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Pointer analysis is a critical problem in optimizing compiler, parallelizing compiler, software

engineering and most recently, hardware synthesis. While recent efforts have suggested sym-

bolic method, which uses Bryant’s Binary Decision Diagram as an alternative to capture the

point-to relation, no speed advantage has been demonstrated for context-insensitive analysis,

and results for context-sensitive analysis are only preliminary.

We refine the concept of symbolic transfer function proposed earlier and establish a com-

mon framework for both context-insensitive and context-sensitive pointer analysis. With this

framework, the transfer function of a procedure can abstract away the impact of its callers and

callees, and represent its point-to information completely, compactly and canonically. In ad-

dition, we propose a symbolic representation of the invocation graph, which can otherwise be

exponentially large. In contrast to the classical frameworks where context-sensitive point-to

information of a procedure has to be obtained by the application of its transfer function expo-

nentially many times, our method can obtain point-to information of all contexts in a single

application. Our experimental evaluation on a wide range of C benchmarks indicates that our

context-sensitive pointer analysis can be made almost as fast as its context-insensitive counter-

part.
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Chapter 1

Introduction

1.1 Motivation

Memory spaces are allocated for different program variables to hold their value. The address of

a program variable indicates the location of the value within a linear address space. A pointer

is a program variable whose value may contain the address of another program variable, in

which case the pointer is said to point to the program variable. A pointer can be dereferenced

if the value of the program variable it points to is retrieved.

By pointer dereference, a program can read and write a program variable indirectly. For

example, if program variable g points to program variable x, then we can read x by reading

the dereference of g. In addition, if we write a value to the dereference of g, the value will be

written at the address of x, and hence, we assign this value to x indirectly. Reading and writing

program variables indirectly is particularly useful when the variables are allocated on the heap.

These concepts are used to implement abstract data structures such as lists, hash tables, vectors,

graphs, and trees. The pointer can also be passed as an argument to a procedure, and used to

read and write program variables defined outside the scope of the procedure. For these reasons,

the pointer is one of the most popular and powerful features in modern imperative programming

languages.

1



CHAPTER 1. INTRODUCTION 2

While a powerful construct that contributes to the popularity of languages such as C, it is

well known that the pointer poses difficulty for program analysis and optimization. This is

primarily due to the fact that it is difficult to statically determine memory dereferences. For

example, in statement ∗g = a, it is not immediately clear what variables correspond to ∗g.

Thus, without further analysis, one cannot tell what variables will be written, and must assume

all variables in the program could be written by this statement. But in certain cases, only a

few program variables could be written by this statement. For instance, ∗g could correspond

to only a selected set of program variables S, and as such, only statements involving program

variables in S could be impacted ∗g = a. Hence, program optimizations such as instruction

scheduling become less effective because we assume all variables could be written.

Pointer analysis conservatively estimates the runtime values of program pointers at com-

pile time. Given a target program, the pointer analysis usually computes a point-to relation

represented by a point-to graph, whose vertices correspond to program variables. A directed

edge from a source vertex to a sink vertex indicates that the program variables corresponding

to the source may point to that of the sink.

Pointer analysis has many applications. First, it can be used to make compiler optimiza-

tions such as instruction scheduling more effective [30]. Second, it can help determine data

dependency between procedures, and this can be used by parallelizing compilers [28]. Third,

pointer analysis can be used in the software engineering field, for memory leak detection [46],

buffer overrun detection [3], and improved garbage collection [27]. Last but not the least,

pointer analysis can be used to synthesize programs written in high level languages to hard-

ware [41, 34, 40, 39].

A pointer analysis X is more precise than Y if the point-to graph generated by X is a subset

of Y. One way we can compare the precision of one analysis to another is by using a metric.

Many publications [24, 25, 12, 18, 13] estimate precision by measuring the cardinality of the

points-to set for each pointer expression, and then calculate the average. For a more precise

analysis the average will always be lower, as the point-to relation is a subset of the less precise
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point-to relation.

There are many factors that may affect the precision of pointer analysis. One concerns the

procedure call relation, which is typically captured by a call graph whose vertices consists of

the set of all procedures in the program. Whenever a call to a sink procedure is made within a

source procedure, a directed edge is constructed from the source to the sink in the call graph.

The procedure executed when a program starts is referred to as the top procedure. A calling

context of a procedure P is characterized by a path in the call graph, originating with the top

procedure and ending at P. A procedure under different calling contexts may be passed different

arguments. Hence, the parameters of a procedure under different calling contexts may point-to

different program variables. This is referred to as context-sensitivity.

In addition, the point-to relation for program variables may be different at various state-

ments in a procedure. For instance, the value of a pointer may be overwritten at a statement,

and as such, it will point-to another program variable in statements executed thereafter. As

such, the order in which statements are executed can impact the point-to relation. This is

referred to as flow-sensitivity.

Much research was done for pointer analysis. A recent survey paper by Hind [23] cited 75

papers and 9 PhD thesis on the subject. The reported analysis algorithms vary with different

precision speed tradeoff and can be categorized by flow-sensitivity and context-sensitivity.

A context-sensitive pointer analysis distinguishes between the different calling contexts of

a procedure, and a flow-sensitive pointer analysis takes into account the order in which state-

ments are executed in a procedure. A flow-sensitive context-sensitive (FSCS) pointer analysis

is highly precise, however, the FSCS analysis is computationally intensive for two main rea-

sons. First, for context-sensitivity a point-to graph is maintained for each calling context, and

their number can be exponential in relation to the number of procedures in the program. Sec-

ond, flow-sensitivity requires the computation of the point-to relation for each program point,

adding more to the space requirement.

A context-insensitive pointer analysis merges all the calling contexts of a procedure, while
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a flow-insensitive analysis ignores statement order. The flow-insensitive context-insensitive

(FICI) analysis is able to scale to large programs, but is less precise than the FSCS pointer

analysis. This is partly because the FICI pointer analysis merges point-to relations. Further-

more, the merging is also responsible for the generation of spurious point-to relations since

the point-to graph is used recursively to resolve dereferences of pointers. For instance, in the

statement ∗g = a, we resolve ∗g using the point-to graph. In the FSCS analysis, the program

variables g points-to at the statement ∗g = a will be assigned to point-to a. In the FICI anal-

ysis, the program variables g points-to throughout the program will be assigned to point-to

a.

Thus, there is a tradeoff between precision and efficiency, and the context-sensitive pointer-

analysis algorithms reported so far have some drawbacks. Some pointer analysis algorithms

do not manage to scale to large programs [17, 48]. Other pointer analysis algorithms manage

to scale [18, 16, 18, 16, 13], but their precision is sub-optimal, primarily because they do not

distinguish between all calling contexts. The main reason the context-sensitive analysis does

not scale is the vast number of calling contexts in larger programs. For example, the benchmark

moria with a mere 20 thousand lines of code in the prolangs benchmarks [37], has 320 million

calling contexts.

Recently, the symbolic method has been proposed for pointer analysis [49]. The symbolic

method encodes the pointer analysis problem into the Boolean domain, and currently uses

Binary Decision Diagram (BDD) to represent and manipulate Boolean functions [8]. The

BDD was proposed by Bryant to represent Boolean functions efficiently. They are essentially a

compression of a binary decision tree, achieved by a strict decomposition order and the merging

of isomorphic nodes. BDDs have many desirable properties. First, they are canonical, and thus,

any Boolean operation on the same BDDs will result in an identical BDD. Hence, we can hash

the result BDD, and reuse it whenever the same operands are encountered, a principle similar

to dynamic programming. Second, through the canonical property and aggressive merging,

BDDs are also quite compact. Lastly, since the runtime complexity depends on the size of the
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BDD, the compactness directly translates into speed efficiency.

Zhu [49] demonstrated that the symbolic method can exploit the properties of the BDD for

pointer analysis, in a context-sensitive analysis for C programs. However, the algorithm did not

scale to large programs because the invocation graph, which determines calling contexts, was

constructed explicitly, and thus had an exponential growth in the number of nodes in relation

to the call graph. Berndl et al [7] independently proposed a flow-insensitive context-insensitive

pointer analysis for Java programs using BDDs. The work demonstrated space efficiency and

scalability, analyzing large Java programs in minutes.

1.2 Contributions

In this thesis, we propose a symbolic algorithm for context sensitive pointer analysis. We make

the following contributions:

• Symbolic Invocation Graph. Most previous methods [17, 48, 49] for context sensi-

tive analysis require the construction of an invocation graph, which can be exponentially

large. We propose the use of BDDs to annotate the call graph edges with Boolean func-

tions to implicitly capture the corresponding invocation edges. Such representation of

the invocation graph leads to the exponential reduction of memory size. In addition, we

show the construction of the invocation graph can be done in polynomial time.

• State Superposition. In contrast to the previous efforts where program states of a proce-

dure under different calling contexts have to be evaluated separately by the application of

transfer functions, we devise a scheme where the the symbolic invocation graph is lever-

aged to collectively compute a superposition of all states of a procedure under different

contexts. This leads to an exponential reduction of analysis runtime in practice.

• Symbolic Transfer Function. We extend our original proposal of symbolic transfer

function in [49], which uses a Boolean function represented by a BDD to capture the
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program state of a procedure as a function of its caller program state. Our extension

allows the additional parameterization of the callee program state, which enables the

capture of transfer functions in a single pass.

• Common CI/CS symbolic analysis framework. We establish a common, efficient

framework for both context-sensitive and context-insensitive analysis. This not only en-

ables the leverage of transfer functions for the first time to speed up CI analysis, but also

enables the study of speed-accuracy tradeoff among a spectrum of symbolic analysis

methods with different context-sensitivity. To the best of our knowledge, such frame-

works useful in many studies have not been reported for BDD-based pointer analysis.

We implemented the new algorithm and measured its runtime, memory consumption, and

precision. Our implementation computes points-to information for programs written in the C

programming language. In addition, we experimented with various attributes for BDDs, to

obtain insights into the effectiveness of the BDD when used for pointer analysis.

1.3 Thesis Organization

The thesis is organized as follows. In Chapter 2 we review the previous work on pointer

analysis. In Chapter 3 we describe the pointer analysis output, and show and discuss how

the program model is used to generate the points-to relation. Next, in Chapter 4 we present

the symbolic invocation graph, and its construction algorithm. Lastly, in Chapters 5 and 6 we

present the experimental results and the conclusion.



Chapter 2

Related Work

For pointer analysis, mainly two metrics are used to evaluate a given algorithm. One met-

ric is the scalability of the pointer analysis to large programs. This is important since many

applications need to analyze large programs. The other metric is the precision of the pointer

analysis, which can be impacted by a number of factors. One of these factors is the modeling

of the memory space, as the address of a program variable is usually represented by an abstract

structure called a block. Pointer analysis algorithms tend to be less precise when they represent

more program variables by a given block. Another factor is the degree of context-sensitivity

and flow-sensitivity in the algorithm. For instance, we may choose to distinguish between only

certain calling contexts of procedures in the context-sensitive pointer analysis [13, 18].

Andersen [4] proposed a flow-insensitive context-insensitive pointer analysis. In his anal-

ysis, a block was assigned to each stack and global variable. In addition, the analysis distin-

guished between heap locations allocated at different statements in the program. The analysis

generated point-to relations between the dereferences of program variables, called constraints.

The set of constraints can be abstracted as a constraint graph, whose vertices correspond to

the various dereferences of program variables. Generating the point-to graph is typically done

by performing a transitive closure of the constraint graph. For example, consider a C program

made of two statements, a = &b and b = &c. We let Ta, Tb, Tc be the values of a, b, and c

7
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respectively. In addition, we let T∗a be the value of the dereference of a. Clearly, a points-to

b, and b points-to c, partly denoted by the constraints Ta ⊇ {b} and Tb ⊇ {c}. From these

constraints, we can resolve the expression ∗a, denoted by T∗a ⊇ ∗Ta. This is done by propa-

gating the point-to values of the previous constraints to derive T∗a ⊇ {c}. It was shown that

Andersen’s analysis has a cubic complexity.

a = &b; 1
c = &d; 2
e = &f; 3
c = &f; 4

(a) C Source Code

a

b

c

d f

e

(b) Andersen

a

b

c,e

d,f

(c) Steensgaard

Figure 2.1: Point-to graph generated using Steensgaard’s and Andersen’s algorithms for the

source code shown in Figure 2.1 (a)

Andersen’s analysis cubic runtime meant that the analysis could not scale to very large

programs. Steensgaard [43] proposed a unification based algorithm, which runs in almost

linear time, and can analyze million line code. Program variables are assigned blocks in the

same manner as Andersen’s analysis. However, in the unification based algorithm, blocks are

merged, such that for each block, at most one block points-to it. The analysis runs faster

because there are significantly fewer blocks in the program, and the merging of blocks can

be performed efficiently by Tarjan’s union-find data structure [45]. However, the unification

based approach introduces spurious point-to relations. This is illustrated in the example shown

in Figure 2.1 (a) where we assume each program variable is assigned a block. In Andersen’s

analysis, in Figure 2.1 (b) the point-to graph will have six blocks, and will not have an edge

between program variables e and d. In the unification based approach, shown in Figure 2.1 (c),

we must unite the blocks for variables c,e as well as the blocks for variables d,f, in order for

each block to have at most one block pointing to it. As such, the unification based approach
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produces an additional point-to edge between program variables e and d. As it was shown, the

unification based pointer analysis derives certain point-to edges through the merging operation,

degrading precision. In large programs, the merging typically occurs on a very large scale,

producing a very large number of spurious point-to relations.

Fähndrich, Foster, Su, and Aiken [19] proposed a flow-insensitive context-insensitive pointer

analysis. They improved on the runtime of Andersen’s [4] pointer analysis by collapsing cyclic

constraints, and by propagating constraints lazily. Intuitively, the authors propose to detect

pointers that point-to the same program variables at various dereferences, and evaluate their

constraints together. In addition, by not performing the transitive closure for the entire con-

straint graph, they can avoid the overhead caused by evaluating cyclic constraints. Instead,

cyclic constraints are first identified and collapsed into a single block. They demonstrated or-

ders of magnitude improvement in analysis runtime due to collapsing cyclic constraints, and

a further improvement due to propagating constraints lazily. Rountev and Chandra [35] pro-

posed a more aggressive algorithm collapsing cyclical constraints, where they propagate the

label (block), and detect additional variables with identical points-to information. In particular

they managed to scale to 500 KLOC program. Heinze and Tardieu [22], proposed a demand

driven analysis, computing only the points-to results the client asks for. They showed this

analysis can analyze million line code in seconds.

In addition to improving the runtime of pointer analysis, the precision could be improved

by introducing flow-sensitivity and context-sensitivity. Emami, Ghiya, and Hendren [17] pro-

posed a flow-sensitive context-sensitive pointer analysis for C programs. The analysis assigns

distinct blocks to stack variables including locals, parameters, and globals along with unknown

indirect accesses through these variables. In addition, the heap was assigned one abstract mem-

ory block, and each procedures was assigned an abstract memory block to determine the targets

of indirect calls. The analysis also computes must point-to relations, which detect the values

that pointers are guaranteed to have. The must point-to relation was used to kill point-to rela-

tions for dereferenced blocks.
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Emami et al. propose using the invocation graph instead of the call graph for the context-

sensitive pointer analysis. The invocation graph is generated by expanding the call graph, du-

plicating each non-recursive call target. Hence, in a context-sensitive analysis, each procedure

is expanded into all its invocations. The advantage gained is that the locals and parameters of a

procedure are assigned a different abstract block for each invocation. Hence, since they distin-

guish between the parameters and locals at different invocations, they can distinguish between

the arguments passed in from different call sites. Although this analysis improves precision

in relation to the context-insensitive flow-insensitive pointer analysis, the programs analyzed

were only few thousand lines of code.

Wilson and Lam [48] noticed that many of the calling contexts were quite similar in terms

of alias patterns between the parameters. As such, they proposed the use of partial transfer

function (PTF) to capture the points-to information for each procedure. The PTF does this

by using blocks called initials to represent initial point-to information of parameters, and

uses the PTF to derive the final point-to information of the procedure. In order to derive the

point-to information for a procedure, the actual arguments are substituted into the PTF. The

advantage of the PTF is that a particular PTF for a procedure can be reused whenever the same

alias patterns occur. In this analysis they allocated each stack variable and global an abstract

memory location. In addition, they distinguished between heap blocks allocated at different

sites in the program. The pointer analysis was shown to run on benchmarks as large as five

thousand lines of code.

The context-sensitive pointer analysis algorithms discussed so far do not scale because they

require the construction of the invocation graph, which is of exponential complexity in relation

to the number of procedures. Fähndric, Rehof, and Das [18], proposed a one-level unification

based context-sensitive pointer analysis. This analysis proposes to distinguish between the

incoming calls to a given procedure, rather than expand each path in the call graph. The

authors showed that this analysis can analyze hundreds of thousands of LOC in minutes, and

showed precision improvements over the flow-insensitive context-insensitive unification based
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analysis.

Chaterjee, Ryder, and Landi [12] proposed a modular context-sensitive pointer analysis,

using the same block allocation as Wilson and Lam [48], but fully summarizing each procedure

using a transfer function. By detecting strongly connected components in the call graph, and

analyzing them separately they showed space improvements, but no results on benchmarks

larger than 5000 lines of code. Cheng and Hwu [13] extended [12] by implementing an access

path based approach, and partial context-sensitivity, distinguishing between the arguments at

only selected procedures. They demonstrated scalability to hundreds of thousands of LOC.

There are many ways to represent logic functions, the concept of Binary Decision Diagram

(BDD) was first proposed by Akers [2]. Bryant’s Reduced Order BDD (ROBDD) [8] made

this representation successful through its compactness and canonical property. The BDD was

applied to a wide range of tasks, including simulation, synthesis and formal verification in the

CAD community. McMillan et al. [11] and Coudert et al. [14] were the first to introduce BDD

into the model checking of sequential circuits, which can be abstracted as finite state machines.

Their pioneer work replaces the explicit state enumeration by implicit state enumeration us-

ing BDDs. This key concept, complemented by further improvements [9, 15, 10, 33], was

responsible for the first application of model checking to practical problems.

Other efforts in using a Boolean framework for program analysis were made. Sagiv, Reps,

and Wilhelm [38] applied this principle to shape analysis, while Ball and Millstein [5] did pred-

icate abstraction. However, the number of Boolean variables introduced in these frameworks

is proportional to the number of subjects of interest.

The application of the BDD technique to pointer analysis problem was first reported by

Zhu in [49], a context-sensitive pointer analysis for C programs, where memory blocks are

logarithmically encoded into the Boolean domain. The concept of symbolic transfer function

and the use of BDD image computation to perform program state query was proposed and its

speed efficiency was demonstrated. Berndl et al. reported a context-insensitive pointer anal-

ysis algorithm using BDD in [7], where the space efficiency, and therefore better scalability
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than the classical methods for analyzing Java programs was demonstrated. Lhoták and Hen-

dren [31] built a relational database abstraction on top of the low-level BDD manipulation to

facilitate symbolic program analysis. This abstraction simplifies the integration of multiple

program analysis techniques using BDDs. Whaley and Lam [47] reported another method for

context-sensitive pointer analysis using BDD for Java programs. They encode the invocation

graph using BDDs, and apply the algorithm by Berndl et al. [7] to the context-sensitive graph,

producing a context-sensitive pointer analysis. Their analysis scales to large Java programs.

Zhu and Calman [50] proposed a context-sensitive pointer analysis using BDDs for C pro-

grams. The algorithm proposed encodes the complete transfer function for each procedure and

the invocation graph using BDDs. It then applies the transfer function using the invocation

graph, producing the context-sensitive pointer analysis.



Chapter 3

Symbolic Program Modeling

This chapter is organized as follows. In Section 3.1 we explain how a relation can be repre-

sented by a Boolean function. In Section 3.2 we describe how the points-to graph is represented

symbolically. In Section 3.3 we discuss the transfer function, which is used to compute the

point-to graph. In Section 3.4 we discuss Binary Decision Diagrams and their use in pointer

analysis. In Section 3.5 we derive a mathematical model for the program and explain how

the pointer analysis can be solved using recurrence equations. Lastly, in Section 3.6 and Sec-

tion 3.7 we discuss the state query and transfer function application respectively, which are

used in computing the recurrence equations.

3.1 Preliminary

A Boolean constant is either true or false. A Boolean variable is a symbol whose value is a

Boolean constant. The logic connectives ,̄ ·, + correspond to the negation, conjunction, and

disjunction operators respectively. A Boolean function can be a Boolean constant, Boolean

variable, the negation of a Boolean function, and lastly, the conjunction or disjunction of two

Boolean functions. A literal is a Boolean variable or its negation. A truth assignment τ evalu-

ates each Boolean variable in a set as true or false. If τ assigns a value to each Boolean variable

in a Boolean function f, then under τ , f evaluates to true or false.

13
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From a set of Boolean variables, U = {x0, x1, ..., xm−1}, we can derive a conjunction cj of

m literals, called a minterm. Notice that since each distinct minterm is satisfied by only one τ

over U , the set of minterms are orthogonal. In other words, for any two minterms u, v spanned

by U , u · v = 0 if u 6= v.

Let A1, A2, ..., An be sets, then an n-ary relation on these sets would be a subset of A1 ×

A2 × ... × An. We call A1, A2, ..., An the domains of the relation, and n is the degree of

the relation. To represent relations we use a set of Boolean variables for each domain. Let

A1, A2, ..., An be the domains of the n-ary relation, and respectively, U 1, U2, ..., Un are sets of

Boolean variables for these domains such that U i ∩ U j = � if i 6= j and |U i| = dlog2 |Ai|e for

1 ≤ i ≤ n. The jth Boolean variable in U i is referred to as ui
j. Without loss of generality we

assume that the elements in each domain Ai are unique numbers, ranging from 0 to |Ai| − 1.

The minterm for e ∈ Ai is derived by its binary representation
∑

j bj2
j, where bj is the jth

bit of e. In the derivation we will use the Boolean variables in U i, inserting ui
j or ūi

j if bj is

1 or 0 respectively. All variables are substituted because the size of U i is designed to have

as many variables as there are bits in the binary representation of each number in Ai. Note

that the minterm created for e ∈ Ai, referred to as U i
e, is constructed to satisfy only one τ ,

corresponding to the unique number e. Note also that we can create a relation minterm by a

conjunction of the minterms U 1
e1

, U2
e2

, ..., Un
en

, where 〈e1, e2, ..., en〉 is a subset of the relation.

We can represent a relation by a disjunction of relation minterms.

Example 1 Consider the domains A1 = A2 = {0, 1, 2, 3, 4, 5, 6, 7} and the relation R =

{〈0, 1〉, 〈1, 6〉} ⊂ A1 × A2. Then, to represent R, we create two sets of Boolean variables,

U1 = {u1
0, u

1
1, u

1
2}, and U 2 = {u2

0, u
2
1, u

2
2}. In this example, the elements 0 and 1 in A1 are

encoded using Boolean variables in U 1 by ū1
0ū

1
1ū

1
2 and ū1

0ū
1
1u

1
2 respectively, which corresponds

to their 3 bit binary representation. The relation R is then encoded symbolically by the Boolean

function U1
0 U2

1 + U1
1 U2

6 = ū1
0ū

1
1ū

1
2ū

2
0ū

2
1u

2
2 + ū1

0ū
1
1u

1
2u

2
0u

2
1ū

2
2.

With the symbolic representation described above, set union and set intersection are equiv-

alent to Boolean disjunction and conjunction, respectively, of the symbolic representation of a
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set. Thus, from here on, we do not distinguish a set or relation from their symbolic representa-

tion.

It is possible to find subsets of a relation, relevant to elements in a certain domain. This

can be done by creating a disjunction of the minterms D for the respective elements, and

multiplying them by the relation R. Since the minterm for each element e ∈ D is orthogonal

to the minterm for any other element g 6∈ D in its domain, parts of the relation involving g will

evaluate to � when multiplied by the disjunction of minterms for D. As such, the result of the

multiplication is S ⊆ R, such that only relation minterms involving D will be part of S.

Example 2 Consider relation R from previous example. Suppose we wanted to find the subset

of R relevant to D = U 1
0 . Then, we can multiply R by D, getting S = R · D = ū1

0ū
1
1ū

1
2 ·

(ū1
0ū

1
1ū

1
2ū

2
0ū

2
1u

2
2 + ū1

0ū
1
1u

1
2u

2
0u

2
1ū

2
2) = ū1

0ū
1
1ū

1
2ū

2
0ū

2
1u

2
2 = U1

0 U2
1 . Note that S ⊆ R, and that S has

only relation minterms involving D.

We can evaluate a relation of a graph using image computation. Consider an edge relation

E ⊆ V × V where the nodes V are numbers. In this case, two Boolean variable sets, U 1 and

U2, are used to represent the relation, using the procedure described earlier. We would like to

identify the successors S ′′, for a set of nodes represented by a disjunction of minterms D in

U1, such that S ′′ is encoded in U 1. This is done in the following steps.

• In the first step, the subsets S, of a relation R, relevant to D, are identified, as was already

explained. This is done by letting S = R · D.

• Next, we abstract the Boolean variables in U 1 which encode D, getting S ′, the disjunction

of minterms for the elements D is mapped to, encoded in U 2. Formally, S ′ = ∃U1.S.

• We define a composition on Boolean variables, U 2 → U1, termed the mirror operation.

The mirror operation will map respective ith bit variables in U 2 to U1, {u2
0 → u1

0, u
2
1 →

u1
1, ..., u

2
n−1 → u1

n−1}. We map the set of minterms S ′ encoded in U 2, to minterms S ′′

encoded in U 1 using the mirror operations, letting S ′′ = S ′|U2→U1 .
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Note that it is possible to identify the graph nodes reachable form D by repeated application

of the three steps above. This fact is utilized in Section 3.6, where the image computation along

with the mirror operation will allow us to perform point-to graph queries.

Example 3 Consider the domain V = A1 = A2 = {0, 1, 2, 3, 4, 5, 6, 7}, the relation R =

{〈0, 1〉, 〈1, 6〉} ⊂ A1 × A2 = V × V , and the minterm D = U 1
0 . We can identify the elements

D is mapped to, and convert them to the domain of U 1. This is done by first abstracting

the Boolean variables in U 1 for S, producing S ′ = ∃U1.[ū1
0ū

1
1ū

1
2ū

2
0ū

2
1u

2
2] = ū2

0ū
2
1u

2
2 = U2

1 .

Next, we can apply the mirror operation to convert the minterm from U 2 to U1, denoted by

S ′′ = ū2
0ū

2
1u

2
2|U2→U1 = ū1

0ū
1
1u

1
2 = U1

1 . Thus, using these operations, we identified U 1
0 is

mapped to U 2
1 , and then the mirror operation was used to convert U 2

1 to U1
1 . This procedure

can be performed again, taking ∗S ′′ = (∃U1[S ′′ · R])|U2→U1 = U1
6 .

3.2 Symbolic Program State

The goal of pointer analysis is to statically estimate the set of values each pointer can hold

throughout the execution of a program. Generally speaking, the number of pointers may not be

determined at compile time. For example, we may not know the depth of a recursive procedure,

and thus cannot determine the number of local and parameter program variables. Hence, we

often collapse related program variables together, thereby forming a block, such that program

variables within a block are not distinguished. The state is a point-to relation on blocks. In the

state, a source block is said to point-to a target block if a certain pointer in the source block

may point to a program variable in the target block. When a program is modeled with fewer

blocks the state can usually be computed faster, as the points-to relation needs to be computed

for fewer blocks. In our analysis, global variables as well as locals and parameters are assigned

a block each. Heap locations are assigned a distinct block corresponding the site of allocation.

Example 4 Consider the C program shown in Figure 3.1, which is modified from [32]. The

program contains global blocks g, a, h1, h2, and local blocks p, q, r, t, f, and h.
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char *g, a, h1, h2; 1
void main() { 2

char *p, *q; 3
S0: alloc( &p, &h1 ); 4
S1: getg( &q ); 5

g = &a; 6
} 7

8
void getg( char** r ) { 9

char **t = &g; 10
if( g == NULL ) 11

S2: alloc( t, &h2 ); 12
*r = *t; 13
} 14

15
void alloc( char** f, char *h ) { 16

*f = h; 17
} 18

Figure 3.1: C source code

The program state is often abstracted as a point-to graph 〈B, E〉, whose vertices B rep-

resent the set of blocks, and an edge 〈u, v〉 ∈ E from block u to block v indicates that it is

possible that block u points-to block v. The set of all edges defines the point-to relation.

Example 5 Figure 3.2 shows a point-to graph capturing the program state after the comple-

tion of the main procedure in Figure 3.1.

To represent the relation E ⊆ B × B we create two Boolean sets X 1 = {x1
0, x

1
1, ..., x

1
n−1}

and X2 = {x2
0, x

2
1, ..., x

2
n−1}, to derive minterms for blocks. We let |X1| = |X2| = dlog2 |B|e,

and assume that each block u is characterized by a number. As such, we can derive the minterm

for u using its binary representation, and Boolean variables in either X 1 or X2. Assuming a

block u points to a block v, we represent the point-to relation by the relation minterm X 1
uX2

v .

In other words, we capture the point-to edge 〈u, v〉 in the point-to graph by a Boolean product

X1
uX2

v . Thus, given a program state represented by E, the point-to graph is represented by
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0

θ∗0

λ∗
1

θ∗1

θ∗2

λ∗
2

θ∗3

a

g

rt

p q

h1h2

f

h

m

p1

q1

Figure 3.2: Program state on the completion of Figure 3.1.

∑
〈u,v〉∈E X1

uX2
v .

Example 6 Table 3.1 shows how the blocks in Example 4 are mapped to minterms using

Boolean variables from X1 and X2. Note that the dimension (number of Boolean variables) of

both X1 and X2 is 5.

Example 7 The program state in Example 4 can be represented by a Boolean function:

X1
pX2

a + X1
pX2

h1 + X1
pX2

h2 + X1
g X2

h1 + X1
gX2

h2 + X1
g X2

a + X1
q X2

h1 + X1
q X2

h2 + X1
q X2

a +

X1
t X2

g + X1
fX2

g + X1
fX2

p + X1
r X2

q + X1
hX2

h1 + X1
hX2

h2

= x̄1
0x̄

1
1x

1
2x̄

1
3x̄

1
4x̄

2
0x̄

2
1x̄

2
2x̄

2
3x̄

2
4 + x̄1

0x̄
1
1x

1
2x̄

1
3x̄

1
4x̄

2
0x̄

2
1x̄

2
2x

2
3x̄

2
4 + x̄1

0x̄
1
1x

1
2x̄

1
3x̄

1
4x̄

2
0x̄

2
1x̄

2
2x

2
3x

2
4

+ x̄1
0x̄

1
1x̄

1
2x̄

1
3x

1
4x̄

2
0x̄

2
1x̄

2
2x̄

2
3x̄

2
4 + x̄1

0x̄
1
1x̄

1
2x̄

1
3x

1
4x̄

2
0x̄

2
1x̄

2
2x

2
3x̄

2
4 + x̄1

0x̄
1
1x̄

1
2x̄

1
3x

1
4x̄

2
0x̄

2
1x̄

2
2x

2
3x

2
4

+ x̄1
0x̄

1
1x

1
2x̄

1
3x

1
4x̄

2
0x̄

2
1x̄

2
2x̄

2
3x̄

2
4 + x̄1

0x̄
1
1x

1
2x̄

1
3x

1
4x̄

2
0x̄

2
1x̄

2
2x

2
3x̄

2
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0x̄
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1
3x

1
4x̄

2
0x̄

2
1x̄

2
2x

2
3x

2
4

+ x̄1
0x̄

1
1x

1
2x

1
3x̄

1
4x̄

2
0x̄

2
1x̄

2
2x̄

2
3x

2
4 + x̄1

0x
1
1x̄

1
2x̄

1
3x̄

1
4x̄

2
0x̄

2
1x̄

2
2x̄

2
3x

2
4 + x̄1

0x
1
1x̄

1
2x̄

1
3x̄

1
4x̄

2
0x̄

2
1x

2
2x̄

2
3x̄

2
4

+ x̄1
0x̄

1
1x

1
2x

1
3x

1
4x̄

2
0x̄

2
1x

2
2x̄

2
3x

2
4 + x̄1

0x
1
1x̄

1
2x̄

1
3x

1
4x̄

2
0x̄

2
1x̄

2
2x

2
3x̄

2
4 + x̄1

0x
1
1x̄

1
2x̄

1
3x

1
4x̄

2
0x̄

2
1x̄

2
2x

2
3x

2
4
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id Program Variable X1 X2

0 a x̄1
0x̄

1
1x̄

1
2x̄

1
3x̄

1
4 x̄2

0x̄
2
1x̄

2
2x̄

2
3x̄

2
4

1 g x̄1
0x̄

1
1x̄

1
2x̄

1
3x

1
4 x̄2

0x̄
2
1x̄

2
2x̄

2
3x

2
4

2 h1 x̄1
0x̄

1
1x̄

1
2x

1
3x̄

1
4 x̄2

0x̄
2
1x̄

2
2x

2
3x̄

2
4

3 h2 x̄1
0x̄

1
1x̄

1
2x

1
3x

1
4 x̄2

0x̄
2
1x̄

2
2x

2
3x

2
4

4 p x̄1
0x̄

1
1x

1
2x̄

1
3x̄

1
4 x̄2

0x̄
2
1x

2
2x̄

2
3x̄

2
4

5 q x̄1
0x̄

1
1x

1
2x̄

1
3x

1
4 x̄2

0x̄
2
1x

2
2x̄

2
3x

2
4

6 t x̄1
0x̄

1
1x

1
2x

1
3x̄

1
4 x̄2

0x̄
2
1x

2
2x

2
3x̄

2
4

7 r x̄1
0x̄

1
1x

1
2x

1
3x

1
4 x̄2

0x̄
2
1x

2
2x

2
3x

2
4

8 f x̄1
0x

1
1x̄

1
2x̄

1
3x̄

1
4 x̄2

0x
2
1x̄

2
2x̄

2
3x̄

2
4

9 h x̄1
0x

1
1x̄

1
2x̄

1
3x

1
4 x̄2

0x
2
1x̄

2
2x̄

2
3x

2
4

Table 3.1: Minterm map for program variables

3.3 Symbolic Transfer Function

The pointer analysis interprets relevant instructions in a program to compute program state,

represented by a pointer relation. Any instruction can add a set of new point-to relations be-

tween blocks to the state, and hence, the state monotonically increases. In turn, this update

forces the evaluation of other instructions in the program, and this process repeats until no

more updates are made to the state.

The problem with this approach is that it is quite inefficient, as certain statements in the pro-

gram must have their impact recomputed whenever the state changes. Moreover, this approach

implies that the entire program information must be kept in memory during the analysis, rais-

ing a scalability concern. Instead, we can summarize each procedure i by generating a transfer

function T i, and compute the impact of all the statements in the procedure by applying the

transfer function.

The concept of the transfer function, which can be intuitively considered as a point-to
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relation parameterized over different calling contexts, has been widely used [48, 12, 13]. The

parameters of the transfer function do not necessarily correspond to the parameters of the

procedure. In fact, dereferences of any parameter, global, and local within the procedure can

be a transfer function parameter. A memory dereference can be characterized by the notion

of access path 〈b, l〉, where b is the root memory block, and l is the level of dereferences. An

access path with the form 〈b, 0〉 is trivial and always resolves to the constant address value b,

whereas an access path with the form 〈b, 1〉 represents the value stored in b. After the transfer

functions of all program procedure are derived, they can be applied at their corresponding call

sites by substituting the parameters, or the unknowns, with the known program state.

In [49] we introduce the notion of initial state blocks, each of which corresponds to the

set of possible values of a memory dereference before entering the procedure. An initial state

block is treated as if it was a separate memory block.

One problem with only using initial blocks as transfer function parameters is that the trans-

fer function of a procedure depends very much on the transfer functions of its callees. To make

sure that the point-to information of a procedure is evaluated as late as possible, we introduce

final state blocks, which represent possible values of a memory dereference before leaving the

procedure. Again, we use disjoint minterms with Boolean variables from X 1 and X2 to encode

initial and final state blocks. We follow the convention that the minterms λk and θk represent

the initial and final state block for memory dereference k respectively.

Example 8 Consider the procedure alloc in Example 4, where the parameters f and h are

dereferenced. Since the value of f and h are unknown, we cannot determine the memory blocks

to be updated. With the introduction of the initial state blocks λ0 and λ1, and the final state

blocks θ0 and θ1, the procedure can be summarized with a transfer function as shown in the

point-to graph of Figure 3.3. Similarly, we can obtain the transfer function of procedure getg in

Example 4 in Figure 3.3 where memory dereference 2 corresponds to *r and memory derefer-

ence 3 corresponds to **t1. The introduced initial and final blocks can be encoded as minterms

1Note that here we follow the convention of writing L-values, thus the R-value *t at line 14 of Example 4 is
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using Boolean variables from X1 and X2 as shown in Table 3.2. In addition, we introduce

final blocks corresponding to actual parameter values passed to procedures at Line 4, 5 and

12 respectively in Table 3.3. Note that while they do not appear in transfer functions, they will

be used in the future for transfer function application.

id Initial/Final X1 X2 deref

10 θ0 x̄1
0x

1
1x̄

1
2x

1
3x̄

1
4 x̄2

0x
2
1x̄

2
2x

2
3x̄

2
4 *f = 〈f, 1〉

11 λ0 x̄1
0x

1
1x̄

1
2x

1
3x

1
4 x̄2

0x
2
1x̄

2
2x

2
3x

2
4 *f = 〈f, 1〉

12 θ1 x̄1
0x

1
1x

1
2x̄

1
3x̄

1
4 x̄2

0x
2
1x

2
2x̄

2
3x̄

2
4 *h = 〈h, 1〉

13 λ1 x̄1
0x

1
1x

1
2x̄

1
3x

1
4 x̄2

0x
2
1x

2
2x̄

2
3x

2
4 *h = 〈h, 1〉

14 θ2 x̄1
0x

1
1x

1
2x

1
3x̄

1
4 x̄2

0x
2
1x

2
2x

2
3x̄

2
4 *r = 〈r, 1〉

15 λ2 x̄1
0x

1
1x

1
2x

1
3x

1
4 x̄2

0x
2
1x

2
2x

2
3x

2
4 *r = 〈r, 1〉

16 θ3 x1
0x̄

1
1x̄

1
2x̄

1
3x̄

1
4 x2

0x̄
2
1x̄

2
2x̄

2
3x̄

2
4 **t = 〈t, 2〉

Table 3.2: Transfer Function parameters minterm mapping

3.4 Binary Decision Diagrams

We have established the use of Boolean functions as an alternative to capture the point-to

relation. However, other than being well founded on the formalism of Boolean algebra, we have

not yet justified its use in terms of efficiency. In this section, we introduce Bryant’s Reduced

Ordered Binary Decision Diagram (ROBDD or simply BDD) [8], a proven technology for the

efficient manipulation of Boolean functions.

Traditional representations of Boolean functions include truth tables, Karnaugh maps, or

sum-of-products [21], each suffering from an exponential size with respect to the number of

variables. Bryant used a rooted, directed binary graph to represent an arbitrary Boolean func-

tion. Given a Boolean space X1 = {x1
0, x

1
1, x

1
2, ..., x

1
n−1}, a Boolean function fv corresponds

written as **t.
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Figure 3.3: Transfer Function, A walk-through example.

id Initial/Final X1 X2 deref

17 θ4 x1
0x̄

1
1x̄

1
2x̄

1
3x

1
4 x2

0x̄
2
1x̄

2
2x̄

2
3x

2
4 p = 〈p, 0〉

18 θ5 x1
0x̄

1
1x̄

1
2x

1
3x̄

1
4 x2

0x̄
2
1x̄

2
2x

2
3x̄

2
4 q = 〈q, 0〉

19 θ6 x1
0x̄

1
1x̄

1
2x

1
3x

1
4 x2

0x̄
2
1x̄

2
2x

2
3x

2
4 *t = 〈t, 1〉

20 θ7 x1
0x̄

1
1x

1
2x̄

1
3x̄

1
4 x2

0x̄
2
1x

2
2x̄

2
3x̄

2
4 h1 = 〈h1, 0〉

21 θ8 x1
0x̄

1
1x

1
2x̄

1
3x

1
4 x2

0x̄
2
1x

2
2x̄

2
3x

2
4 h2 = 〈h2, 0〉

Table 3.3: Other Finals minterm mapping
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to a graph rooted at graph node v. Each node in the graph is characterized by an index i, cor-

responding to a Boolean variable x1
i , as well as its negative cofactor flow and positive cofactor

fhigh, each of which is by itself a Boolean function, and therefore a graph node. Logically,

fv is related to its two cofactors by Shannon expansion fv = xiflow + x̄ifhigh. Two outstand-

ing nodes, called the terminal nodes, represent the constant logic value 0 and 1. The terminal

nodes are assumed to have an index of infinity. By imposing two invariants on the graph,

Bryant manages to keep the representation canonical. First, all variables have a fixed ordering,

that is, the index of any non-terminal node must be less than the index of its cofactors. Second,

all isomorphic subgraphs are reduced into one, that is, if the cofactors of two graph nodes u

and v are the same, and their indices are the same, then they will be the same.

Figure 3.4 shows the BDD representation of symbolic transfer functions in the previous

section. Note that we use BDD to represent both the transfer functions and the program states.

The fact that BDD is nothing but a graph representation of a Boolean function begs the question

that why we do not use the point-to graph in the first place, which seems to be much more

intuitive. One primary advantage of using BDD is that point-to graphs need to be maintained

for every procedure, each of which may share many common edges. In other words, there is

a large amount of redundancy. In contrast, BDD enables the maximum sharing among graph

nodes, and point-to information in different procedures, at different program points can be

reused. As an example, ddb, dc6 are some of the shared internal BDD nodes among different

transfer functions. As the program grows large, such sharing occurs in a large scale. As a

result, when BDD is used to represent a point-to set, its size is not necessarily proportional to

its cardinality, as in the case of point-to graph – often times it is proportional to the dimension

of the Boolean space. This space efficiency will translate into speed efficiency.
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Figure 3.4: Transfer functions in BDD.
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3.5 Recurrence Equations

We now describe our pointer analysis framework. In order to focus on the fundamentals,

rather than the implementation details, we assume that after preprocessing, the program can

be characterized by the following mathematical model. In this model, we ignore return values,

as they could be modeled by considering them as parameters to a given procedure. Also note

that for now, we assume the program does not contain indirect calls. As such, the call graph

can be built in advance. From these relations we can calculate the state by applying recurrence

equations.

• I ⊂ [0,∞) is the set of procedures. We also assume that procedure 0 corresponds to the

top procedure in the whole program.

• J ⊂ [0,∞) is the set of memory blocks contained in the program. It includes globals,

locals, parameters and heap objects.

• L ⊂ [0,∞) is the set of program points.

• K ⊂ [0,∞), ∀i ∈ I corresponds to the set of memory dereferences.

• D : K 7→ J × Z characterizes the access path of each memory dereference k ∈ K by a

tuple 〈b, l〉 where b ∈ J is a memory block, and l ∈ Z is the level of dereferences. This

representation can be extended with more complex access patterns.

• {T i(
−→
λ ,

−→
θ )|∀i ∈ I} corresponds to the set of transfer functions for each procedure i.

Here
−→
λ = [λ0, ...λ|K|−1] corresponds to the initial state blocks, and

−→
θ = [θ0, ...θ|K|−1]

corresponds to final state blocks.

• C : I × L 7→ 2I corresponds to the calling relation. For each procedure i ∈ I , and call

site at program point l ∈ L, Ci,l gives the set of callees. C−1
i gives the set of tuples 〈j, l〉,

where j ∈ I, l ∈ L, and i ∈ Cj,l.
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• B : I × L × K 7→ K is the parameter binding relation. For each call site at program

point l ∈ L, in procedure i ∈ I , and formal parameter dereference k ∈ K at procedure

j ∈ Ci,l, Bi,l,k gives the dereference in procedure i corresponding to the actual.

The task of pointer analysis is finding program state S i for each procedure i ∈ I . After all

relations are derived, we first compute the initial state for each procedure i ∈ I . The initial

state is computed by the following equation, which takes the sum of all parameter-independent

point-to relations in the transfer functions.

Si =
∑

i∈I

T i(
−→
λ → 0,

−→
θ → 0) (3.1)

Example 9 The initial state of the program in Example 4 is X1
gX2

a + X1
t X2

g .

Next, the state for each procedure is derived by iteratively applying the recurrence equa-

tions. The recurrence equations are computed until a fixed-point is reached, defined as the

iteration when the state for each procedure does not change. Note that the state monotoni-

cally increases. As such, since the number of blocks and procedures in a program is finite, the

analysis will eventually reach a fixed-point. Below are the recurrence equations:

Θi
k = query(Si,Dk), ∀k ∈ K, i ∈ I (3.2)

Λi
k =

∑

〈j,l〉∈C−1

i

Θj
Bj,l,k

∀k ∈ K, i ∈ I (3.3)

Si =
∑

〈i,l〉∈C−1

i

Si +
∑

∀l,j∈Ci,l

Sj + (3.4)

T i(
−→
λ →

−→
Λ i,

−→
θ →

−→
Θ i), ∀i ∈ I

Equation 3.2 computes the final value of memory dereference k in procedure i before leav-

ing the procedure. It is computed by performing a state query on S i, which is discussed in

Section 3.6.
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Equation 3.3 computes the initial value of a formal parameter, denoted by memory deref-

erence k ∈ K, before entering procedure i ∈ I . It is computed by combining the value of

corresponding actuals in all incoming callers. The set of call sites whose callee is this proce-

dure is given by C−1
i . Let l ∈ L in procedure j ∈ I be a call site, whose callee is procedure i.

Then, the actual memory dereference corresponding to the formal k is given by Bj,l,k, whose

corresponding value is given by Θj
Bj,l,k

.

Lastly, Equation 3.4 computes the state S i by summing the states of its callers and callees as

well as applying the transfer function. Transfer function application is done by substituting the

initial and final state blocks by the actual state blocks computed in Equation 3.3 and Equation

3.2. The transfer function application is discussed in Section 3.7.

3.6 Symbolic State Query

This section outline the algorithm to perform query on the state of a procedure, also used to

compute Equation 3.2. Given a memory dereference of block b with level l, Algorithm 1 per-

forms the state query by computing the reachable envelope of depth l on the point-to graph

starting from block b. In contrast to the traditional approach where a breadth-first search has to

be performed to explicitly enumerate all neighbors of a node in the point-to graph, our repre-

sentation enables the use of the implicit technique originally developed in the CAD community

for the formal verification of digital hardware. This approach relies on the efficiency of im-

age computation, which collectively computes the set of successors in a graph given a set of

predecessors. Since in our representation, a set of memory blocks can be represented as a dis-

junction of minterms, the query can be formulated as Boolean function manipulation, which

in turn can be efficiently implemented on BDD. As shown in Line 5, the query is performed

by multiplying the state with the minterm of the predecessor using Boolean variables in X 1,

and then existentially abstracting away the Boolean variables in X 1. This procedure is per-

formed recursively, by applying the mirror operation on Line 4 to previous results. Example 10
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Algorithm 1 State query.

query( S, 〈b, l〉 ) { 1

if( l == 0 ) return X2
b ; 2

else { 3

result = query(S, 〈b, l − 1〉)|X2
→X1; 4

return ∃X1.[S ∧ result] ; 5

} 6

} 7

illustrates how it works. Many efforts have been invested to make this operation particularly

efficient [14, 15, 9, 33].

Example 10 Consider the state of procedure main represented by the point-to graph in Fig-

ure 3.2, which can be represented symbolically by S = X 1
pX2

a + X1
pX2

h1 + X1
pX2

h2 + X1
g X2

h1 +

X1
gX2

h2+X1
gX2

a+X1
q X2

h1+X1
q X2

h2+X1
q X2

a+X1
t X2

g +X1
fX2

g +X1
fX2

p+X1
r X2

q +X1
hX2

h1+X1
hX2

h2

. To find out where g points to, we first multiply S by X1
g . Since X1

g is orthogonal to X1
p , X1

q ,

X1
t , X1

f , X1
r , and X1

h by the property of minterms, the step yields X1
gX2

h1 + X1
g X2

h2 + X1
gX2

a =

x̄1
0x̄

1
1x̄

1
2x̄

1
3x

1
4x̄

2
0x̄

2
1x̄

2
2x

2
3x̄

2
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1x̄
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2
2x̄
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2
4, in other words,

all irrelevant point-to facts are filtered. We then abstract away all Boolean variables in X1,

which yields x̄2
0x̄

2
1x̄

2
2x

2
3x̄

2
4 + x̄2

0x̄
2
1x̄

2
2x

2
3x

2
4 + x̄2

0x̄
2
1x̄

2
2x̄

2
3x̄

2
4 = X2

h1 + X2
h2 + X2

a .

3.7 Symbolic Transfer Function Application

A sink cofactor of a given block in a point-to graph is any block it points to. A source cofactor

of a given block is any block pointing to it. The transfer function is applied by substituting its

parameters with blocks we call substituents. One way this could be done is by identifying the

cofactors of each transfer function parameter, and multiplying them with the substituents. For

instance, we can compute the target cofactors µk of the initial λk as shown in Equation 3.5.
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Similar to the query computation, to find µk we multiply T i by X2
λk

, and then abstract away

the Boolean variables in X2. The state is then updated with the new point-to relation as shown

in Equation 3.6. The main disadvantage of this approach is that we must identify the cofactors

of each parameter, and then multiply them by the substituents ( Λi
k in this case ) separately.

µk = ∃X2.(X2
λk

· T i) (3.5)

Si = Si + (µk · Λ
i
k) (3.6)

We propose a new method such that the substitutions can be performed collectively. First,

to represent the relation B × B between the pointers and their values we introduce two ad-

ditional Boolean variable sets Y 1 and Y 2 respectively. We can derive minterms using these

two Boolean variable sets in the same manner they were derived using X 1 and X2. To be

able to substitute collectively, we modify each of the transfer functions T i into an augmented

transfer function T̂ i. We derive T̂ i by multiplying each transfer function parameter minterm

using Boolean variables in X1 by the corresponding minterm using Boolean variables in Y 1.

Likewise, we multiply each transfer function parameter minterm using Boolean variables in

X2 by the corresponding minterm using Boolean variables in Y 2. We then abstract away the

transfer function parameter minterms using Boolean variables in X 1 and X2.

Example 11 The augmented transfer functions of procedures in Example 4 are: T̂ alloc =

X1
fY 2

λ0
+ X1

hY 2
λ1

+ Y 1
θ0

Y 2
θ1

, T̂ getg = X1
r Y 2

λ2
+ X1

t X2
g + Y 1

θ2
Y 2

θ3
, and T̂ main = T main.

Now, we can create a binding between all substituents and parameters. The determinant of a

substituent minterm encoded using Boolean variables in X 1 and X2 is the matching parameter

minterm in domains Y 1 and Y 2 respectively. We can derive the binding by multiplying each

substituent minterm by its determinant. As shown in Algorithm 2, the binding can be used to

multiply the augmented transfer function. Note that terms with different determinants will be

canceled thanks to the orthogonality of minterms. Hence, the substitution can be performed by

a single multiplication followed by existentially abstracting away the determinant variables.
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Algorithm 2 Transfer Function Application.

apply( T̂ i,
−→
Λ i,

−→
Θ i ) { 8

binding =
∑

k∈K(Y 2
λk

Λi
k + Y 2

θk
Θi

k); 9

s = ∃Y 2.[T̂ i ∧ binding]; 10

binding∗ = binding|X2→X1,Y 2→Y 1; 11

return ∃Y 1.[s ∧ binding∗] ; 12

} 13



Chapter 4

Symbolic Context-Sensitive Analysis

In this chapter we describe the context-sensitive analysis. In Section 4.1 we introduce the

symbolic invocation graph. In Section 4.2 we show how the acyclic call graph is derived.

In Section 4.3 we explain how the acyclic call graph is used in constructing the symbolic

invocation graph, and discuss the complexity. In Section 4.4 we describe how the symbolic

invocation graph can be leveraged in order to perform the context-sensitive analysis.

4.1 Invocation Graph

An invocation of a procedure corresponds to one of the calling contexts of the procedure, and

can be characterized by a distinct number. An invocation graph is the expansion of the call

graph [17] whose vertices correspond to the invocations of procedures. Figure 4.1(a) shows

the call graph of a program, where the edges are labeled with the respective call sites. The

corresponding invocation graph is shown in Figure 4.1(b), where each vertex is labeled by the

procedure name and an integer index representing the different invocations of each procedure.

The goal of the context-sensitive analysis is to distinguish between the state of each invo-

cation of a procedure. Since the pointer analysis is flow-insensitive, the point-to relations for

globals and heap locations are propagated to all invocations in the program. Hence, the main

advantage of the context-sensitive analysis is the ability to distinguish between the values of

31
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parameters, for different invocations of the same procedure.

Note that cycles in the call graph pose a problem in deriving the invocation graph. The

cycles are caused by recursive calls between procedures. Naively expanding the call graph

may result in an invocation graph of infinite size. This is because each vertex on a cycle in

the call graph may have to be expanded indefinitely. As such, cycles in the call graph must be

handled in advance. A strongly connected component is a subgraph where each vertex in the

component is reachable from another vertex in the component. A maximal SCC is a SCC not

contained in any other SCCs. By collapsing maximal SCCs into a single vertex, we can obtain

an acyclic call graph. By doing so, an acyclic call graph is derived, and new invocations are

allocated for each each incoming edge into the maximal SCC. The derivation of the acyclic

graph, and the resulting invocation graph will be elaborated Section 4.2.

With an acyclic call graph, multiple paths can be expanded, visiting each vertex only once

in a topological pass over the acyclic call graph. However, the invocation graph is exponential

in relation to the call graph, and hence the cost of constructing the vertices and edges of the

invocation graph is exponential. To resolve this issue, note that edges in the invocation graph

can be characterized by a relation between the invocations of the caller and callee in the call

graph. Thus, instead of expanding call graph edges we could annotate them with the relation

between the invocations of the caller and callee. Such annotation could be a Boolean func-

tion, representing the relation between the invocations of the caller and callee with two sets of

Boolean variables, W 1 and W 2 respectively. We can derive the minterm for the invocation of

a procedure, using the invocation number binary representation, and the Boolean variables in

either W 1 or W 2. For example, C0 in Figure 4.1(b) can be identified by C and the minterm

W 1
0 .

We define a symbolic invocation graph to be an annotation of the call graph C, where

each edge 〈i, l, j〉 ∈ C, corresponding to a call at program point l in procedure i, to procedure

j, is annotated with a Boolean function SE i,l,j, referred to as the symbolic edge relation. The

symbolic edge relation replaces the set of invocation graph edges associated with a call site by
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representing the relation between the respective invocations of the caller and callee. Let count

be the number of invocations in the caller i. Let offset be the starting invocation number of

callee j from caller i at program point l. Then, the symbolic edge relation can be constructed

by SE i,l,j =
∑count

k=0 W 1
k W 2

offset+k.

For example, in the symbolic invocation graph in Figure 4.1(c), which is equivalent to the

invocation graph in Figure 4.1(b), the edge 〈C, D〉 is annotated with W 1
0 W 2

0 + W 1
1 W 2

1 . This

means that 〈C, D〉 in the call graph can be refined into 〈C0, D0〉 and 〈C1, D1〉 in the invocation

graph. Note that when invocation graph edges are represented by BDD, the BDD nodes can

be shared among all edges in the call graph. For example, the symbolic invocation edges for

〈C, D〉, 〈C, E〉 and 〈C, F 〉 in the example in Figure 4.1(c) share a common BDD node since

they have exactly the same pattern. The symbolic invocation graph construction algorithm is

presented in Section 4.3.

4.2 Acyclic Call Graph Reduction

To construct an acyclic call graph we detect and collapse maximal SCCs. Detecting maximal

SCCs can be done by Tarjan’s algorithm [44] shown in Algorithm 3. The input to the algorithm

is the calling relation for the program, C, introduced in Section 3.5. Following Tarjan’s con-

vention, we represent each SCC by a unique vertex in the SCC, called its representative vertex.

As such, the output of the algorithm in Algorithm 3 is a mapping SCC : I 7→ I , which maps

each vertex in the call graph to a representative vertex. Note that if a vertex i is not contained

in any SCC, then SCC(i) = i, which maps i to itself.

Three data structures are used to derive the SCC mapping. For each vertex v, a visitation

order is assigned when v is visited, and stored in number(v) ( Line 18 ). In addition, when

a vertex is visited, it is inserted into a stack ( Line 20 ), to denote it is in the current path.

For each vertex, all its successors are visited, and a vertex may form a cycle by reaching a

vertex already on the path. A maximal cycle will be formed with a reachable vertex having
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the lowest visitation order, as a lower visitation order indicates a vertex was added earlier to

the path, and as such, reaches the most vertices on the path. To detect maximal cycles, for

each vertex v, lowlink(v) is computed, which is the visitation order for a vertex on the path.

Initially, lowlink(v) is set to the visitation order for v, and as cycles are found, lowlink(v) will

be mapped to the maximal cycle, which is the vertex with the lowest visitation order.

As mentioned, the traversal is performed by visiting all successors of a vertex v in the call

graph. If a successor u was not visited yet, it is visited, and as such, all paths for u are visited.

Hence, lowlink(u) is derived, representing the maximal SCC u is part of. If lowlink(u) is

smaller than lowlink(v), then, through u we can reach a vertex added earlier to the path. Since

the lower visitation order implies a greater SCC, we assign lowlink(u) to lowlink(v) as shown

in Line 25. On the other hand, if a successor u was already visited, and is on the path, then

a new SCC is found. If the visitation order of u is lower than lowlink(v), then u is the new

maximal SCC for v, and at Line 29 the visitation order for u is assigned to lowlink(v). When

all successors of v are visited, we check whether v is a maximal SCC, and remove all vertices

with higher visitation numbers from the path in Line 32–39. In addition, we assign v to be the

representative SCC vertex for all vertices removed from the path.

From the calling relation and the SCC map we can derive the acyclic call graph, repre-

sented by the acyclic call relation, C ′ : I 7→ 2I . For each procedure i ∈ I , C ′
i gives the set of

callees for i. We ignore call sites in this representation since the acyclic call relation is used to

perform a topological pass over the call graph. Algorithm 3 provides a method to derive the

acyclic call relation in Line 11–14. The acyclic call relation is constructed by performing two

call graph manipulations. First, we remove edges between any two vertices in the call graph

that have the same SCC representative vertex. Second, we replace every vertex in the call

graph, with its SCC representative vertex in the acyclic call graph. These two manipulations

collapse all the vertices in a SCC into their SCC representative vertex.

In Figure 4.2 we show how an invocation graph is derived from a call graph containing

SCCs. We ignore call sites in this example. In the call graph in Figure 4.2(a), procedures F
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Algorithm 3 Maximal SCC detection based on Tarjan’s Algorithm

var number, lowlink : I 7→ Z; 1

var stack : Z 7→ I; var sp : Z; 2

var SCC : I 7→ I; 3

var visitOrder : Z; 4

5

acyclicReduction( ) { 6

sccNum = sp = 0; 7

forall( i ∈ I ) lowlink(v) = number(v) = 0; 8

identifyScc(0); 9

10

forall( i ∈ I ) C′

i = �; 11

forall( 〈i, l, j〉 ∈ Ci,l ) 12

if( SCC(i) 6= SCC(j) ) 13

C′ = C′ ∪ 〈SCC(i), SCC(j)〉; 14

} 15

16

identifyScc( v ) { 17

number(v) = ++sccNum; 18

lowlink(v) = number(v); 19

stack(sp++) = v; 20

21

forall( 〈i, l, j〉 ∈ C ) { 22

if( number(w) == 0 ) { 23

identifyScc(w); 24

lowlink(v) = min(lowlink(v), lowlink(w)); 25

} 26

else if( number(w) < number(v) ) 27

if( ∃k stack(k) == w ) 28

lowlink(v) = min(lowlink(v), number(w)); 29

} 30

31

if( lowlink(v) == number(v) ) { 32

w = stack(sp); 33

while( number(w) ≥ number(v) ) { 34

sp = sp - 1; 35

SCC(w) = v; 36

w = stack(sp); 37

} 38

} 39

} 40
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Figure 4.2: Deriving Invocation graph by processing SCCs

and G form a maximal SCC, the only one in the call graph. As such, the SCC for vertices F

and G is collapsed, and we duplicate the SCC for each incoming edge into either F or G. For

instance, due to the edge from B to F we duplicate the SCC for the third time. When the SCC

is duplicated, its structure is duplicated as well, and hence F2 and G2 are created, along with

directed edges between them, as shown in Figure 4.2(b).

4.3 Deriving Symbolic Edge Relations

We derive the symbolic edge relations for each edge in the call graph by applying a topological

pass over the acyclic call graph. Algorithm 4 constructs the symbolic invocation graph. The

construction algorithm maintains an invocation count for each procedure i. Also, given the

invocation count of i is count(i), the numbers representing the invocations of i will range from

0 up to count(i) − 1. Initially, the invocation count of the top procedure is set to 1. We then

traverse each reachable vertex in topological order in the acyclic call graph. At each call site the

invocation count of the callee is incremented by the invocation count of the caller, in essence

allocating new invocations for the callee. The symbolic edge relation is derived by creating a

map between the invocations of the caller and the newly allocated invocations of the callee.
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When encountering a SCC, we first compute the symbolic edge relation in callers outside

the SCC, allocating new invocations for the SCC representative vertex. When the symbolic

edge relation for all call sites outside the SCC are processed, the invocation count for the SCC

representative vertex is assigned to each procedure that maps to it. Call sites in procedures

inside the SCC are processed afterwards. In their symbolic edge relation, each one of the

invocations for the caller are assigned to the same invocation in the callee. Hence, the internal

structure of the SCC is duplicated for each “invocation” of the representative SCC vertex.

To construct the symbolic edge relation, shown in Line 31, we let count be the number of

invocations in the caller and offset be the current number of invocations for a callee. The

symbolic edge relation between any two invocations 〈u, v〉 must satisfy two conditions: (a)

u < count; (b) u + offset = v.

Condition (a) can be generalized over any invocation count number into a relation R<(x, y).

This relation can be easily pre-constructed using BDD in a way that mimics the construction of

the hardware comparator [21] for “less than”, as shown in Figure 4.3 (a). Similarly, condition

(b) can be generalized over any offset number into a relation R+(x, y, z). This relation can be

easily pre-constructed using BDD in a way that mimics the hardware adder [21] concatenated

with a hardware comparator for equality, as shown in Figure 4.3 (b). Computing the symbolic

edge relation then amounts to plugging in the constant values of invocation count and offset

into the pre-constructed relations and then finding their conjunction.

We now show that both the space complexity of symbolic invocation graph representation,

and the time complexity of its construction algorithm are polynomial with respect to the num-

ber of call graph vertices. It is important to note that while the number of contexts, or the

number of call graph vertex invocations, are exponential in relation to |I|, the number of BDD

variables used to encode the contexts is logarithmic to the number of contexts. Therefore, |W 1|

and |W 2| is of O(|I|). On the other hand, it is well-known that the BDD representations of both

the adder and comparator circuits are linear with respect to the number of BDD variables, by a

corollary of Berman [6]. We can therefore conclude that the size of the generalized relation is
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Algorithm 4 Symbolic Invocation Graph Construction.

constructSymbolicInvocationGraph( ) { 1
count(0) = 1; 2
forall( i 6= 0 ) count(i) = 0; 3
forall( i ∈ I, in topological order using C ′ ) { 4

offset = 0; 5
if( SCC−1(i) == {i} ) { 6

forall( 〈j, l, i〉 ∈ C ) { 7
SEj,l,i = constructEdges(offset, count(j)); 8
offset = offset + count(j); 9
} 10

count(i) = offset; 11
} 12

else { 13
forall( x ∈ SCC−1(i) ) { 14

forall( 〈j, l, x〉 ∈ C, SCC(j) 6= i ) { 15
SEj,l,x = constructEdges(offset, count(j)); 16
offset = offset + count(j); 17
} 18

} 19
forall( x ∈ SCC−1(i) ) { 20

forall( 〈j, l, x〉 ∈ C,maxSCC(j) == i ) { 21
SEj,l,x = constructEdges(0, offset); 22
} 23

count(x) = offset; 24
} 25

} 26
} 27

} 28
29

constructEdges(offset,count) { 30
return R+(W 1, offset,W 2) ∧ R<(W 1, count) ; 31
} 32
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O(|I|). Since BDD conjunction is proportional to the size of its operands only, our conclusion

follows.

4.4 Context-Sensitive Analysis

We now demonstrate that the space efficiency achieved by the symbolic invocation graph rep-

resentation can be exploited to achieve an exponential reduction of analysis runtime in practice

as well. The key idea is to compute the state of all invocations of a procedure collectively. Mul-

tiplying an invocation state by its number using Boolean variables from W 1 derives what we

call a predicated invocation state. We can then compute what we call a state superposition,

defined as the sum of all predicated invocation states for the procedure. Note that the state

superposition does not collapse all invocation states together, as the states are distinguished

by their invocation number. In this representation, the state of an individual invocation graph

node can be retrieved from the state superposition easily by multiplying the corresponding

invocation number minterm and then abstracting away the W 1 variables.

Example 12 Consider procedure alloc in Example 4, which contains two invocation graph

node instances alloc0 and alloc1, where the formal corresponds to the calling path main →

alloc and the latter corresponds to the calling path main → getg → alloc. The relevant state

generated for alloc0 is X1
pX2

h1. The relevant state generated for alloc1 is X1
gX2

h2. The state

superposition for alloc is W 1
0 X1

pX2
h1 + W 1

1 X1
gX2

h2. The state of alloc0 can be retrieved from

the state superposition by ∃W 1.[W 1
0 ∧ (W 1

0 X1
pX2

h1 + W 1
1 X1

gX2
h2)] = X1

pX2
h1.

We modify the recurrence equations to solve the context-sensitive analysis by using the

state superposition and the invocation graph.

Although Equation 4.1 does not change, its output does as the state is superpositioned.

When performing the query on a block the output will be distinguished for each invocation, as

the result consists of the corresponding invocation minterms.
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Θi
k = query(Si,Dk), ∀k ∈ K, i ∈ I (4.1)

Λi
k =

∑

〈j,l〉∈C−1

i

(∃W 1.[Θj
Bj,l,k

∧ SE j,l,i])|W 2→W 1 (4.2)

∀k ∈ K, i ∈ I

Si =
∑

〈j,l〉∈C−1

i

(∃W 1.[Sj ∧ SE j,l,i])|W 2→W 1 + (4.3)

∑

∀l,j∈Ci,l

∃W 2.[prune(Sj)|W 1→W 2 ∧ SE i,l,j] +

apply(T̂ i,
−→
Λ i,

−→
Θ i), ∀i ∈ I

In Equation 4.2, we compute the blocks k points-to in the caller, for each one of the caller

invocations. Then, we use the symbolic invocation graph to associate the invocations of the

caller to the corresponding invocations in this procedure. By abstracting Boolean variables in

W 1 and then performing the mirror operation to replace W 2 by W 1, we map the point-to data

for each initial into the current procedure. It is important to note that the symbolic edge relation

may capture a very large number of actual invocation edges, therefore the symbolic procedure

described above is very efficient. Similarly, in Equation 4.3, such translation between invoca-

tions for callers and callees can be computed symbolically. Note that when propagating the

state from callee to caller, the point-to relation of callee formal parameters is not propagated.

Such pruning can be computed efficiently using the symbolic method [49].

Example 13 The complete illustration of solving the above equations for Example 4 can be

found in Appendix A.



Chapter 5

Experimental Results

Our symbolic pointer analysis tool is implemented in C, and makes use of a compiler infras-

tructure to translate from several frontends (e.g. C, Java, Verilog, etc.), into an intermediate

representation (IR). In the setup pass, the infrastructure traverses the IR generated by the fron-

tends to produce the call graph (CG). Following the setup, an intraprocedural analysis pass

is performed on all user-defined procedures in the program, iterating over the instructions and

creating the transfer function for each procedure. An interprocedural pass is then applied,

which performs either a context-insensitive analysis, or context-sensitive analysis. We use

Somenzi’s publicly available CUDD package [42] for BDD implementation. Our current im-

plementation does not support non-local control transfer (setjmp/longjmp calls), location sets

[48], and assumes no ill advised use of pointers is made (like random memory accessing via

integers). Heap objects are named after the allocation site. Lastly, the C library function’s

transfer functions are precomputed and applied as necessary.

The goal of our empirical evaluation is three-fold. Our primary goal is to quantify the

speed and space efficiency of the proposed symbolic method which is shown in Section 5.1

and Section 5.2. Our second goal is to verify the context-sensitive analysis is more precise than

the context-insensitive analysis, and the results are presented and discussed in Section 5.3. Our

third goal is to quantify various BDD-related engineering issues. In Section 5.4 we evaluate

43
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Table 5.1: Benchmark characteristics.

Benchmark suite name #lines #contexts #blocks

pr
ol

an
gs

315 1411 49 136

TWMC 24032 6522 4613

simulator 3558 8953 1316

larn 9933 1750823 6180

moria 25002 318675286 9446

SP
E

C
20

00

bzip2 4665 495 995

gzip 8218 503 905

vpr 16984 179905 4318

crafty 19478 317378 5282

twolf 19756 5538 4231

M
ed

ia
B

en
ch

gsm 5473 267 1124

pegwit 5503 1968 1121

pgp 28065 199551 5265

mpeg2dec 9823 44979 2748

mpeg2enc 7605 1955 2997
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Allocation Order Boolean set Boolean Variables Interleaved

1 X1 and X2 dlog2 |B|e Yes

2 Y 1 and Y 2 dlog2 |B|e Yes

3 W 1 and W 2 32 Yes

Table 5.2: Boolean variable sets and their order

the impact of caching, and in Section 5.5 we quantify the impact of lazy garbage collection.

Table 5.2 shows the order of Boolean variables assigned to the various sets used in the pointer

analysis. The order column indicates which sets are allocated Boolean variables first. In this

assignment, a lower order for set M relative to N indicates that all Boolean variables in M will

have a lower order than Boolean variables in N . The interleaving column indicates that for the

Boolean sets in the same order, their variable order will be interleaved. For instance, in X 1 the

order might be {0, 2, 4, ...}, and for X2 the order will be {1, 3, 5, ...}. We look at the impact of

variable reordering in Section 5.6.

Until now we assumed the program does not contain indirect calls, requiring knowledge

about function pointers. One way to identify the values of function pointers would be by

looking at the set of procedures whose address is taken, and assuming each call resolves to

any procedure in this set. Another way would be to apply a fast pointer analysis algorithm,

such as Steensgaard’s [43], to resolve function pointers, before the interprocedural analysis.

We resolve function pointers dynamically, adding new call graph edges to indirect call sites. In

addition, we also construct the symbolic edge relation for affected call graph edges.

With the common analysis framework described earlier, we report results on both context-

insensitive analysis (Referred to as CI) and two types of context-sensitive analysis. Referred

to as CS I, the first type does not distinguish between call sites in a procedure targeting the

same callee. Note that results from [20, 18] are reported with this type of context-sensitivity.

Referred to as CS II, the second type does make such a distinction, and it was our observation

that the size of contexts involved in CS II is significantly larger than CS I.
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We perform our evaluation against three benchmark suites: prolangs [37], the popular

benchmark suite from the pointer analysis community, the integer suite in SPEC2000 [1], and

finally MediaBench [29]. The prolangs benchmarks were utilized in evaluating the perfor-

mance of many pointer analysis algorithms, and as such serves as a valid comparison with

previous work in this area. The SPEC2000 and MediaBench benchmarks, which are relatively

large, are selected to help study the robustness and scalability of our algorithm. The character-

istics of the reported benchmarks in this paper are shown in Table 5.1.

The experiment was performed on a Sun Blade 150 workstation with 550 MHz CPU and

128MB RAM, running on Solaris 8 Operating System. The executable was built using gcc-2.93

with the -O2 option.

5.1 Space Efficiency

In Table 5.3 we show the memory consumption of the BDD manager for each benchmark.

As it can be seen, the total memory usage never exceeds 11MB. In Figure 5.1, we present a

different point of view on the memory consumption of the context-sensitive pointer analysis.

The horizontal axis shows the number of contexts in the evaluated benchmarks, which is the

number of invocation graph nodes, if an explicit invocation graph representation is used, in log

scale. The vertical axis on the right hand side corresponds to the number of BDD nodes used to

represent the symbolic invocation graph, and the left vertical axis corresponds to the memory

consumption of the BDD manager.

As it can be seen, the memory consumption does not explode as the number of contexts

significantly increases. The memory consumption is roughly around 10 MB for most bench-

marks. A key reason for the relatively low memory consumption is the symbolic invocation

graph, and its space efficiency. From Figure 5.1, the number of BDD nodes required to rep-

resent the symbolic invocation graph mostly increases with context count, and never exceeds

60,000; for a benchmark with half a billion contexts. From Figure 5.1, it can be seen that
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Figure 5.1: Memory usage versus context count.

compared to the corresponding context count, the BDD node count is exponentially smaller.

5.2 Runtime Efficiency

We now demonstrate the runtime efficiency of the proposed symbolic analysis algorithms.

The detailed results on runtime and memory statistics for three types of analysis are given in

Table 5.3. Here, the time for the setup pass is referred to as the Setup Time. The time it takes the

intra-procedural analysis pass to derive all transfer functions is referred to as the Intra-Time.

The time it takes for the interprocedural analysis pass to reach a fixed-point is referred to as the

Inter-Time.

We draw several observations from the runtime result. First, the runtime of our context-

insensitive analysis (CI), based on a loose comparison with [26], is comparable with classical

methods such as Andersen’s [4] algorithm. Second, the runtime of type 1 context-sensitive

analysis (CS I) is very close to its context-insensitive counterpart. Almost all benchmarks take

at most twice as much time to execute. Third, the complete context-sensitive analysis (CS II), is



CHAPTER 5. EXPERIMENTAL RESULTS 48

Table 5.3: Analysis runtime and space usage results for Mediabench benchmarks.

Intra Inter Total Memory

Benchmarks time time time used

(s) (s) (s) (MB)

M
ed

ia
B

en
ch

gsm

CI 0.80 0.20 1.00 2.259

CS I 0.84 0.40 1.24 3.768

CS II 0.90 0.55 1.45 4.238

mpe
g2

de
c CI 1.96 1.06 3.02 4.503

CS I 1.92 1.44 3.36 7.696

CS II 2.38 3.84 6.22 7.532

mpe
g2

en
c CI 2.07 0.60 2.67 4.413

CS I 2.01 1.03 3.04 6.599

CS II 2.94 3.87 6.81 7.048

pegwit

CI 0.76 0.41 1.17 3.565

CS I 0.78 1.27 2.05 5.589

CS II 0.84 2.41 3.25 8.038

pgp

CI 4.83 7.87 12.70 6.918

CS I 4.92 15.52 20.44 7.697

CS II 5.79 50.92 56.71 9.454
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Table 5.3: Analysis runtime and space usage result for SPEC2K benchmarks.

Intra Inter Total Memory

Benchmarks time time time used

(s) (s) (s) (MB)

SP
E

C
20

00

bzip2

CI 0.64 0.20 0.84 3.279

CS I 0.65 0.37 1.02 3.834

CS II 0.70 0.70 1.40 4.962

crafty

CI 4.97 3.25 8.22 5.551

CS I 4.91 4.92 9.83 8.048

CS II 6.48 26.41 32.89 9.594

gzip

CI 0.74 0.19 0.93 3.496

CS I 0.78 0.36 1.14 4.072

CS II 0.89 1.14 2.03 5.880

twolf

CI 10.83 3.59 14.42 8.503

CS I 10.86 5.77 16.63 7.886

CS II 12.87 13.56 26.43 9.525

vpr

CI 5.21 2.50 7.71 5.339

CS I 5.05 6.97 12.02 7.568

CS II 5.80 14.49 20.29 8.899
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Table 5.3: Analysis runtime and space usage result for prolangs benchmarks.

Intra Inter Total Memory

Benchmarks time time time used

(s) (s) (s) (MB)

pr
ol

an
gs

315

CI 0.04 0.03 0.07 1.397

CS I 0.08 0.08 0.16 1.710

CS II 0.09 0.12 0.21 2.827

T-W-

MC

CI 9.87 6.56 16.43 8.598

CS I 10.03 8.39 18.42 8.093

CS II 13.50 24.91 38.41 9.935

larn

CI 5.97 16.86 22.83 8.073

CS I 5.94 22.68 28.62 7.901

CS II 6.65 88.79 95.44 9.444

moria

CI 8.19 25.71 33.90 8.369

CS I 8.20 41.53 49.73 9.790

CS II 10.09 166.53 176.62 9.622

simulator

CI 0.93 0.64 1.57 4.161

CS I 0.93 1.73 2.66 5.595

CS II 0.96 2.64 3.60 7.279
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Figure 5.2: Algorithm runtime versus context count.

at most six times slower than its context-insensitive counterpart. Figure 5.2 offers more insight

on the dependency of total analysis time versus context count. Once again, the horizontal axis

shows the number of contexts in the evaluated benchmarks, which is the number of invocation

graph nodes, in log scale. The runtime for the pointer analysis, as well as the construction time

of the symbolic invocation graph, for a particular context number, are plotted.

Although the runtime increases with the context count, it can be seen in Figure 5.2 that the

symbolic invocation graph construction does not cause the jump in runtime. It is clear that even

for a benchmark with half a billion contexts, the symbolic invocation graph can be constructed

in a few seconds. We attribute the increase in runtime to the binding at each call site, and the

transfer function application.

5.3 Precision

Many studies have been performed on the impact of context-sensitivity on analysis precision

[36, 20]. Since this study focuses on the runtime of symbolic analysis, other analysis dimen-
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Figure 5.3: Precision result.

sions, such as field sensitivity, heap naming scheme, which could significantly affect the analy-

sis precision, are not included. Our reported results should therefore be taken as a confirmation

that context-sensitivity does help improve analysis precision for some benchmarks rather than

a basis for a quantitative conclusion. We use the popular metric of average dereference size,

defined as the average size of a point-to set for each memory load or store in the program. The

dereference sizes for all three types of analysis are plotted for comparison. As in [20], we nor-

malize the metric to the context-insensitive analysis result. It can be observed that while large

improvement can sometimes result with the context-sensitive analysis, the difference between

the two types of context-sensitive analysis is usually minor.

5.4 Impact of Caching

An extremely important technique that can help speed up the analysis time is the use of caching

to store the result of a BDD computation. The cache is keyed by a signature consisting of the
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type of a BDD computation, as well as its operands, which are also BDDs. Thanks to the

canonical property of BDD, common BDD computation, that shares the same result, can be

easily identified by the signature, and the result can be reused on a large scale. This efficiency

is in essence the same as the dynamic programming principle: if a subproblem can be uniquely

identified, it should be solved only once, and its result should be shared by other upper-level

problems. The use of BDD allows dynamic programming to be applied at a very fine grain

level, which is otherwise very hard to identify manually. As such, a higher cache hit rate will

usually translate into improved performance, since a successful cache lookup requires fewer

computations than a BDD operation. It is obvious that the size of cache may impact the cache

hit rate.

In the CUDD package [42], the cache is used to store the results of basic BDD operations

such as AND, OR, and many others. In Figure 5.4 we plot the hit rate for selected benchmarks,

using different cache sizes. It can be observed that a large cache size, in general, leads to a

higher hit rate. On the other hand, up to a certain limit, increasing the cache size does not

increase the hit rate.

In our experiments the cache hit rate usually ranges from 40% to 60%. We also observe

a lower cache hit rate in the context-sensitive analysis. This can be explained by the higher

memory consumption in context-sensitive analysis, which forces the BDD manager to evict

nodes out of the cache.

5.5 Impact of Lazy Garbage Collection

Garbage collection is a very important factor in the performance of a BDD package. When

performing computations on a BDD package, nodes are generated, and the nature of the BDD

dictates that some will be reachable from others. In addition, many BDD nodes are shared

because of the canonical property of the BDD. As we try to garbage collect a BDD node, we

must also garbage collect its descendants, but the descendants may be shared with other BDD
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Figure 5.4: Cache hit rate.

nodes. Hence, while the canonical property contributes to the space efficiency of the BDD, it

makes garbage collection difficult.

The CUDD uses a technique called lazy garbage collection, keeping a reference count for

each BDD node. When the reference count of a BDD node goes to zero, its memory needs to

be reclaimed, or garbage collected. On the other hand, there is a high chance that this BDD

node may be re-created later. The CUDD package uses garbage collection lazily, that is, heap

space for nodes is reclaimed only when a threshold value of heap size is exceeded.

To see how lazy garbage collection can affect analysis speed, we demonstrate the time spent

on garbage collection, versus other processing time, for selected benchmarks, under different

threshold heap size values. The results are plotted in Figure 5.5, where the horizontal axis

lists the benchmarks, and the vertical axis shows the time spent in either garbage collection or

processing. It can be observed that in general a larger heap size will reduce the amount of time

spent on garbage collection, and therefore, the overall analysis speed. On the other hand, there

is almost nothing to gain if the threshold is increased beyond a certain value.
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Figure 5.5: Time spent on garbage collection.

5.6 Impact of Variable Reordering

Boolean variable ordering can have an impact on both the size and runtime of BDD compu-

tations. Dynamic variable reordering was attempted in order to determine the potential im-

provements in terms of space and runtime. Sifting, commonly regarded as the best reordering

algorithm, was used to dynamically reorder the BDD variables in the program.

In Figure 5.6(a) we plot a bar graph of the runtime of selected benchmarks, distinguishing

between the time spent on variable reorder, and regular computations, for CS II. In all bench-

marks there is a reduction in processing runtime, ranging from a factor of 1.1 to a factor of 2.6.

Hence, we conclude that the variable reordering can reduce runtime by constant order. Note

that the overhead of dynamic variable ordering is quite large, and static variable ordering may

not yield optimal results.

In Figure 5.6(b) we plot a bar graph of the space consumption for selected benchmarks,

with variable reordering and without. As it can be seen, the space reductions are negligible for

most benchmarks, and in the case of moria, the space requirements increase. We attribute the
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space increase in moria to a tradeoff involving the runtime decrease shown in Figure 5.6(a).



Chapter 6

Conclusion

In this thesis, we present a new Boolean formalism for pointer analysis. The Boolean formal-

ism enables the use of Binary Decision Diagram to achieve both space and speed efficiency.

In addition, we introduce the concept of the symbolic invocation graph, which reduces the ex-

ponential complexity of the invocation graph construction into a polynomial complexity with

respect to the number of call graph nodes. We further introduce the concept of state super-

position, allowing us to represent the state of an arbitrary number of procedure invocations in

one Boolean formula. Using these concepts, we derive a common framework for both context-

sensitive and context-insensitive pointer analysis.

Based on our study, we conclude that the key concepts proposed, namely symbolic transfer

function and symbolic invocation graph, can effectively reduce the runtime of the otherwise

expensive context-sensitive analysis to one comparable to its context-insensitive counterpart.

From this work we gained much insight into the use of the symbolic method for pointer

analysis. In the future we plan on leveraging this knowledge, and in particular, modifying

the Boolean formalism to perform the entire pointer analysis symbolically. There are many

other precision improvements to consider as well. For instance, using the symbolic method

to compute a flow-sensitive pointer analysis solution. In addition, we can consider field-

sensitivity, which distinguishes between record fields of a data structure, and more importantly,

57
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the iteration-sensitive pointer analysis, which distinguishes between various array elements.
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APPENDIX

A Solution Process Illustration

Here we show the complete fixed-point iteration process to derive the point-to graph for the

program in Figure 3.1. This is done by solving recurrence equations 3.3, 3.2, and 3.4 for the

context-insensitive analysis (CI); and recurrence equations 4.2, 4.1, and 4.3 for the context-

sensitive analysis(CS). For the economy of space, those values that are unchanged during the

iterations are listed separately in the row marked as “Unchanged values”. For fast convergence,

the procedure states are evaluated in a bottom-up fashion along the call graph. For presentation

clarity, the augmented transfer functions are not used. In addition the pruning process is applied

for both analysis and therefore formal parameter states are not propagated to callers.

Relations

T 0 = T main = X1
gX2
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C0,1 = {1}

C1,2 = {2}

Q0,0 = W 1
0 W 2

0

Q0,1 = W 1
0 W 2

0

Q1,2 = W 1
0 W 2

1

B0,0,0 = 4

B0,0,1 = 7

B0,1,0 = 5

B1,2,0 = 6

B1,2,1 = 8
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We begin the pointer analysis by computing the initial values which are the same for both

the context-sensitive and context-insensitive analysis. To simplify the illustration, we also

derive the values for certain transfer function parameters that do not change, and hence, do not

have to be recomputed.

Initial Values

S0 = S1 = S2 = X1
gX2

a + X1
t X1

g

Θ0 = Θ1 = Θ2 = 0

Θ3 = query(S1, 〈t, 2〉) = X2
a

Unchanged Values

Θ4 = query(S0, 〈p, 0〉) = X2
p

Θ5 = query(S0, 〈q, 0〉) = X2
q

Θ6 = query(S1, 〈t, 1〉) = X2
g

Θ7 = query(S0, 〈h1, 0〉) = X2
h1

Θ8 = query(S1, 〈h2, 0〉) = X2
h2

CI
Λ0 = ΘB(0,0,0) + ΘB(1,2,0) = X2

p + X2
g

Λ1 = ΘB(0,0,1) + ΘB(1,2,1) = X2
h1 + X2

h2

Λ2 = ΘB(0,1,1) = X2
q

CS
Λ0 = W 1

0 X2
p + W 1

1 X2
g

Λ1 = W 1
0 X2

h1 + W 1
1 X2

h2

Λ2 = W 0
0 X2

q
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The recurrence equations for both the context-insensitive and context-sensitive pointer anal-

ysis are solved in the next two pages. Note that the fixed-point is reached after 4 iterations. In

the context-sensitive analysis p does not point-to h2. Furthermore, g does not point-to h1, and

as such, q does not point-to h1 as well. Thus, the context-sensitive pointer analysis improves

precision over the context-insensitive counterpart for the program in Figure 3.1.
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Context-Insensitive Analysis

Iteration States Finals

1

S2 = X1
gX2

a + X1
t X2

g + X1
fX2

p + X1
f X2

g + X1
r X2

q

+ X1
hX2

h1 + X1
hX2

h2

S1 = X1
gX2

a + X1
t X1

g + X1
r X2

q

S0 = X1
gX2

a + X1
t X1

g

Θ0 = X2
p + X2

g

Θ1 = X2
h1 + X2

h2

Θ2 = X2
q

Θ3 = X2
a

2

S2 = X1
g X2

a + X1
t X2

g + X1
f X2

p + X1
fX2

g + X1
r X2

q

+ X1
hX2

h1 + X1
hX2

h2 + X1
pX2

h1 + X1
pX2

h2 + X1
gX2

h1

+ X1
g X2

h2 + X1
q X2

a

S1 = X1
g X2

a + X1
t X2

g + X1
r X2

q + X1
pX2

h1 + X1
pX2

h2

+ X1
g X2

h1 + X1
g X2

h2 + X1
q X2

a

S0 = X1
g X2

a + X1
t X2

g + X1
pX2

h1 + X1
pX2

h2 + X1
g X2

h1

+ X1
g X2

h2 + X1
q X2

a

Θ0 = X2
p + X2

g

Θ1 = X2
h1 + X2

h2

Θ2 = X2
q

Θ3 = X2
a + X2

h1 + X2
h2

3

S2 = X1
g X2

a + X1
t X2

g + X1
f X2

p + X1
fX2

g + X1
r X2

q

+ X1
hX2

h1 + X1
hX2

h2 + X1
pX2

h1 + X1
pX2

h2 + X1
gX2

h1

+ X1
g X2

h2 + X1
q X2

a + X1
q X2

h1 + X1
q X2

h2

S1 = X1
g X2

a + X1
t X2

g + X1
r X2

q + X1
pX2

h1 + X1
pX2

h2

+ X1
g X2

h1 + X1
g X2

h2 + X1
q X2

a + X1
q X2

h1 + X1
q X2

h2

S0 = X1
g X2

a + X1
t X2

g + X1
pX2

h1 + X1
pX2

h2 + X1
g X2

h1

+ X1
g X2

h2 + X1
q X2

a + X1
q X2

h1 + X1
q X2

h2

Θ0 = X2
p + X2

g

Θ1 = X2
h1 + X2

h2

Θ2 = X2
q

Θ3 = X2
a + X2

h1 + X2
h2

4

S2 = X1
g X2

a + X1
t X2

g + X1
f X2

p + X1
fX2

g + X1
r X2

q

+ X1
hX2

h1 + X1
hX2

h2 + X1
pX2

h1 + X1
pX2

h2 + X1
gX2

h1

+ X1
g X2

h2 + X1
q X2

a + X1
q X2

h1 + X1
q X2

h2

S1 = X1
g X2

a + X1
t X2

g + X1
r X2

q + X1
pX2

h1 + X1
pX2

h2

+ X1
g X2

h1 + X1
g X2

h2 + X1
q X2

a + X1
q X2

h1 + X1
q X2

h2

S0 = X1
g X2

a + X1
t X2

g + X1
pX2

h1 + X1
pX2

h2 + X1
g X2

h1

+ X1
g X2

h2 + X1
q X2

a + X1
q X2

h1 + X1
q X2

h2

Θ0 = X2
p + X2

g

Θ1 = X2
h1 + X2

h2

Θ2 = X2
q

Θ3 = X2
a + X2

h1 + X2
h2
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Context-Sensitive Analysis

Iteration States Finals

1

S2 = X1
gX2

a + X1
t X2

g + W 1
0 X1

fX2
p + W 1

1 X1
fX2

g

+ W 1
0 X1

r X2
q + W 1

0 X1
hX2

h1 + W 1
1 X1

hX2
h2

S1 = X1
gX2

a + X1
t X1

g + W 1
0 X1

r X2
q

S0 = X1
gX2

a + X1
t X1

g

Θ0 = W 1
0 X2

p + W 1
1 X2

g

Θ1 = W 1
0 X2

h1 + W 1
1 X2

h2

Θ2 = W 1
0 X2

q

Θ3 = X2
a

2

S2 = X1
g X2

a + X1
t X2

g + W 1
0 X1

fX2
p + W 1

1 X1
f X2

g

+ W 1
1 X1

r X2
q + W 1

0 X1
hX2

h1 + W 1
1 X1

hX2
h2

+ (W 1
1 + W 1

0 ) · (X1
q X2

a + X1
pX2

h1 + X1
g X2

h2)

S1 = X1
g X2

a + X1
t X2

g + W 1
0 X1

r X2
q + W 1

0 X1
pX2

h1

+ W 1
0 X1

g X2
h2 + W 1

0 X1
q X2

a

S0 = X1
g X2

a + X1
t X2

g + W 1
0 X1

pX2
h1 + W 1

0 X1
gX2

h2

+ W 1
0 X1

q X2
a

Θ0 = W 1
0 X2

p + W 1
1 X2

g

Θ1 = W 1
0 X2

h1 + W 1
1 X2

h2

Θ2 = W 1
0 X2

q

Θ3 = X2
a + W 1

0 X2
h1

+ W 1
1 X2

h2

3

S2 = X1
g X2

a + X1
t X2

g + W 1
0 X1

fX2
p + W 1

1 X1
f X2

g

+ W 1
0 X1

r X2
q + W 1

0 X1
hX2

h1 + W 1
1 X1

hX2
h2

+ (W 1
1 + W 1

0 ) · (X1
q X2

a + X1
pX2

h1 + X1
g X2

h2 + X1
q X2

h2)

S1 = X1
g X2

a + X1
t X2

g + W 1
0 X1

r X2
q + W 1

0 X1
pX2

h1

+ W 1
0 X1

g X2
h2 + W 1

0 X1
q X2

a + W 1
0 X1

q X2
h2

S0 = X1
g X2

a + X1
t X2

g + W 1
0 X1

pX2
h1 + W 1

0 X1
gX2

h2

+ W 1
0 X1

q X2
a + W 1

0 X1
q X2

h2

Θ0 = W 1
0 X2

p + W 1
1 X2

g

Θ1 = W 1
0 X2

h1 + W 1
1 X2

h2

Θ2 = W 1
0 X2

q

Θ3 = X2
a + W 1

0 X2
h1

+ W 1
1 X2

h2

4

S2 = X1
g X2

a + X1
t X2

g + W 1
0 X1

fX2
p + W 1

1 X1
f X2

g

+ W 1
0 X1

r X2
q + W 1

0 X1
hX2

h1 + W 1
1 X1

hX2
h2

+ (W 1
1 + W 1

0 ) · (X1
q X2

a + X1
pX2

h1 + X1
g X2

h2 + X1
q X2

h2)

S1 = X1
g X2

a + X1
t X2

g + W 1
0 X1

r X2
q + W 1

0 X1
pX2

h1

+ W 1
0 X1

g X2
h2 + W 1

0 X1
q X2

a + W 1
0 X1

q X2
h2

S0 = X1
g X2

a + X1
t X2

g + W 1
0 X1

pX2
h1 + W 1

0 X1
gX2

h2

+ W 1
0 X1

q X2
a + W 1

0 X1
q X2

h2

Θ0 = W 1
0 X2

p + W 1
1 X2

g

Θ1 = W 1
0 X2

h1 + W 1
1 X2

h2

Θ2 = W 1
0 X2

q

Θ3 = X2
a + W 1

0 X2
h1

+ W 1
1 X2

h2


