
PERFORMANCE EFFICIENCY OF CONTEXT-FLOW
SYSTEM-ON-CHIP PLATFORM

Rami Beidas, Jianwen Zhu

Electrical and Computer Engineering
University of Toronto

Ontario M5S 3G4, Canada
{rbeidas, jzhu}@eecg.toronto.edu

ABSTRACT

Recent efforts in adapting computer networks into system-on-chip
(SOC), or network-on-chip, present a setback to the traditional
computer systems for the lack of effective programming model,
while not taking full advantage of the almost unlimited on-chip
bandwidth. In this paper, we propose a new programming model,
called context-flow, that is simple, safe, highly parallelizable yet
transparent to the underlying architectural details. An SOC plat-
form architecture is then designed to support this programming
model, while fully exploiting the physical proximity between the
processing elements. We demonstrate the performance efficiency
of this architecture over bus based and packet-switch based net-
works by two case studies using a multi-processor architecture
simulator.

1. INTRODUCTION

The continued advancement in semiconductor technology allows
system-on-chips (SOC) to accommodate an increasing number of
computational elements and embedded memory modules. So far,
the industry has been using common busses and design specific
communication channels to interconnect these components. Such
global-wiring communication architectures are unable to scale with
the large dies fabricated in the near future with a 0.1µm technology
or below [3]. To overcome this problem and accommodate future
applications that need massive parallelism, researchers proposed
the use of interconnection networks, previously used to intercon-
nect supercomputer components, to fulfill on-chip communication
requirements [4]. While a burst of efforts have appeared under the
banner of network-on-chip, we observe some common, yet impor-
tant ommissions.

First, while traditional computer architecture is well abstracted
with a programming model, new SOC architectures have not made
much progress on that front. An SOC platform is either modeled in
system-level languages, such as SystemC [5] or SpecC [6], where
a distinction between application, architecture and hardware does
not exist, or using traditional parallel programming models, which
are usually very complex. For example, the popular Message Pass-
ing Interface (MPI) programming model [7] defines an API with
127 C functions and there is no easy path to parallelize a sequential
program into an MPI program other than the use of array-oriented
scientific applications. Second, while traditional networks in su-
percomputers are designed with the bandwidth limitation imposed
by chip pin count, new SOC platforms do not take full advantage

of the much relaxed physical constraints and almost unlimited on-
chip bandwidth.

We propose a new solution to address these problems and the
following contributions are made in this paper. First, we propose a
new programming model, where, in contrast to the common prac-
tice of supersetting the C language with new syntax or APIs, we
subset the C language by imposing very few constraints revolving
around a new concept, calledcontext, which is essentially an ab-
straction of autonomous dynamic data structures. An application
written with this programming model is not only simple, as it is
“less” than the usual C code, but also safe in the sense of Java, as it
is free of problems such as free memory access and dangling point-
ers. Second, we propose a new SOC platform architecture, called
thecontext-flowarchitecture, revolving around an on-chip network
infrastructure called atunnel, which takes full advantage of the
physical proximity of tightly coupled processing elements. The
tunnel implements the on-chip remote procedure call abstraction,
therefore achieving the transparency of the programming model,
since an application does not have to change with respect to the
change in the underlying architecture, yet with a cost almost as
cheap as local procedure calls, thereby achieving performance ef-
ficiency. Third, we have built a development suite by extending the
popular SimpleScalar environment, which was designed for single
processor architecture evaluation, so that complex applications can
be compiled and simulated on the multi-processor context-flow ar-
chitecture platform. We validate the performance efficiency of this
architecture by real world applications.

The rest of the paper is organized as follows. In Section 2,
we introduce the context-flow programming model. In Section 3
the design of baseline context-flow architecture is then described.
In Section 4, we describe the performance evaluation framework
we built for our architecture before we demonstrate in Section 5
its performance efficiency on two applications, namely an MP3
decoder and a cryptography accelerator. We discuss related work
in Section 6 before we draw conclusions.

2. CONTEXT-FLOW PROGRAMMING MODEL

A programming model is an abstraction that separates application
from architecture. This separation is important to allow applica-
tions be developed and reused across different architectures, and
vise versa. A programming model can be defined at different lev-
els of abstraction, and a hardware/software infrastructure is usually
needed to support such abstraction. For example, an instruction set
is a programming model defined at the low level to abstract away

architectural details such as pipelining and out-of-order issue, and
a massive amount of hardware logic is used to realize this abstrac-
tion. A programming language is defined at the higher level to ab-
stract away the differences between different instruction sets, and
a compiler is used to realize such abstractions. For the same pro-
gramming model, a middleware infrastructure, such as CORBA
[8] or DCOM, can be used to abstract away architectural details of
a distributed environment to implement a distributed application
the same way as a sequential one.

The importance of programming model, however, is ignored
in the hardware-centric CAD community. Even though platform-
based design is advocated to allow the reuse and customization of
pre-aggregated components, the concept of platform has not been
formalized with a programming model for applications. Recent
interest in building the communication infrastructure on massive
parallel SOC has led to the concept of network-on-chip. Build-
ing a programming model for network-on-chip either has to use
explicit communication with send/receive system calls, a wide de-
parture from the traditional imperative programming model, or has
to build another middleware infrastructure on top of the network,
leading to performance degradation with the number of layers one
communication session has to go through.

We propose a new programming model formally defined in
Definition 1.

Definition 1 Given a program with a set P of procedures, oper-
ating on a program state consisting of a set B of dynamically al-
located memory blocks. A block bi ∈ B is said to point to bj ∈ B,
if there exists a program point when the content of bi contains the
address of bj . A context C ⊂ B is a set of blocks that are closed
under the point-to relation, that is, any block bi reachable from
block bj ∈C is also an element of C. Acontexted procedureis a
procedure p such that all parameters of p points to memory blocks
of the same context. Acontext-flow program 〈P,C〉 is a program
such that all its procedures p∈ P are contexted procedures, and
all its memory blocks, which capture the program state, belongs to
a context c∈C.

A context-flow program (CFP) is extremelysimple: it is sim-
ply a C program with the same sequential semantics. It therefore
can be compiled using any conventional compiler and executed on
any conventional machine. Contexts can be implemented by us-
ing the API shown in Figure 1. While the API consists of only
three functions, it is the complete API seen by the application pro-
grammer. Here,cfNewContext creates a context and returns a
unique identifier.cfDelContext destroys a context, thereby re-
claiming all the memory blocks contained in the context.cfAl-
loc allocates a memory block of certain size from the specified
context. We now argue that a CFP is in fact simpler than a usual
C program: note that the counterpart ofcfAlloc , which should
be responsible for memory block deallocation, is not provided by
design. In fact, the memory is deallocated at the context level by
cfDelContext . This relieves the task of fine-grained memory
management, thereby simplifying the programming task in a way
similar to garbage collection.

This simplification can lead to programsafety in the same
sense of what garbage collection brings to modern languages such
as Java. A CFP is free from dangling pointers and free memory
access problems thanks to the closure property of contexts: there
cannot be any references to freed memory blocks, since the mem-
ory containing the reference should belong to the same context,

int cfNewContext(void); 1
int cfDelContext(int c); 2
void* cfAlloc(int c, int size); 3

Figure 1: Context-flow API.

and therefore be freed already as well. On the other hand, the im-
plementation of context is far cheaper than a garbage collector, in
fact cheaper than themalloc/freein a normal program: the cost of
memory allocation can be confined to constant time using a stack
based mechanism.

Context is designed to be an abstraction of autonomous data
structures. It can be anything ranging from arrays, linked lists,
trees, graphs, or the combination of all. The concept of context
offers a macroscopic view of the program and therefore makes
coarse-grained parallelization much easier, which shall become
apparent in the next section.

3. CONTEXT-FLOW ARCHITECTURE

An architecture is an aggregate of architectural components such
that an application can be executed or implemented through a well
defined programming model. Amicro-architectureis an aggre-
gate of components such as fetch stage, decode stage, execution
stage and memory stage to implement a sequential application in
C or other programming languages by its instruction set. On the
other hand, amacro-architectureis an aggregate of components
such as processing elements (PEs) and memories to implement a
parallel application by a programming model such as MPI. The
composition of a macro-architecture in a traditional parallel sys-
tem is pre-defined, whereas in the case of SOC, the composition
is often customized according to one application or one family of
applications. A macro-architecture is said to behomogeneousif
all PEs are of the same type, e.g., processors, andheterogeneous
if PEs can be microprocessors, DSPs, ASIPs or custom hardware
cores.

We consider the design of a macro-architecture, called the
context-flow macro-architecture (CFA), formally defined in Def-
inition 2.

Definition 2 Given a context-flow program〈P,C〉, a context-flow
macro-architecture is a tuple〈E,M,SC ,N〉, where E is a set of
processing elements (PEs), M is a set of memory banks,SC : P 7→
E is the staticarchitectural configuration which maps a proce-
dure in the program to a processing elements, andN is the on-chip
network where a runtime configuration〈F : C → M ,A : M 7→ P 〉
is maintained to bind each context to a distinct memory bank, and
connects each memory bank to a PE for direct access, in such
a way that a program point〈p,c〉 ∈ P×C is active implies that
SC (p) = A(C (c)).

Unlike an application in traditional programming model, A
CFP ishighly parallelizable, since different procedures, each ac-
cessing their own private data structures maintained in different
context, can be run in a CFA in different PEs in parallel, with-
out the concern of dependency hazard or cache coherence that fre-
quently occur in the traditional shared or distributed memory ar-
chitecture. The accesses of contexts do switch from one procedure

to another, when a procedure call occurs. When theremote proce-
dure call(RPC) abstraction is implemented by the on-chip network
of a CFA, whose runtime configuration in Definition 2 is dynami-
cally adjusted, then a CFP is alsohighly transparent, meaning that
it does not need to be changed no matter how the PEs in a CFA is
allocated, and how the procedures are mapped.

The key problem in the design of a CFA is the design of its
on-chip network. We start by first defining a programming model,
which abstracts how it interacts with the PEs that it connects. We
define the programming model in the form of an instruction set, as
shown in Figure 2. The instruction set is simple enough to contain
only 10 instructions. It is encoded by the values of the wires on
each port that connects a PE to the network. From the perspective
of the network, it encodes a command or request from a PE. From
the perspective of a PE, the instruction set is a complement of its
own for which it can assume the availability of a co-processor for
actual execution – effectively by driving the right wires in the cor-
responding ports.

int cfiAllocBank(void); 4
void cfiFreeBank(int bankid); 5
void* cfiMalloc(int size); 6
word cfiLoad(int addr); 7
void cfiStore(int addr, word data); 8
void cfiCnctBank(int bankid); 9
void cfiRPC(int procid); 10
void cfiRet(int procid); 11
word cfiAckRPC(void); 12
word cfiAckRet(void); 13

Figure 2: Context-flow instruction set.

We now consider how to implement an on-chip network that
can implement this instruction set efficiently. There are several
alternatives, each employing a different network topology.

As shown in Figure 3 (a), abus basedCFA maintains a private
memory bank for each of its PEs, in other words, the connection
configurationC in Definition 2 is static. The context is also main-
tained in its private memory bank. On the other hand, every time a
RPC is invoked, the content of the corresponding context needs to
be copied to the memory bank that belongs to the callee, and this
data transfer is carried out by a shared bus.

As shown in Figure 3 (b), apacket-switch basedCFA is the
same as bus-based except that the data transfer can be performed
more efficiently: while a shared bus may invite transfer conges-
tion, a well designed packet-switched network can distribute the
communication traffic evenly.

Like previous efforts, these two alternatives do not take full
advantage of the fact that the network we are designing is on-chip,
and the PEs are physically close to each other. We propose a new
based on-chip network, called a CFAtunnel. As shown in Fig-
ure 3 (c), the tunnel maintains a pool of separate memory banks, as
well as an intelligent crossbar switch. Each context is dynamically
mapped to a single memory until it is deallocated, and the cross-
bar ensures the access to the memory is dynamically switched to
the callee whenever an RPC occurs. Note that our crossbar should
not be confused with the crossbars in previous efforts, which is
designed still for the purpose of data transfer. Instead, the goal of
our crossbar is to provide the direct, wired access for memories.
RPC, or the flow of contexts from one PE to another, can then be
achieved at virtually no cost!

It is important to note that there is a physical limit for the scal-
ability of the CFA tunnel. As the network gets larger, the delay
of the crossbar grows quickly, thereby increasing the cost of each
memory access. This can be contained by employing a two-layer
strategy, where PEs are partitioned into clusters based on the com-
munication traffic among them, and intra-cluster network is based
on the tunnel, whereas the inter-cluster network is based on packet
switch. In this paper, we focus only on the study of the flat net-
work, which we believe is appropriate for the applications we are
interested in.

4. PERFORMANCE EVALUATION FRAMEWORK

We target complex applications which are usually described in C
using high-level language features such as pointer references and
complex data structures. The speculated performance advantage
can only be validated on such applications. A performance eval-
uation environment, which can simulate CFA with reasonable ar-
chitectural details for any CFP applications, is therefore needed.

A good example of an architectural evaluation environment is
the SimpleScalar toolset developed at Wisconsin [9]. It is designed
to study new innovations in micro-architecture such as pipelining,
branch prediction, out-of-order issue etc. The environment pro-
vides a complete compiler tool chain that can compile a C appli-
cation into a binary in the PISA instruction set. An instruction set
simulator can then be used to simulate the binary, while collect-
ing performance metric of interest. Figure 4 (a) shows the pseudo
code ofsim-safe, a fast simulator provided in SimpleScalar, which
maintains the processor state by a simulated memory (mem) and
registers (regs). It starts by loading the application binary into a
simulated memory, and then entering a loop which fetches an in-
struction from the simulated memory at a time, decodes it, and then
performs an action that is consistent with the instruction semantics,
while updating simulated registers and memory accordingly.

In the sequel, we first introduce how the SimpleScalar infras-
tructure is extended into a multi-processor, CFA performance eval-
uation environment. We then show how a C program is mapped
into a CFA in our environment by a simple, yet complete example.

4.1. Sim-CFA

We consider a homogeneous CFA where each PE is implemented
by a processor equipped with the PISA instruction complemented
by the context-flow instruction set defined in Section 3. The pro-
cessor state in a single processor environment first needs to be
replicated, as shown in Figure 4 (b). While each PE has its own pri-
vate address space, an unused memory space segment of each PE,
from address 0x00000000 to 0x03FFFFFF, is mapped to context
memory pool. With this approach, high-level language features,
such as array references, pointer indirection and structure member
references, can still be used directly in the source code to access
objects within the context.

The simulator was modified to run multiple SimpleScalar pro-
cessors simultaneously modeling the multiple threads executing in
parallel on the system PEs. For this purpose, the memory space
and register files were replicated, one per PE, and the main execu-
tion loop of the simulator was modified to execute one instruction
from each PE code at each simulation cycle.

SimpleScalar suite provides a very useful annotation interface
where unused bits in the instructions can be used to introduce new

(b) (c)

PE

M
E
M

PE

M
E
M

PE

M
E
M

PE

M
E
M

PE

M
E
M

DMA

(a)

M
E
M

M
E
M

M
E
M

M
E
M

M
E
M

M
E
M

M
E
M

PE PE PEPEPE

 Tunnel

P
E

M
E
M

P
E

M
E
M

P
E

M
E
M

P
E

M
E
M

P
E

M
E
M

Packet
Switch

Figure 3: Alternative Implementations of Context-Flow Architectures

RegsType regs;
MemSpaceType mem;

void simCore() {
 /* create memory space &
 *load target program
 */
 memCreate(mem);
 loadProg(prog, mem);

 while(TRUE) {
 /* fetch next instruction
 * to execute
 */
 inst = Fetch(mem, reg.PC);

 /* decode, execute, and
 * commit the instr
 */
 switch (opcode(inst))
 {
 case ADD: perform_add ;
 case SUB: perform_sub ;

 }
 /* go to next instr */
 reg.PC=reg.NPC; reg.NPC++;
 }
}

RegsType regs[NUM_OF_PES];
MemSpaceType mem [NUM_OF_PES];

void simCore() {
 /* create memory space &
 * load target program */
 for(each PE p) {
 memCreate(mem[p]);
 loadProg(prog[p], mem[p]);
 }

 while(TRUE) {
 for(each PE p) {
 /* fetch ... */
 inst = Fetch(mem[p], reg.PC[p]);

 /* decode, execute, and commit */
 if(annotated(inst))
 switch (annotation(inst)) {
 case RPC: perform RCP ;
 case AllocBank: perform alloc ;

 }
 else if (memAccess(inst) &&
 addr<0x04000000)
 access context flow memory banks ;
 else { /* normal code */
 switch (opcode(inst))
 case ADD: perform add ;
 case SUB: perform sub ;

 }
 /* go to the next instruction */
 reg.PC[p]=reg.NPC[p]; reg.NPC[p]++;
 }
 }
}

(a) (b)

Figure 4: The Original and Modified SimpleScalar Simulator Core

instructions without the change of compiler tool suite. A new in-
struction is defined by giving a non-zero annotation value to prede-
fined instruction opcodes. This annotation value can be detected at
runtime and interpreted by emulating the corresponding behavior.
We use this feature to help introduce the context-flow instruction
set to each PE. Some of the instructions will be used to implement
the context-flow API (Section 2), while others will be used by the
compiler described in the next section to implement RPC.

As shown in Figure 4 (b), the simulation engine starts by load-
ing the binaries for each PE into the simulated memories. At each
simulation cycle, for each PE, the simulator fetches an instruction
from memory and decodes it. If its annotation field is non-zero,
meaning that it is a context-flow instruction, it will invoke the cor-
responding on-chip network simulation to process a request on one
of the ports of the network. If it is a memory access whose ad-
dress falls into the range from 0x00000000 to 0x03FFFFFF, the
corresponding location inside the context memory pool will be ac-
cessed. Otherwise, it will interpret the instruction the same way as
SimpleScalar does.

We implemented different networks defined in Section 3, in-

cluding bus based, packet switched and tunnel based. Note that at
this stage of implementation, our packet switched network is very
preliminary: we assume a perfect network where no congestion
can ever occur (equivalent to point-to-point), which can neverthe-
less give the performance upper bound. Another simplification we
use for now to obtain a first order approximation of heterogeneous
CFA, where processing elements can be custom hardware, is to in-
clude a linear speedup number for a PE intended for ASIC, thereby
getting an approximate execution time.

Our simulator collects several useful performance statistics
during simulation. Throughputmeasures the rate at which CFA
can accept the top-level RPC.Utilization measures the percentage
at which the PEs are busy computing rather than idling.

4.2. Architecture Configuration and Application Compilation

{

}

sqrtArray(B, n);

addArray(B, n);

sqrtArray(float* B, int n)
{
 for(i=0; i<n; i++)
 B[i] = sqrt(B[i]);
}

addArray(float* B, int n)
{
 for(i=0; i<n; i++)
 B[i] += 2.0;
}

top(float* B, int n)

Figure 5: Original C Implementation of a Simple Array Processor

Consider that we need to implement an array processor that
calculatesf (A) =

√
A+ 2.0 : A ∈ Rn. A possible traditional C

implementation that breaks down the calculation into two steps is
shown in Figure 5. To transform the program into a CFP, the first
step is context definition. In this example, the context is simply the
data array. Figure 6 presents a transformation of the source code
that runs on two PEs, mapping top() and sqrtArray() to PE0 and
addArray() to PE1. Procedure mappings to system PEs are defined
in “config.dat” along with these procedures’ stamps. This file is
used to generate proxies and main functions for each PE via an
automatic code generator (Figure 7). Note that the main() for each
PE simply runs an infinite loop waiting for call to the procedures it
implements. WAITFOR RPC() and READ2 ARGS() are simply
macros that use cfiAckRPC() and cfiLoad(), respectively.

Once coded/generated, the source files of each PE along with
proxies’ definition are compiled by the SimpleScalar gcc compiler
ss-gcc. Sim-CFlow then can simulate the modeled system by run-

sqrtArray(float* B, int n) {
 for(i=0; i<n; i++)

 B[i] = sqrt(B[i]);

}

main() {

 while(1) {

 WAIT_FOR_RPC();

 if(callee==TOP_ID) {

 READ_2_ARGS(A, n);
 top(A,n);

 } else {

 if(callee==SQRT_ID) {

 READ_2_ARGS(A, n);

 sqrtArray(A,n);

 }
 }

}

addArray(float* B, int n) {

 cfiRPC(ADD_ID);

}

 {

}

sqrtArray(B, n);

addArray(B, n);

top(float* B, int n)

main() {

 while(1) {

 WAIT_FOR_RPC();

 if(callee==ADD_ID) {

 READ_2_ARGS(A, n);
 addArray(A,n);

 }

 }

}

{
 for(i=0; i<n; i++)

 B[i] += 2.0;

}

PE0 PE1

addArray(float* B,int n)

Figure 6: The Context-Flow Version of a Simple Array Processor

ning the generated binary files to generate detailed performance
reports.

methods
source code

(*.c,*.h)

cflow.h

ss-gcc
sim-cflow

config.dat

performance
statistics

main.c

proxies.h

proxies.c

PE2

pe2.ss

pe1.ss

pe0.ss

pe5.ss

pe4.ss

pe3.ss

code gen.

mapping
description

Figure 7: Sim-CFlow Simulation Process

5. TEST CASES AND PERFORMANCE RESULTS

In this section we present performance results of several archi-
tectural configurations in comparison of our proposal. Evalua-
tions were applied to two real-life applications, namely, MPEG1-
LayerIII decoder and cryptography acceleration processor. The
performance evaluation framework presented in Section 4 was used
to hold the experiments.

5.1. MPEG1-LayerIII Decoder

MPEG1-LayerIII, commonly referred to as MP3, is the de-facto
standard of high-quality high-compression of audio data. MP3 de-
coders became of interest after their popular use in portable multi-
media devices.

An overview of the decoder stages is presented in Figure 8.
The highlighted stages were implemented in our testbench. Each

Huffman
Decoding

Synch
CRC

Huff. Tbl.
Scalefac

Requantize Reorder
Stereo

Decoding

Alias
Reduction

IMDCT
Frequency
Inversion

Subband
Synthesis

Output
Stream

Input
Stream

Figure 8: MP3 Decoder

stage is implemented in a single procedure processing one data
granule at a time. Procedures are grouped in PEs such that the sum
of method delays within PEs are as close as possible, targeting
efficient thread-level pipelining. Due to the absence of accurate
hardware implementation performance numbers, the delay of each
method is determined using the number of memory accesses per
call, assuming a perfect pipeline implementation of the processors
and that memory bandwidth is the primary bottleneck. Current
datapath synthesis tools (such as Module Compiler by Synopsys)
can easily pipeline the computational parts of the target algorithm.

In our experiment, each configuration uses 6 4-KBytes SRAM
banks. Simulation results are shown in Table 1, where the second
column reports the throughput in cycles per request. The third
column reports the average PE utilization.

Architecture Throughput PE Util.

Context-Flow 3439 71%
Single-PE 9800 100%
Shared-bus 5944 41%
Perf. Packet Switched 5043 48%

Table 1: MP3 Decoder Results

5.2. Cryptography Acceleration Processor

RSA

MD5

SHA1

DES
ECB

3DES
ECB

DES
CBC

3DES
CBC

RC4

IN Packets
(encryption)

OUT Packets
(decreption)

IN Packets
(decryption)

OUT Packets
(encreption)

Figure 9: Crypto Accelerator Flow

Cryptography acceleration processors are becoming of central
interest with the increase of SSL-based traffic over the internet.
In our bench mark, we implemented a number of symmetric and
asymmetric algorithms commonly used in SSL and IPSec. The im-
plemented functions and the possible flows of packets are shown
in Figure 9. Delay of processing methods were obtained from ac-
tual RTL implementations [10] and comparison results [11]. The
longest path of an input packet is to go through all three cate-
gories of processing, namely hashing (MD5 or SHA1), symmet-
ric or private-key encryption (DESECB, DESCBC, 3DESECB,

3DESCBC, or RC4), asymmetric or public-key encryption (RSA).
Packets could skip hashing, public-key encryption, or both.

To carry out the experiment, we coded a packet generator that
generates a packet mix which uses various processing paths ac-
cording to a given distribution. A set of packets was generated and
an appropriate mapping, not necessarily optimal, to a 6 PE system
was used to get the results summarized in Table 2.

Architecture Throughput PE Util.

Context-Flow 742 65%
Single-PE 9039 100%
Shared-bus 1808 26%
Perf. Packet Switched 1156 44%

Table 2: Crypto Accelerator Results

5.3. Discussion

By looking at the evaluation results, we start by noting the impor-
tance of parallelizing the application on multiple PEs. The single
PE implementation of the crypto processor is 12x slower than the
tunnel-based implementation. It is also clear that the tunnel ap-
proach provides better performance when compared to alternative
multi-PE configurations. A speedup of 2.43x and 1.56x were ob-
tained by using tunnel-based architecture instead of a shared-bus
and packet switch, respectively. The 56% increase in performance
was achieved even though that the packet switch implementation
assumes congestion-free traffic, which is usually not the case with
real designs. The performance enhancement can also be viewed
by comparing the average utilization of PEs, which also implies
a better utilization of system memory resources. Similar results
were also obtained with the MP3 application. In short, using our
proposed architecture and thread-level pipelining results in a fairly
large performance gain without any change in processing element
designs.

6. RELATED WORK

The MIT Raw machine was one of the earliest designs to utilize
on-chip interconnection networks [12]. It uses several 2-D mesh
networks to connect an array of identical programmable tiles of
RISC processing cores. Dally in [4] suggests the use of on-chip
interconnection networks for future SOC where traditional inter-
connection techniques do not scale. It suggests the use of regular
interconnection topologies, such as torus and mesh networks, as
a means of communication between square tiles of identical di-
mensions, but not necessarily homogeneous. The work in [14]
elaborates on this architecture targeting design exploration at the
system level. Their work proposes mapping algorithms that tar-
get the power/performance optimization problems for the regular
communication architecture.

The use of crossbar based interconnects started to become pop-
ular in recent years. The Berkeley IRAM [15] and Stanford Smart
Memory system [16] both use a crossbar to interface a single gen-
eral purpose programmable RISC PE to an array of memory banks,
targeting the high bandwidth that crossbars provide. However, the
high-level interface we implemented in our tunnels is not used in
those systems as only a single PE is interfaced to the memory pool.

7. CONCLUSION AND FURTHER WORK

In this paper, we introduced the context-flow programming model
and proposed a supporting platform architecture. A simulation en-
vironment was developed and used to evaluate the new architecture
in comparison with traditional interconnection organizations. The
results obtained confirm the performance improvement of context-
flow architecture using real-life applications.

Several issues are still open for further investigation and de-
velopment. The SimpleScalar based simulator used in our study
will undergo several enhancements for a better representation of
heterogeneous systems. Future work will also investigate com-
piler techniques for automatic code translation of system descrip-
tion into context-flow program.

8. REFERENCES

[1] Mark Horowitz, Ron Ho, and Ken Mai, “The future of
wires,” in Proceedings of the IEEE, April 2001, pp. 490–
504.

[2] William J. Dally and Brian Towles, “Route packets, not
wires: On-chip interconnection networks,” inProceeding
of the 38th Design Automation Conference, June 2001, pp.
684–689.

[3] http://www.systemc.org .

[4] D. Gajski, J. Zhu, D. Doemer, A. Gerstlauer, and S. Zhao,
SpecC: Specification Language and Methodology, Kluwer
Academic Publishers, Boston, March 2000.

[5] http://www-unix.mcs.anl.gov/mpi .

[6] OMG Web Site, http://www.omg.org/ .

[7] Doug Burger and Todd M. Austin, “The SimpleScalar tool
set, version 2.0,” Tech. Rep., Computer Science Department,
University of Wisconsin, 1997.

[8] Rudolf Usselmann, “DES/Triple DES IP cores,” September
2001.

[9] Bruce Schneier, Applied Cryptography: Protocols, Algo-
rithms, and Source Code in C, Second Edition, John Wiley
& Sons, second edition, October 1995.

[10] Elliot Waingold, Michael Taylor, Devabhaktuni Srikrishna,
Vivek Sarkar, Walter Lee, Victor Lee, Jang Kim, Matthew
Frank, Peter Finch, Rajeev Barua, Jonathan Babb, Saman
Amarasinghe, and Anant Agarwal, “Baring it all to software:
Raw machines,”IEEE Computer, vol. 30, no. 9, pp. 86–93,
September 1997.

[11] Jingcao Hu and Radu Marculescu, “Exploiting the routing
flexibility for energy/performance aware mapping of regular
NoC architectures,” inProceedings of the Design Automa-
tion and Test Conference in Europe, March 2003.

[12] David Patterson, Thomas Anderson, Neal Cardwell, Rich ard
Fromm, Kimberley Keeton, Christoforos Kozyrakis, Randi
Thomas, , and Kathy Yelick, “Intelligent RAM (IRAM):
Chips that remember and compute,” inIEEE International
Solid-State Circuits Conference, February 1997.

[13] Drew Wingard, “Micronetwork-based integration for SOCs,”
in Proceeding of the 38th Design Automation Conference,
June 2001, pp. 673–677.

