, we will show how to maintain global delay
information and get some of the performance gains reported
in [17] without the huge runtime penalty they experience.

III. BDDCUT: SCALABLE CUT GENERATION

As described in section I, there is a growing need for
scalable cut generation. Prior to this work, cut generation
has generally been limited to applications requiring small cuts
where K is smaller than 6 [6], [7], [13]. In this section, we
will explain how to reduce cut generation to BDDs which will
later prove to dramatically improve its scalability.

As described in equation 1, cuts are generated by combining
the subcuts in every possible way. This is extremely inefficient
since subcuts are duplicated every time they are used to
generate a new cut. Our BDD-based approach solves this
problem by sharing subcuts between larger cuts. Referring
back to our original cut expression in equation 1, we can
rewrite our equation as a Boolean expression.

fv = Huefanin(v) (u =+ fu) 2

Equation 2 is very similar to the set relation shown in
equation 1; however, in contrast with previous approaches, we
maintain cut set representations as a Boolean function. In our
approach, we map a unique Boolean variable to each node v
found in our netlist and represent cuts by the conjunction of
the fanin node variables. Thus, our cut set f,, will be a Boolean
expression in SOP form where each cube will represent a cut.
To join cut sets, we replace the set union operation (U) with a
logic OR. Furthermore, the II operation can be thought as the
logical AND of all clauses (u + f,). For example, consider
Fig. 6. Here, each node is represented by a Boolean variable
where each product term in the function represents a cut. Also,
notice that the cut set function f, is the conjunction between
the clauses (c + f.) and (b+ f3).

A problem with using cubes to represent our cut set is
that it suffers from similar scalability problems as traditional
cut generation methods since each cut needs to be stored
separately as a cube and no subcut sharing occurs. A solution
to this is to represent our cut set as a BDD, (for a detailed
description of the BDD data structure, please refer to [23]).

[, =bct+deg+tcde+beg

Fig. 6. Symbolic representation of cut sets.

BDDs are DAGs which represent a Boolean function where
each node in the DAG represents one variable. Node edges
represent positive (1) or negative (0) assignments to the
variable where each edge points to the associated cofactor. For
example, referring back to Fig. 6, the BDD used to represent
the cut set f, is shown in Fig. 7. Here, positive edges are
represented by a solid line and negative edges are represented
by a dotted line.

f,=bct+deg+cde+beg

Fig. 7. BDD representation of cut set in Fig. 6.

Notice that representing cut sets as a BDD allows subcuts
to be shared as cofactors. Thus, subcuts can be reused in
expressing larger cuts. For example, consider Fig. 8 which
shows the BDDs representing the cut set functions shown in
Fig. 6. In Fig. 8a, two small BDDs are shown. In Fig. 8b, the
BDDs shown in Fig. 8a are reused as cofactors to build the
BDD for function f,. Thus, subcuts de and eg do not have to
be duplicated to form larger cuts for node a.

BDDs can also share cofactors within a single cut set. For
example, consider Fig. 9. Notice that in the BDD representa-
tion, the subcut ¢; = de is a positive cofactor for variable ¢ and
g, and is shared by two larger cuts c3 = cde and c; = deg. The
benefit of subcut sharing is very sensitive to variable ordering.
For example, in the previous example, c¢; could not be shared
if variables d and e were found at the top of the BDD. Hence,
to ensure that subcut sharing is maximized, we assign BDD
variables to nodes such that fanin node variables are always
found below their fanout node variables in the BDD cut set.

Another benefit of using BDDs is that redundant cuts, such
as dominator cuts, are automatically removed. For example,

JOURNAL OF KTEX CLASS FILES, VOL. X, NO. XX, XXX 200X

f,=bc+deg+cde+beg

(®)
Fig. 8. Illustration of reusing BDDs to generate larger BDDs. (a) Small

BDDs representing cut set function f and f.. (b) Reusing BDDs in (a) as
cofactors within cut set function fg.

d le)ls

c,~de 4= ¢,=deg ()
I

b c i e I
c,=cde |

3 \ |

(d)

\\ \I

“ o)

(@)

Fig. 9. BDD representation of cuts c1, c2, and c3.

consider Fig. 10a containing the cut c; and the dominator cut
cs. As a BDD, ¢y and ¢y are shown in Fig. 10b. Since BDD
node ¢ is now redundant, it can be removed as in Fig. 10c
which removes the dominator cut co. Both dominator cut
removal and subcut sharing substantially reduces the space
complexity of a BDD represented cut set.

c,=de

(b)

Fig. 10. BDD representation of cuts c; and c3.

A. Symbolic Cut Generation Algorithm

Fig. 11 illustrates our cut generation algorithm. First, the
netlist is sorted in topological order (line 1). Next, the cut
set function, f,, for each node in the graph is initialized to a
constant 1 and assigned a unique variable (line 2-5). Finally,
for each node, v, its cut set is formed following equation 2
(line 7-10). When forming the cut set for node v, each fanin

CutGeneration()
G(V, E) < TSORT()
foreach v € G(V, E)
foe1
by, « CREATENEWBDDVARIABLE()
end foreach
foreach v € G(V, E)
foreach u € fanin(v)
fo < BDDOR(by, fu)
fo <— BDDANDPRUNE(fy, fz, K)
end foreach
end foreach

e eI e R R N

Fig. 11. High-level overview of symbolic cut generation algorithm.

node, u, is visited (line 7) and a temporary cut set is formed
by the logical OR of the trivial cut u and its cut set f,. Next,
the temporary cut set is conjoined to the cut set of v using
the logical AND operation (line 9). When forming larger cuts
with the logical AND operation, it is possible to form cuts
larger than K, thus BDDANDPRUNE is also responsible for
pruning cuts that are not K -feasible. It does so by removing
all cubes that are contain more than K positive literals which
will be explained in the detail in the following section.

B. Ensuring K-Feasibility

When conjoining two cut sets together using the logical
AND operation, we must ensure that all cuts remaining in
the new cut set are K -feasible. We achieve this by modifying
the BDD AND operation to remove cubes with more than
K literals. This recursive algorithm is illustrated in Fig. 12.
Notice that the only difference in this algorithm compared to

< f. > BddAndRecurPrune(f,, f,, K, n)

1 if ISCONSTANT(f,) AND ISCONSTANT(f,)
2 return < f,ANDf, >
3 b« GETTOPVAR(fs, fy)
5 fn, — f,(b=0)
7 fp, — fu(b=1)
8 fn, < BDDANDRECURPRUNE(fn, fn,, K, n)
9 ifn<K
10 Jfp, < BDDANDRECURPRUNE(fp,, fp,,, K, n + 1)
11 else
12 fpy, <0
13 SETTOPVAR(f, b)
14 SETCOFACTORS(f:, fny, fpy)
15 return < f, >
Fig. 12. High-level overview of BDD AND operation with pruning for K.

the recursive definition of a BDD AND operation is the check
in line 9. The algorithm starts off by checking the trivial case
where both BDD cut sets are constant functions (line 1). If
not the trivial case, the top most variable of both cut sets is
retrieved (line 3). Next, the cofactors relative to the variable
b are found for the cut sets f, and f, (line 4-8). This is
followed by recursive calls to find the negative and positive
cofactors of the new cut set f, (line 9-12). When constructing
the positive cofactor, we make sure that the number of positive
edges seen is less than or equal to K (line 9-10). If not,

JOURNAL OF KTEX CLASS FILES, VOL. X, NO. XX, XXX 200X

we prune out all cubes that form due to that branch in the
BDD. This works since our cut sets, f, and f,, only contain
positive literals and n is initialized to zero in the first call to
BDDANDPRUNERECUR. Thus, we can assume n is equivalent
to the size of the cube in the current branch of the BDD.
Finally, we join the cofactors and form a new cut set, f,, and
return (line 13-15).

C. Finding the Minimum Cost Cut

In general, the cost of a given cut is usually defined
recursively with the form as shown in equation 3.

3)

In equation 3, u is a fanin of cut ¢, ¢, is the minimum cost
cut associated with node u, and cost,;y,(c,,) is the cost of the
cut ¢,. For traditional cut generation methods where subcuts
are not shared, each cut has to be traversed independently
to determine the minimum cost cut. Conversely, since we
represent our cut set as a BDD where we share subcuts,
we can leverage dynamic programming to calculate the cut
cost and find the minimum cut cost. This is illustrated in the
recursive algorithm in Fig. 13. In MINCUTCOSTRECUR, the

cost, = Euefanin(c)COStmin(Cu)

< Cmin, cost > MinCutCostRecur(f,)

if f,=1
return < 1,0 >
else if f, =0

return < ¢, ¢ >
// dynamic programming step
if CACHED(f)

return < LOOKUP(f,) >
b <« TOPVAR(fy,)
fny — fo(b=0)
fpo = fo(b=1)
< CMinin, €0Sty, >« MINCUTCOSTRECUR(fny)
< EPmin, costy, >«— MINCUTCOSTRECUR(fpw)
costy «— cost, + GETNODECOST(b)
if VALID(¢nmin) AND VALID(Cpimin)

if cost,, < costy,

CACHE(fuv, < Clumin, COStyn >)

FSIEGEGSIS e o newn -

else
fz < BDDAND(CPmin, b)

19 CACHE(fu, < fa,cost, >)
20 end else
21 else if VALID(cpmin)
22 fz < BDDAND(cpimin, b)
23 CACHE(fu, < fa,costy >)
24 else
25 CACHE(fuv, < CNimin, cOSty, >)

26 return < LOOKUP(f,) >

Fig. 13. Find the minimum cost cut in a given cut set.

minimum cost cut, ¢,,;,, and its cost, cost, from the cut set f,
is returned. Notice that ¢,,;, is returned as a cube where each
positive literal in the cube represents a fanin node to the cut.
First, if the cut set is trivial (f, = 1), the algorithm returns an
empty cube (const 1) with zero cost (line 1-2). If the cut set
is empty, an invalid cube is returned (line 3-4). If the cut set
is not an empty set, the algorithm checks if this cut set has
been visited already, and if so, returns the cached information
(line 6-7). If the cut set has not been visited previously, two

recursive calls are done to find the minimum cost cut and cost
for the cofactors (line 9-12). Next, the positive cofactor cost is
modified with the node cost of the current variable (line 13).
Finally, the minimum cost cut set and cost are returned (line
14-26). Note that when the minimum cost cut is found, it is
cached for future reference (line 15-25).

D. A Practical Application: Elimination

As a practical driver for our cut generation technique, we
look at applications that require large cut sizes (K > 6).
Although we listed several applications requiring cut gener-
ation [11], [12], [13] in section I, in this work we only focus
on synthesis elimination found in FBDD.

FBDD is a BDD based synthesis engine [24] which has
proven to be an order of magnitude faster than SIS with com-
petitive area results. In FBDD several logic transformations,
such as decomposition or shared extraction [14], were sped
up significantly and as a result, elimination emerged as the
primary bottleneck for scalability and has been reported to
take up to 70% of the runtime [14]. Removing the elimination
bottleneck will further increase the speedup experienced by
FBDD. FBDD currently adopts an elimination scheme similar
to SIS. In FBDD elimination, regions are grown from a given
seed node where its fanins are successively collapsed into
the node in a greedy fashion. If the new logic representa-
tion simplifies after the collapse operation, the collapse is
committed into the netlist, otherwise the collapse is undone.
For BDDs, this collapse and uncollapse operation is relatively
slow compared to other BDD operations. A solution to this
is to treat elimination as a covering problem, as opposed to
a greedy algorithm. Here, each elimination region is created
by covering the netlist where each cover has at most 8 inputs.
Following this, each cover is collapsed into a single node.

The cost function used to derive our covers is similar to the
area flow heuristic described in [7]. However, here we adapt
area flow to elimination and rename it as edge flow. Edge flow
attempts to minimize the total cut size of the final covering (i.e.
minimize the number of edges in the final graph). Edge flow
is defined recursively in equation 4 and is denoted ef(-). The

ef(Cy) = Z ef(e) 4)
e€fanine(Cy)
ef(e) =Aq + ef(head(e)) 5)

‘ ||fanOUte(Chead(e))‘

edge flow of cover C), is defined as the sum of the edge flows
of the fanin edges to C,. The edge flow of an edge e is the
weight of an edge, A, plus the edge flow of its head divided
by the number of fanouts of the cover rooted at the head of e.
Picking covers which minimize the overall edge flow of the
final covering leads to covers which capture a high degree of
reconvergence. This will remove any redundancies within the
reconvergent cone after the collapse of the cover is done. We
will show later that solving elimination this way results in a
significant speedup in FBDD with no sacrifice to area.

JOURNAL OF KTEX CLASS FILES, VOL. X, NO. XX, XXX 200X

IV. ICLUSTER: ITERATIVE CLUSTERING

Here, we describe our iterative clustering algorithm. As
in [17], we maintain an optimal delay during clustering to
improve performance, however, to represent our clustering
sets, we propose using zero-suppressed BDDs (ZDDs [25]).

Our clustering algorithm works in two phases. First, an
iterative approach is applied where the clustering tool does a
forward and backward traversal of the LUT netlist to form an
intermediate clustering solution. This is followed by a packing
phase to recover area where duplication is reduced and each
cluster is filled to its full capacity.

A. Iterative Phase

The iterative phase of our algorithm is responsible for
finding an optimal global delay value of our LUT netlist.
This will act as a bound when selecting various clusters to
cluster the LUT netlist. This is analogous to the iterative
step during technology mapping to LUTs. Fig. 14 illustrates

ITERATIVEPHASE
1 GENERATECLUSTERS()

2 for i« 1 upto Maxl
3 TRAVERSEFWD()
4 TRAVERSEBWD()
5 end for

Fig. 14. ICluster iterative phase framework.

the entire iterative phase flow. First, all clusters containing
N or less LUTs are generated (line 1). During the iterative
phase, only clusters that form a cone rooted at a single node
are generated (this is not the case during the packing phase
following the iterative phase). Following cluster generation,
a series of forward and backward traversals are applied (line
3 and 4). The forward traversal is responsible for finding a
cluster for each node such that delay and area is minimized
and the backward traversal is responsible for finding a final
cluster covering of the LUT netlist.

1) Cluster Generation (GENERATECLUSTERS): As stated
previously, the iterative phase is responsible for finding an
intermediate clustering of the LUT netlist. To do this, we
need to generate a large set of clusters that will form the
solution space of our intermediate clustering solution. We
define a cluster for a LUT, v, as all cones containing at most [V
LUTs rooted at node v. Although in reality, an FPGA cluster
can implement any structure of N LUTs (i.e. not necessarily
forming a cone), we ignore these structures in the iterative
portion of our algorithm. To generate all cone based clusters,
we traverse the netlist in topological order for each node v and
generate clusters for v as described in the set relation shown
in equation 6.

o) ={ [J {v} x ®(u1) x ... x D(uy)
i=1..K
| uj € fanin(v),||Cy|| < N|C, € ®(v)}

In equation 6, all clusters for node v are generated by
combining the clusters rooted at the fanin nodes of v in every
possible way, and discarding all resulting clusters that are

(6)

larger than size N. ®(v) is the set of all cones rooted at node
v containing at most N LUTs. K are the number of fanin
combinations for node v (e.g. if there are 3 fanins, K = 6). C,
represents a cone rooted at fanin node w;, v is the trivial cone
containing only node v, ®(u;) represents the set of cones for
fanin u;, and N is the maximum number of LUTs that can fit
into a cluster. The x operator represents the Cartesian product
where taking the Cartesian product of two sets combines all
elements within each set in every possible way. Equation 6
combines the elements of all fanin cone sets, ®(u;), in every
possible way where all elements with more than N nodes
are discarded. These cones form the set of clusters used in
the iterative portion of our clusterer. For example, in Fig. 15,
®(v) represents our cluster set for node v and it is generated by
combining the cluster sets of its fanins. Note that ®(u) x (w)
represents the Cartesian product of sets ®(u) and ®(w).

®(v) = ({v} x ®(uw)) U ({v} Xﬁ‘b(w)) U ({v} x (u) x @(w))

1%

=

w u
®(u)

P(w)
Fig. 15. Cluster set formulation example.

Although in this work, we determine cluster capacity to
be the number of distinct LUTs within a single cluster, other
constraints such as input constraints (i.e. the number of distinct
inputs allowed into a single cluster) can also be added to the
formulation with added complexity. Storing clusters explicitly
using equation 6 is not scalable due to the exponential number
of clusters that need to be stored. As a solution, we propose
generating and storing our cluster sets as ZDDs. The benefit
of using ZDDs to store clusters is that subclusters can be
shared as cofactors within our ZDD. This is similar to the
cut generation case where subcuts were shared as cofactors
within the BDD.

ZDDs are similar to BDDs, however, nodes whose positive
edges point to zero are “suppressed” and will not appear in
the graph while nodes whose positive and negative edge point
to the same node are kept in the graph (it is recommended that
those not familiar with ZDDs should refer to [25]). This makes
ZDDs efficient at representing and manipulating sets [25]. For
example, consider Fig. 16. To represent the set, ®, the Boolean
function F' is formed. Here, F' is known as the characteristic
function for set ®, where F' evaluates to one if the variables
are set to a valid element found in set ®. Set operations
on ® such as the union operator (U) can be applied to F
using standard Boolean operations. In F', each product term
represents a set element where each positive literal represents
that the given node exists in that element. Representing F' as
a ZDD as opposed to a BDD is beneficial since nodes whose
positive edges point to zero can be removed in the ZDD. This
is clearly shown by looking at Fig. 16 and as a result the BDD
representing F' is much larger than the ZDD representation of

JOURNAL OF KTEX CLASS FILES, VOL. X, NO. XX, XXX 200X

F'. As with BDDs, ZDDs can be combined together to form
larger ZDDs. This leads to a compact representation of cluster
sets.

@ = {{vw}, {vu}, {w}}

F = vaw + vuw + vaw

(2) BDD (b) ZDD

Fig. 16. Representing sets as BDDs versus ZDDs.

2) Forward Traversal (TRAVERSEFWD): After all clusters
have been generated, a series of forward and backward traver-
sals of the LUT netlist is done. During the forward traversal,
for each node v, a cluster rooted at v is chosen to cluster v and
some of its predecessors. For the first traversal, the cluster with
minimal delay is chosen where after the entire netlist has been
traversed, an optimal delay, ODelay, of the circuit is found.
A backward traversal follows which produces an intermediate
clustering solution and establishes a height for all nodes in
the graph. The height, height(C,), is used in conjunction
with the optimal delay in successive forward traversals as a
depth bound when selecting clusters for each node as shown
in equation 7. Of the clusters that meet equation 7, the clusters
with the lowest area flow are selected.

ODelay > delay(C,) + height(C,) 7

Area flow gives a close estimation of the area found in the
final mapped solution. It was first described in [7], and it is
described recursively by equations 8 and 9 using the symbol

af().

af(Co)=Av+ > af(e) ®)
e€ fanine(Cy)
B af(head(e))
afle) = | fanoute(head(e))|| ©)

Here, the area flow of a cluster rooted at node v is the sum of
the area flow of the fanins to cluster C,, plus the area associated
with the cluster C, denoted as A,. The area flow of a fanin
edge is the area of the head node of the edge divided evenly
with its fanouts.

3) Backward Traversal (TRAVERSEBWD): The backward
traversal is responsible for finding an intermediate clustering
of the LUT netlist. First, each PO is marked as visible. Then,
for each visible node, the minimum cost cluster found in the
preceding forward traversal is used to cluster that node and
some of its predecessors. The fanins of the minimum cost
clusters are marked as visible and the process continues until
the PIs are reached. This process is illustrated in Fig. 17 where
the primary outputs of the circuit are located at the top of the
picture.

(a) (b)

Fig. 17. Illustration of the steps taken during the backward traversal. (a)
LUTs feeding the primary outputs are marked as visible. (b) Cluster found
in previous forward traversal are used to cover visible nodes and some of its
predecessors. (c) Fanins feeding clusters selected previously are marked as
visible.

The backward traversal is also responsible for updating
the internal heights of each node. This is done by looking
at all the fanouts of a given node, v, and setting its height
to the largest height of its fanout edges. This is shown in
Fig. 18 where delay(e;) represents an inter-cluster delay and
delay(es) represents an intra-cluster delay.

hs = max{hy + delay(e1), ho + delay(es)}

J

Fig. 18. Updating height of node v to hs.

After an intermediate clustering solution is found, the root
node of all clusters are checked to see if they can be merged
into existing clusters to save area. Clusters can be merged
if the merge will not increase the delay of the critical path.
For example, consider Fig. 19. In Fig. 19a, two clusters are
shown, where the root node with height h3 and some of its
successors must be duplicated. However, if h3 is greater than
ha+delay(es), the node with height hs has some slack and the
two clusters can be merged together as in Fig. 19b. Merging
clusters is possible since clusters have multiple outputs to
support the output of all LUTs found within the cluster.

B. Packing Phase

Since the iterative flow described previously will lead to
much unnecessary duplication and will not necessarily fill all
clusters to their full capacity, a packing phase is applied to the
intermediate clustered netlist. The packing phase will break
the previous assumption that all clusters will form a cone by
packing clusters in various ways. The packing heuristics are
very similar to those described in [17] and consist of:

o Pack Fanin - Pack a fanin cluster with its fanout cluster.

Fanins found on the critical path are clustered before
other fanins.

JOURNAL OF KTEX CLASS FILES, VOL. X, NO. XX, XXX 200X

))

e, _‘
&

(a) (b)

Fig. 19. Leveraging the multi-outputs of a given cluster by merging clusters.

e Pack Duplicated - Pack clusters which share the same
LUTs. This reduces the number of duplicated LUTSs in
the final netlist.

o Pack General - Do a bin packing of unfilled clusters.

The conjunction of these packing heuristics dramatically re-
duces the area overhead of our iterative clusterer.

V. RESULTS

Here, we evaluate our cut generation technique where we
create a tool called BddCut followed by an evaluation of our
iterative clustering tool called ICluster.

To evaluate our cut generation technique, we look at two
aspects. Since BddCut can be plugged into any iterative tech-
nology mapper to generate cuts and achieve exactly the same
area and delay, our first evaluation focuses on its scalability
against two representative, state-of-the-art mappers: IMap,
one of the earliest mappers to use an iterative strategy; and
ABC, the most recently reported iterative mapper that employs
a scalable cut generation algorithm. Our second evaluation
attempts to measure the benefits of the proposed method under
the context of a complete logic synthesis flow. To this end, we
embed BddCut as a replacement of the elimination procedure
in FBDD, and evaluate its impact on runtime and area.

Following this, we look at the scalability and performance
impact of our iterative clustering approach. Here we compare
ICluster against the traditional VPR flow [26] which utilizes
t-vpack [16] to cluster its LUTs. All of our experiments were
run on a Pentium D 3.2 GHz machine with 2GB of RAM.
We used the Somenzi’s CUDD BDD package [4] and applied
our algorithms to the MCNC [27] and IWLS [28] benchmark
(includes ISCASS89, ITC, and several large circuits) suite.

A. BddCut: Scalable Cut Generation

To investigate our symbolic approach to cut generation, we
compare the cut generation time of BddCut against IMap’s [7]
and ABC’s [8] cut generation time. Note that all technology
mappers were set to generate all possible cuts (i.e. no pruning)
and there was no sacrifice to solution quality, hence final
mapping results are omitted. Table I shows detailed results for
select circuits, followed by Table II and III with summarized
results for the entire ITC and ISCAS89 benchmark suite.

We also compared BddCut with ABC for one of the largest
IWLS circuits which is shown in Table IV. In cases that the
technology mapper ran out of memory, the circuit time is
marked as n/a.

TABLE I

[Map CUT GENERATION TIMES. IMAP COULD NOT

BddCut
BE RUN FOR K > 8.

AVERAGE RATIO OF

Benchmark | K=6 K=7
1TC 27.8x | 46.5x
ISCAS89 12.2x | 26.5x
TABLE III
ABC
AVERAGE RATIO OF g57~> CUT GENERATION TIMES.
Benchmark K=6 K=7 K=8 K=9 K=10
ITC 0.512x | 1.07x | 1.77x | 4.25x 11.2x
ISCAS89 0.781 1.08x | 1.59x | 2.39x | 4.87x
TABLE IV

RUNTIME COMPARISON OF BDDCUT WITH ABC ON CIRCUIT LEON2
(CONTAINS 278,292 4-LUTS).

Cut Size | BddCut | ABC
(sec) (sec)

6 23.3 77.9

7 58.9 n/a

8 152.9 n/a

9 547.6 n/a

The results in the previous table clearly indicate that due
to subcut sharing and redundant cut removal, our symbolic
approach scales better than traditional techniques where IMap
is more than an order of magnitude slower. When compared
against ABC, our technique scales much better where our
average speedup improves as K gets larger. Also, because
ABC does not share any subcuts, it runs out of memory for
a few of the larger benchmark circuits when K = 10. This is
also true for extremely large benchmark circuits as shown in
Table IV where ABC runs out of memory in circuit leon2
for K > 6. Fortunately, ABC supports cut dropping which has
proven to reduce the memory usage by several fold, but, from
our experience, cut dropping increases the cut computation
time so we did not turn on this feature. For example, with cut
dropping enabled, ABC took more than 12 hours to generate
10-input cuts for circuit b2 0, whereas BddCut takes less than
15 minutes.

Although ABC outperforms BddCut for small cut sizes, the
longest 6-input cut generation time in BddCut was 2.8 seconds.
For small cut sizes, the overhead in storing and generating
BDDs is not amortized when generating cut sets symbolically,
thus ABC is still the better approach for smaller values of K.
The exception to this trend occurs for circuits with a high
degree of reconvergence such as for circuit C6288 (C6288
is a multiplier). For these circuits, our relative speedup is much
larger for all values of K because reconvergent paths dramat-
ically increase the number of cut duplications in conventional
cut generation methods.

JOURNAL OF KTEX CLASS FILES, VOL. X, NO. XX, XXX 200X

TABLE I
DETAILED COMPARISON OF BDDCUT CUT GENERATION TIME AGAINST IMAP AND ABC. IMAP COULD NOT RUN FOR K > 8.

K=6 (sec) K=T7 (sec) K=8 (sec) K=9 (sec) K=10 (sec)

Circuit BddCut IMap | ABC | BddCut | IMap | ABC | BddCut | ABC | BddCut ABC BddCut ABC
C6288 0.20 40.64 0.52 0.67 660.76 | 5.66 2.48 14.49 9.91 150.13 41.86 1758.44
des 0.36 10.46 0.19 0.70 294.05 | 3.34 9.05 10.70 74.66 105.16 | 828.44 1126.50
i10 0.22 14.27 0.25 1.58 98.27 2.00 2.83 6.06 11.41 57.17 50.78 581.09
b20 1.84 81.89 0.88 8.27 890.67 | 8.69 42.01 73.53 | 200.27 | 889.92 | 895.63 n/a
b21 1.91 86.84 0.94 8.59 929.90 | 8.66 44.03 80.34 | 205.25 | 942.88 | 920.22 n/a
b22_1 2.17 107.16 | 1.38 8.81 n/a 10.3 41.22 84.36 180.58 | 924.38 | 766.63 n/a
s15850.1 0.11 3.96 0.13 0.33 38.32 0.75 1.08 7.61 4.11 16.69 17.94 192.72
538417 0.45 13.68 0.31 1.39 133.83 | 0.72 4.31 6.19 14.19 58.09 47.97 536.84
54863 0.11 19.27 0.11 0.36 269.07 | 0.84 1.45 4.99 6.53 50.66 30.77 555.59
56669 0.11 15.73 0.09 0.33 197.76 | 0.63 1.20 3.53 5.88 32.63 31.61 295.38
Ratio Geomean 63x 0.83 225x 1.8x 2.5x 4.9x 10x

A concern one could raise with our symbolic approach is
the effect of BDD representation of cuts on the cache. Since
the CUDD package represents BDDs as a set of pointers, the
nodes in each BDD may potentially be scattered through-
out memory. Thus, any BDD traversal would lead to cache
thrashing, which would dramatically hurt the performance of
our algorithm. However, CUDD allocates BDD nodes from a
continuous memory pool leading to BDDs that exhibit good
spatial locality. Our competitive results support this claim and
indicate that good cache behaviour is maintained with CUDD.

1) Elimination: A Practical Application: After ensuring our
symbolic cut generation approach was scalable, we applied
our cut generation to elimination and evaluated our elimination
scheme against greedy based elimination schemes. To compare
the two approaches, we replaced the folded elimination step
in FBDD with our covering-based elimination algorithm and
compared both the area and runtime of the original FBDD
flow against our new flow. Logic folding exploits the inherit
regularity of logic circuits by sharing transformations between
equivalent logic structures. This has a huge impact on runtime
where it has been shown to reduce the number of elimination
operations by 60% on average. Thus, comparing against the
folded version of elimination has much more value. We also
compare against SIS for a common reference point. For
ease of readability, we will refer to our flow which uses
covering-based elimination as F'BDD,,¢,,. Starting with un-
optimized benchmark circuits, we optimized the circuits with
FBDD,., FBDD, and SIS. To compare their area results, we
technology mapped our optimized circuits to two technologies:
the SIS standard cell library (map) [15] and 4-LUTs using
the technology mapping algorithm described in [7]. When
optimizing the circuits in SIS, we used script.rugged [15].
Table V illustrates detailed results for a few benchmark
circuits. Column Circuit lists the circuit name, column Time
lists the total runtime in seconds, column Std Cell lists the
standard cell area when mapped to SIS’ default standard cell
library, and column 4-LUT lists the 4-LUT count. Note a few
circuits caused SIS to run out of memory and are marked as
n/a. The final row lists the geometric mean of the ratio when
compared against F'BDD,,c,,.

For the circuits shown in Table V, our new flow is signifi-
cantly faster than the original FBDD with an average speedup
of over 5x and an order of magnitude speedup over SIS. The

results also show that this speedup comes with no area penalty.

We also explored the effect of the maximum cut size used
in our elimination algorithm on runtime and area where we
varied the cut size from 4 to 10. This is shown in Table VI
where we applied our new flow to the entire ITC, ISCAS89,
and select IWLS benchmarks and take the geometric mean
ratio of the FBDD result over FBDD,,.,,. Column K lists
the cut size used in ' BDD,,.,, when generating resynthesis
regions, column 7Time is the time ratio, column Std Cell is the
final standard cell area ratio, and column 4-LUT is the final
4-LUT area ratio. Each ratio column is given a benchmark
heading indicating the benchmark suite used. As Table VI
shows, it appears that using a cut size of 4 or 6 has a substantial
speedup of more than 10x in many cases; however, this comes
with an area penalty, particularly in the IWLS benchmarks.
This implies that the elimination regions created with these
cut sizes are too small and does not capture large enough
resynthesis regions in a single cone. In contrast, a cut size of
8 still maintains a significant average speedup of more than
6x for all benchmarks with negligible impact on the final area
when compared to the original FBDD.

B. ICluster: Iterative Clustering

A runtime, area overhead, and placed delay comparison
between ICluster against the traditional VPR flow is shown
in Table VII and Table VIII. Table VII shows detailed results
for a few select circuits and Table VIII shows a summarized
result for the ITC and MCNC benchmark suite. T-vpack is
used in the traditional VPR flow to cluster LUTs where both
t-vpack and VPR are set to timing driven mode and all circuits
are optimized and technology mapped to 4-LUTs with ABC
prior to clustering [8]. The clustering architecture we used
contained 10 LUTs per cluster. The results show that our
technique is approximately 50% slower with a 14% area
overhead and an improvement of 6-11% delay on average.
In [17], the authors report a 23% area overhead with a 25%
improvement in placed delay. However, their technique is 100x
slower than the traditional clustering flow. Our original hy-
pothesis that maintaining global information during clustering
can still improve the circuit performance is proven here. By
solving clustering disjointly from technology mapping and
using ZDDs to represent our cluster sets, our performance
improvement was achieved with a significantly smaller runtime

JOURNAL OF KTEX CLASS FILES, VOL. X, NO. XX, XXX 200X

TABLE V
DETAILED COMPARISON OF AREA AND RUNTIME OF F'BD Dy, ¢qy AGAINST FBDD AND SIS FOR K = 8.

Time (sec) Std Cell Area 4-LUT Area
Circuit FBDDnew FBDD SIS FBDDpew FBDD SIS FBDDynew FBDD SIS
s38417 1.9 7.2 58.0 15992 15711 18617 3560 3559 4052
538584 3.0 13.7 3927.3 17388 17783 16846 4289 4152 4174
$35932 3.9 4.1 n/a 18630 17806 n/a 3264 3360 n/a
515850 0.8 9.1 68.8 5707 5605 5735 1282 1270 1329
b20 5.5 44.8 154.5 20280 20002 20776 4514 4324 4773
b22_1 6.2 38.4 202.4 26402 29725 25265 5788 6505 5664
b17 8.9 102.8 583.1 44355 41115 46701 10722 9896 11574
systemcdes 3.1 11.3 123.1 5582 5683 5276 1152 1207 1143
vga_-lcd 38.9 585.2 n/a 18435 178033 n/a 40680 40676 n/a
wb_conmax 18.6 104.2 1313.5 76719 82514 77329 19135 19479 19726
Ratio Geomean 5.7x 70x 1.00 1.01 1.00 1.03
TABLE VI

COMPARISON OF AREA AND RUNTIME OF FBDD AGAINST F'BD D¢,y FOR VARIOUS VALUES OF K.

ITC Ratios ISCAS89 Ratios IWLS Ratios
K Time | Std Cell | 4-LUT | Time | Std Cell | 4-LUT | Time | Std Cell | 4-LUT
4 12.4x 0.978 1.001 11.9x 0.975 0.982 | 12.8x 0.964 0913
6 8.76x 1.00 1.00 9.26x 0.965 0.984 | 8.72x 0.950 0.921
8 6.16x 0.995 1.00 6.24x 0.994 0.987 | 6.84x 0.968 0.971
10 | 2.55x 1.02 0.991 2.62x 0.987 0.984 | 2.76x 0.966 0.964
TABLE VI and solving the problem by leveraging efficient BDD managers
DETAILED COMPARISON OF RUNTIME, AREA, AND DELAY OF h h hare BDDs amonest ()ther BDDs
ICLUSTER-VPR FLOW AGAINST THE TVPACK-VPR FLOW. % which's g :
t-vpack ICluster REFERENCES
Circuit drea delay areda delay [1] S. Areibi and A. Vannelli, “Advanced search techniques for
#CLBs | (ns) | #CLBs (ns) circuit partitioning,” in Quadratic Assignment and Related Problems,
b14 172 65.5 211 61.3 P. Pardalos and H. Wolkowicz, Eds. AMS, 1994, vol. 16, pp. 77-96.
bl5 320 9L1 374 75.3 [Online]. Available: citeseer.ist.psu.edu/areibi94advanced.html
des 146 32.0 214 30.7 [2] , “An efficient clustering technique for circuit partitioning,” 1996.
i9 27 21.0 29 19.0 [Online]. Available: citeseer.ist.psu.edu/areibi96efficient.html
too._large 21 263 23 24.2 [3] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
€3540 37 40.5 49 353 tion,” IEEE Transactions on Computers, vol. 35, no. 8, pp. 677-691,
1986. [Online]. Available: citeseer.ist.psu.edu/bryant86graphbased.html
TABLE VIII [4] F. Somenzi, 4“CUDD:_(;U decision diagram package release,” 1998.
[5] S. Akers, “Binary decision diagrams,” IEEE Transactions on Computers,
AVERAGE COMPARISON OF RUNTIME, AREA, AND DELAY OF vol. 27, no. 6, pp. 509-516, 1978.
ICLUSTER-VPR FLOW AGAINST TVPACK-VPR FLOW. % [6] D. Chen and J. Cong, “DAOmap: a depth-optimal area optimization
mapping algorithm for FPGA designs,” in International Conference on
- Computer-Aided Design, Washington, DC, USA, 2004, pp. 752-759.
Benchmark | Time | area | delay [71 V. Manohararajah, S. D. Brown, and Z. G. Vranesic, “Heuristics for area
1TC 043 | 114 1 0.89 minimization in LUT-based FPGA technology mapping,” IEEE Journal
MCNC 067 | 113 | 094 on Technology in Computer Aided Design, vol. 25, pp. 2331-2340, Nov.

impact than [17]. Though, we recognize that the improvement
is not as dramatic as the numbers reported in [17]. However,
since FPGA designs are reaching the order of 100K LUTs,
we feel that scalability will be a barrier for the practical
application of [17] without heuristics to improve its runtime.

VI. CONCLUSION

We introduced some novel BDD-based reduction techniques
for problems important to CAD including cut generation and
clustering of LUTs. Prior to our work, these algorithms were
facing scalability issues particularly when the circuit size
or the problem parameters were large. As a solution, our
approach dramatically reduces redundancies when formulating

2006.

A. Mishchenko, S. Chatterjee, and R. Brayton, “Improvements to
technology mapping for LUT-based FPGAs,” in Field-Programmable
Gate Arrays. ACM Press, 2006.

S. Chatterjee, A. Mishchenko, and R. Brayton, “Factor cuts,” in
International Conference on Computer-Aided Design, 2006. [Online].
Available: http://www.eecs.berkeley.edu/ alanmi/abc/

J. Cong and Y.-Y. Hwang, “Boolean matching for complex PLBs
in LUT-based FPGAs with application to architecture evaluation,” in
Field-Programmable Gate Arrays, 1998, pp. 27-34. [Online]. Available:
citeseer.ist.psu.edu/cong98boolean.html

A. C. Ling, D. P. Singh, and S. D. Brown, “FPGA PLB evaluation
using quantified boolean satisfiability,” in Field-Programmable Logic
and Applications, Aug. 2005, pp. 19-24.

, “FPGA technology mapping: a study of optimality,” in Design
Automation Conference. New York, NY, USA: ACM Press, 2005, pp.
427-432.

A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-aware AIG
Rewriting: A fresh look at combinational logic synthesis,” in Design
Automation Conference, 2006, pp. 532-536. [Online]. Available:
http://www.eecs.berkeley.edu/ alanmi/abc/

[8]

[9]

[10]

(11]

[12]

[13]

JOURNAL OF KTEX CLASS FILES, VOL. X, NO. XX, XXX 200X

[14]

[15]

[16]

(171

(18]

(191

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

D. Wu and J. Zhu, “FBDD: A folded logic synthesis system,” in
International Conference on ASIC, Shanghai, China, Oct. 2005.

E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai,
A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton and
A. Sangiovanni-Vincentelli, “SIS: A system for sequential circuit
synthesis,” Electrical Engineering and Computer Sciences, University
of California, Berkeley, Tech. Rep., 1992. [Online]. Available:
citeseer.ist.psu.edu/sentovich92sis.html

A. S. Marquardt, V. Betz, and J. Rose, “Using cluster-based logic blocks
and timing-driven packing to improve fpga speed and density,” in Field-
Programmable Gate Arrays. New York, NY, USA: ACM Press, 1999,
pp. 37-46.

J. Y. Lin, D. Chen, and J. Cong, “Optimal simultaneous mapping
and clustering for fpga delay optimization,” in Design Automation
Conference. New York, NY, USA: ACM Press, 2006, pp. 472-477.
J. Cong and Y. Ding, “On area/depth trade-off in LUT-based FPGA tech-
nology mapping,” in Design Automation Conference, 1993, pp. 213-218.
[Online]. Available: citeseer.ist.psu.edu/article/cong94areadepth.html
——, “FlowMap: An optimal technology mapping algorithm for delay
optimization in lookup-table based FPGA designs,” IEEE Journal on
Technology in Computer Aided Design, vol. 13, no. 1, pp. 1-13, Jan.
1994.

J. Cong and Y.-Y. Hwang, “Simultaneous depth and area minimization
in LUT-based FPGA mapping,” in Field-Programmable Gate Arrays,
1995, pp. 68-74.

J. Cong, C. Wu, and Y. Ding, “Cut ranking and pruning: enabling a
general and efficient FPGA mapping solution,” in Field-Programmable
Gate Arrays. ACM Press, 1999, pp. 29-35.

Altera Corporation, Stratix Il Device Handbook, Oct. 2004.

F. Somenzi, “Binary decision diagrams,” pp. 303-366, 1999. [Online].
Available: citeseer.ist.psu.edu/somenzi99binary.html

C. Yang, M. J. Ciesielski, and V. Singhal, “BDS: a BDD-based logic
optimization system,” in Design Automation Conference, 2000, pp. 92—
97.

S. Minato, “Zero-suppressed bdds for set manipulation in combinatorial
problems,” in Design Automation Conference. New York, NY, USA:
ACM Press, 1993, pp. 272-277.

V. Betz and J. Rose, “VPR: A new packing, placement and
routing tool for FPGA research,” in Field-Programmable Logic
and Applications, W. Luk, P. Y. Cheung, and M. Glesner, Eds.
Springer-Verlag, Berlin, 1997, pp. 213-222. [Online]. Available:
citeseer.ist.psu.edu/betz97vpr.html

S. Yang, “Logic synthesis and optimization benchmarks user guide
version,” 1991.

“IWLS 2005 Benchmarks.” [Online]. Available:
http://iwls.org/iwls2005/benchmarks.html

