
A 1 Cycle-Per-Byte XML Parsing Accelerator
Zefu Dai, Nick Ni, Jianwen Zhu

Department of Electrical and Computer Engineering
University of Toronto

Toronto, ON, Canada, M5S 3G4
{zdai|yni|jzhu}@eecg.toronto.edu

ABSTRACT
Extensible Markup Language (XML) is playing an increasing
important role in web services and database systems. However,
the task of XML parsing is often the bottleneck, and as a result, the
target of acceleration using custom hardware or multicore CPUs.
In this paper, we detail the design of the first complete field
programmable gate array (FPGA) accelerator capable of XML
well-formed checking, schema validation, and tree construction at
a throughput of 1 cycle per byte (CPB). This is a significant
advancement from 40 CPB, the best previous reported commercial
result. We demonstrate our design on a Xilinx Virtex-5 board,
which successfully saturates a 1 Gbps Ethernet link.

Categories and Subject Descriptors
B.4.1 [Input/output and Data Communications]: Data
Communication Devices – processor. I.7.2 [Document and Text
Processing]: Document Preparation – Markup languages

General Terms
Performance, Design, Experimentation, Languages.

Keywords
XML Parsing, Schema Validation, Tree Construction, DOM,
Bloom Filter, BART, String Comparison, Ethernet.

1. INTRODUCTION
Extensible Markup Language (XML) has become a standard for
data representation and exchange. It is prevalent in a wide variety
of applications like web services, database systems, content-based
routing, and scientific applications, thanks to its platform-
independence, interoperability and flexibility. As a result, XML
processing has become an important workload for web servers,
database servers, etc. However, XML parsing consumes a
significant portion of execution time of web servers, and has
become a threat to database performance [5].

XML parsing consists of three major tasks: well-formed checking,
which checks the document against syntactic rules, schema
validation, which checks the document against semantic rules, and
tree construction, which builds the in-memory data structure for
further processing. To characterize the performance of XML

parsers, the metric of cycle per byte (CPB) is often used. Similar to
cycle per instruction (CPI) found in computer architecture, CPB
counts the average number of cycles used to process each byte of
XML document. Since it is independent of the clock frequency,
whose scaling can be arguably enjoyed by all platforms, it is a
preferred figure of merit for achieved parallelism of a design.

Current commercial software XML parsers, such as libxml, Xerces
and XML4C, can only achieve a best processing rate of 40 CPB on
tree construction and 70 CPB on schema validation [4][5][11][23].
A large array of research results have been reported, which often
exploit the SIMD instruction set extension of CPUs, or multicore
CPUs to speed up XML processing in software [9][13][14][16].
However, their results are often incomplete, e.g. with result only
on well-formed checking. While the leading IT companies such as
IBM, Intel, HP and Dell offer hardware-accelerated solutions to
different XML processing tasks, neither performance metric nor
design detail was revealed. The latest commercial result of a full
ASIC-based XML accelerator, presumably with highest
performance, achieves well-formed checking of 10 CPB, schema
validation of 40 CPB, and tree construction of 20 CPB [18].

In this paper, we present a high performance XML Parsing
Accelerator (XPA) capable of performing all thee tasks at 1 CPB.
More specifically, we make the following contributions: First, we
identify recurring computational idioms in XML processing, and
devise corresponding hardware structures to achieve efficiency.
Second, we devise a speculative pipeline structure such that tree
construction can be initiated before validated. Third, we devise a
skewed pipeline structure in which it achieves high throughput
under the common case where the XML document being parsed is
correct, and stalls the pipeline for long latency operations only
under non-common cases. Last but not the least, we detail the
design of a complete hardware accelerator, which to the best of our
knowledge, has not been found in the literature. Although our
design has employed many techniques reported elsewhere in other
contexts, we believe a synthesis of these techniques to achieve a
record performance milestone is valuable to the community by
itself.

We believe our contributions are particularly relevant to FPGAs in
addition to the fact that our design is demonstrated on an FPGA
platform. First, we took advantage of the availability of on-chip
memory resources and bandwidth, as well as the availability of
network IOs and intellectual properties. Second, as web services
evolve at a fast rate, FPGAs present an inherit advantage over
ASICs due to its field programmability. Our results show that by
architectural and design innovations, FPGAs implementation can
outperform existing ASICs. Combined with the fact that web
services belong to the low volume infrastructure market where
FPGAs have the economic advantage, we hope our contributions

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FPGA’10, February 21-23, 2010, Monterey, California, USA.
Copyright 2010 ACM 978-1-60558-911-4/10/02…$10.00.

make a case that XML processing is a promising area for FPGAs
to win more sockets and expand more market.

The rest of the paper is organized as follows. In Section 2, we
review the related work. In Section 3, we describe some
background information about XML. In Section 4, we describe our
key ideas. In Section 5, we detail our design. In Section 6, we
discuss our experimental result.

2. Related Work
Two styles of XML parsers are involved, depending on if an in-
memory data structure is constructed for later “random access”.
The popular style builds the Document Object Model (DOM) [3]
tree, a standard data structure for web processing. The less popular,
but faster style, called Simple API for XML (SAX), relies on the
fact that the XML can be processed by later stages in the same
order they are transmitted. It is therefore less flexible and of
limited use.

The software community reported many implementations of XML
parsers, with varying styles and compromises. In 2004, Zhang et al.
developed the VTD-XML (Virtual Token Descriptor) parser [10].
They employ the concept of binary XML to avoid performance
bottleneck of XML parsing, and achieves a performance of 20 to
27 CPB on tree construction and schema validation. However,
binary XML is not an industry standard and their parsed data can’t
be used by other XML applications directly. In 2006, Lu et al.
presented a parallel approach to XML parsing [9]. Their technique
uses a light weight XML parser to build a skeleton of the XML
document in a first pass parsing to guide the partition of the
document into chunks that can be processed independently on
different threads. Using this technique, the parser achieves tree
construction performance of 30 CPB on a 4-core processor.
However, the extra skeleton building process, done sequentially,
may become a performance bottleneck. In 2006, Kostoulas et al.
presented a schema-based XML parsing technique named XML
Screamer [14], which improves the performance by schema-
dependent compilation and tight integration across layers of
software. The parser achieves a performance of 22 to 43 CPB on
SAX parsing and schema validation. However, for each different
type of XML documents, a new parser needs to be generated. In
2008, Cameron et al. developed an open-source non-validating
XML parser Parabix (parallel bit streams for XML) which exploits
the SIMD capabilities of modern-day commodity processors to
process multiple characters at the same time, achieving
performance of 6 to 15 CPB on SAX parsing [13]. However, no in-
memory tree data was built and schema validation was not
implemented.

In the hardware community, Lunteren et al. proposed in 2004 an
approach to build an efficient and scalable general purpose state
machine for accelerating XML processing [4]. However, no full
system was demonstrated. In 2007, Moscola et al. presented a
technique to automatically map regular expressions directly onto
FPGA hardware and implemented a simple XML parser for
demonstration [7]. Their technique could be useful but not
sufficient to solve all problems since XML syntax rule is not a
regular language. In addition, hardware recompilation is required
each time it is applied to a different type of XML documents. In
2008, Krishnamoorthy presented a hardware XML parser [6],
which constraints on the length and types of tokens. In 2009,
Leventhal et al. presented an ASIC-based XML Accelerator,

which achieves performance of 20 CPB on tree construction and
40 CPB on schema validation [18]. In addition, there are a number
of commercial products provided by the leading IT companies,
such as IBM’s WebSphere DataPower XML accelerator XA35
[26], however neither performance metric nor design detail was
revealed.

The achieved performance of previous work, along with our
proposed design, is summarized in Table 1. (‘?’ means the data is
not reported, and ‘-’ means not implemented).

Table 1. XML parser performance (CPB) comparison.
Techniques Well-formed

checking
Tree

construction
Schema

Validation
Zhang [10] ? 20-27 20-27
Lu [9] ? 27 33
Kostoulas [14] 22-43 - 22-43
Cameron [13] 6-15 - -
Leventhal [18] 10 20 40
MIT-libxml [24] ? 64 71
XPA 1 1 1

3. Background
XML parsing consists of three major tasks: well-formed checking,
schema validation and in-memory data construction. Other XML
applications including XSLT, XPATH, XQuery are based on the
results of these 3 basic tasks.

3.1 Well-formed Checking
The task of Well-formed Checking is to perform syntax checking
on XML documents to ensure that it conforms to XML syntax
rules provided in XML specifications [1]. A sample XML
document is shown in Figure 1.

The content of the document is organized in a tree structure with a
unique root. Each element is delimited by an opening (‘<>’) and a
closing tag (‘</>’) and may contain multiple attributes delimited
by a space.

<?xml version = “1.0” encoding = “UTF-8” ?>
<!-- this is an example xml document -->
<University>

<Department name = “ECE”>
<Students>

 <freshman>310</freshman>
 <sophomore>298</sophomore>
 <junior>213</junior>
 <senior>178</senior>
 <graduate>86</graduate>

…
</Students>
<Professors>

<professor name=“Mike” field=“network”/>
…

</Professors>
</Department>
…

</University>

Figure 1. A sample XML document. “University” is the unique
root element. “Department” is an element name which contains
attribute name called “name” and attribute content “ECE”. Text
between the opening and closing tag of an element is called the
content of the element, which can be either child elements or
simply plain text.

A well-formed checker scans characters of an XML document,
checks if the characters are valid, extracts tokens from scanned

characters and perform syntax checking on the extracted tokens.
Syntax rules include a) the opening tag of an element must match
its closing tag; b) an attribute name must be unique within its
parent element; c) element tags must be properly nested.

3.2 Schema Validation
Due to the flexibility of user-defined markups in XML, servers
commonly only accept specific type of XML documents that
conforms to set of rules described in certain formats: DTD (Data
Type Definition) or its successor XSD (XML Schema Definition)
[2]. An example of XSD file, which itself is an XML file, is shown
in Figure 2.

A schema validator needs to interpret XSD files and to apply the
rules to the tokens extracted by WFC processor. The challenge of
schema validation is to select the correct rule to apply to each
token out of a set of candidates as well as the token content
validation against the selected rules.

<?xml version =“1.0”?>
<xs:schema xmlns:xs=“http://www.w3.org/XMLSchema”>

<xs:element name=“University”>
<xs:complexType>

<xs:element name=“Department” minOccurs=“2” >
<xs:complexType>

<xs:sequence>
<xs:element name=“Students”>

 <xs:complexType>
 <xs:all>
 <xs:element name=“freshman” type=“xs:string” />
 <xs:element name=“sophomore” type=“xs:string” />
 <xs:element name=“junior” type=“xs:string” />
 <xs:element name=“senior” type=“xs:string” />
 <xs:element name=“graduate” type=“xs:string” />
 </xs:all>
 </xs:complexType>
 </xs:element>

<xs:element name=“Professors” type=“professorType”/>
</xs:sequency>

</xs:complexType>
</xs:element>

</xs:complexType>
</xs:element>

</xs:schema>
Figure 2. A sample XML Schema Definition (XSD) file. Element
“University” is defined as complexType that is only allowed to
have “Department” as its child. “Department” requires
“Students” and “Professors” in the order. Finally, “Students”
may contain “freshman” to “Graduate” in any order.

3.3 In-memory Data Construction
Given that the size of an XML file can be very large, the DOM
representation, which captures the parental relationship between
elements and attributes, or nodes, must be stored in DRAM. Such
tree data structure requires extra headers with pointers to connect
parent, sibling and child nodes. Not only does this require extra
memory footprint, but also non-uniform memory access caused by
updating previously written memory locations to connect a new
node to rest of the tree. Such accesses might cause DRAM page
crossing and degrade performance.

4. Key Ideas
In this section, we first identified several recurring computational
idioms (fondly referred to as dwarfs in recent literature [21]). Not
surprisingly, in the context of XML processing, these idioms are

all related to the processing of strings. Isolating these idioms allow
us devise or choose efficient hardware structures to implement
them. We then describe the key architectural decisions by refining
a familiar, baseline architecture, which ultimately leads to the 1
CPB performance target.

4.1 Recurring Idioms
4.1.1 One-to-one String Match
This idiom tests if a subject string equals to a reference string.

Example 1. During well-formed checking, the syntax rules require
that opening and closing tags of an element be matched, the root
element must be unique within the document and elements should
be properly nested. This implies that the opening tag of each
element needs to be compared with the root element, and each
closing tag needs to be compared with the last opening tag.

Due to the fact that the reference string is known at time of input,
the commencement of matching task need not wait until the
subject string is present in its entirety. Instead, the matching can be
executed in a streaming fashion. This not only achieves the best
latency, but also scales well on strings with large, variable length
due to its minimal requirement of storage.

4.1.2 One-to-many String Membership Test
This idiom tests if a subject strings equals to any member of a set
of reference strings.

Example 2. There are rules in both well-formed checking and
schema validation that require an element/attribute name or its
value to be unique within a certain range. This is equivalent to ask
if an incoming element/attribute name matches with one of the
previously seen names.

In general, performing such tests require string comparison of all
reference strings, which can be prohibitively expensive. However,
the number of full comparisons can be reduced if one can filter out
“obvious” cases, where a simple test can determine that an
incoming string does not belong to the set. We employ the concept
of Bloom Filter, which defines a set of independent hash values for
each reference string. The set of reference strings is then
approximated by a bit vector where the corresponding bits of all
hash values of the reference strings are set to ‘1’s. If the hash
values of the subject string produce a new ‘1’ in the bit vector,
then we can conclude that the subject string does not belong to the
set.

4.1.3 One-to-many String Search
This idiom finds a subject string among a set of reference strings.
Note that while seemingly similar, the previous idiom only needs
to return a binary answer, whereas this idiom effectively performs
a lookup into an associative array (dictionary) of strings.

Example 3: During schema validation, each element or attribute
needs to search for its corresponding schema rule among a set of
candidates.

This idiom is commonly implemented as a hash table in software.
We employ the BART scheme [8], originally proposed in the
context of network routing table lookup. Unlike software hash
table implementation where the lookup time can be
undeterministic in the presence of hash value conflict, the BART
scheme guarantees that the number of conflicts is bounded to a

predefined value. Therefore, a string search amounts only to an on-
chip memory access and parallel comparisons of bounded size.

4.2 Key Architectural Decisions
Before describing our architectural decisions, it is instructive to
describe a naïve baseline architecture shown in Figure 3. The
architecture mimics a textbook decomposition of compiler
frontend, which suffer from poor performance even when the
individual blocks are pipelined. First, the number of pipeline
stages is large, leading to long latency in processing. Second,
blocks have diverse worst case, leading to poor overall throughput.
In the sequel, we describe architectural techniques to improve the
baseline architecture.

Lexical
Analysis

Well-formed
Checking

Schema
Validation

DOM
Construction

input output

Figure 3. Conventional serial XML parsing.

4.2.1 Speculative Pipeline
While a compiler usually constructs a syntax tree only after it
passes correctness check, we choose to construct DOM tree
immediately after lexical analysis, as shown in Figure 4. This is
speculative since we may construct a tree only later to find out
invalid. Although in this case the tree has to be discarded, this
mechanism allows the DOM tree construction stage to run
independently of well-formed checking and schema validation
stage, thereby significantly reducing the latency of the accelerator.

Lexical
Analysis

Well-formed
Checking

Schema
Validation

DOM
Construction

input

output

Figure 4. Hardware speculation XML parsing.

4.2.2 Multi-rate Pipeline
Well-formed checking and schema validation are different in
processing rate and granularity. Well-formed checking performs
the syntax checks on each single character, while schema
validation validates the semantics of extracted token flow. Well-
formed rules are simpler compared to schema rules. To achieve a
balanced pipeline design, we device a 3-level multi-rate pipeline
structure as shown in Figure 5.

Well-formed
Checking

Schema Validation

Rule Match
Unit

Rule Check 0

Rule Check 1

Rule Check 2

Rule Check 3

8b 16b 64b

Rule Checking Units

Figure 5. Multi-rate pipeline structure.

In the first level, the well-formed rules are checked against each
character. In the second level, a rule math unit inside the schema
validation stage search for the corresponding schema rule for each
token, which is hashed into a 16 bit integer. In the third level, the
rule checking units perform checking on multiple bytes of data

simultaneously, such that they have multiple cycles of time budge
to achieve the same throughput as the other stages.

4.2.3 Common Case Optimized Stallable Pipeline
A pipeline stage can have dynamically different latencies. If
following the regular, static pipeline design, then we have to use
the worst case latency as criterion to advance the pipeline. We
employ a skewed, stallable pipeline structure where under the
common cases, each pipeline stage is designed to have latency of
one. They are stalled to carry out long latency computations only
under uncommon cases. More specifically, we exploit the
observation that in most cases, the XML document being parsed is
a valid document. For example, in implementing the membership
test idiom, we use the Bloom filter to detect the majority of
common cases where the string uniqueness requirement is satisfied.
Under these cases, no further test is needed and the pipeline can be
advanced. Only in rare occasions where Bloom filtering fails, a
long-latency string comparisons is invoked, in which case the
pipeline is stalled.

4.2.4 High-bandwidth On-chip Data Structure
To perform schema validation, many rules have to be checked
against an XML construct under parsing. Typically, the types of
checks need to be encoded in memory. To reduce latency, it is
desirable to parallelize the rule checking, which dictates that the
encoded rule information needs to be accessible in parallel.

FPGAs offer very large bandwidth on-chip memories. We devised
a custom schema rule representation. The schema rules are divided
into three portions and distributed into three local memories. Each
memory has a wide data bus, allowing a single-cycle access of all
schema rules associated with the XML construct under validation.

4.2.5 Final Architecture of the XPA
The final architecture of the XPA as a result of above decisions is
shown in Figure 6. The lexical analysis stage is merged into well-
formed checking stage, since some well-formed rules are also
checked during lexical analysis.

Character
Scanner

Token
Extractor

Token
Handler

DOM
Constructor

Rule Match
Unit

Rule Check
Unit

Write Buffer

XML Cycle Buffer

RNTRHT RCT

Memory
Controller

Well-formed Checking Stage

Schema Validation Stage

DOM Construction Stage

to
DRAM

XML
Doc Ethernet

1Gbps

8b

8b 8b 64b

64b 64b64b

256b 128b 64b

32b 32b

FIFO FIFO

Figure 6. Top level diagram of the XPA.

The entire design has three stages: well-formed checking stage,
schema validation stage and DOM construction stage. Functional
units in well-formed checking stage scan XML character streams
from the Ethernet, extract tokens from the streams and perform
syntax rules checking on the tokens. In schema validation stage,
the Rule Match Unit searches for corresponding schema rule for
each valid token. The Rule Checking Unit is configured according
to the schema rules and rules checking are performed on the
content of each token. The schema rules are distributed into three
local memories: Rule Header Table, Rule Name Table and Rule

Content Table. FIFOs are used between units to accommodate
processing rate changes. The DOM construction stage runs in
parallel with the schema validation stage and the well-formed
checking stage. Tokens extracted from input streams are fed
immediately into DOM construction stage to generate tree data,
and written into DRAM memory through a memory controller.

5. Design
This session will present the detailed implementation of each
functional unit of the XPA.
5.1 Well-formed Checking Stage
5.1.1 Character Scanner Unit
The Character Scanner Unit retrieves data from the Embedded
Ethernet MAC (EMAC), and outputs data byte by byte to the next
unit in the XPA. The block diagram of Character Scanner Unit is
shown in Figure 7.

A 1Gbps PHY is connected to the Embedded MAC through a
SGMII interface. We implemented a simple UDP receiving logic
block to deliver the incoming packet payload sent from host PC
into the parser. In addition, a 1KB asynchronous FIFO is used to
bridge the different clock domains between the Character Scanner
Unit and the next cores.

PHY
EMAC
Wrapper

Tx Client
FIFO

Rx Client
FIFO

LocalLink
Interface

Ethernet
FIFO SGMII Link

Client
Interface

UDP
Receiver Asynchronous

FIFO

125 MHz
Rx Clock

User Clock

Read Data
Copper

pair

FPGA

Character Scanner Unit

Figure 7. Block diagram of the Character Scanner Unit.

5.1.2 Token Extractor Unit
The Token Extractor Unit is responsible for recognizing all the
tokens from the input stream. It is implemented as a finite state
machine that makes state transitions on valid input characters.

Enabled Token

Element Name

Element Content

Closing Element

Attribute Content

Attribute Name

State

3

5

9 , 13

11,12

14

Begin

End

Enable

<Department group=“ECE”>

0

16 4

14

7

13

5

1

217

10

12

8

11

6

15

3 9

?!<

< /

>

Space

=

’ ”

”

SpaceSpace

’

/

/

>

>

>

>

Reset

Figure 8. The FSM and output waveform of the Token

Extractor Unit.

In contrast to software parser states, the goal of our finite state
machine is not to perform the entire well-formed checking but to
extract the tokens and output their types as well as the position

signals as “begin”, “enable” and “end”. The finite state machine
and sample signal behavior are shown in Figure 8. The core well-
formed checking functions are then executed in the Token Handler
Unit.

5.1.3 Token Handler Unit
The Token Handler Unit performs a series of operations on each
token extracted by the Token Extractor. Main operations include:
A) Checking the correct nesting of each element, and the
uniqueness of root element name. B) Checking the uniqueness of
each attribute name within every element. C) Generating
information of type, length and hash code for each token, passing
them down to schema validation stage through FIFO. D) Storing
useful characters into XML Cyclic Buffer for schema validation.
The first two tasks are described in details.

5.1.3.1 Element Name Correct Nesting Checking
To check the correct nesting of each element, the closing tag of
each element needs to be compared with the last opening tag. As
described in section 4.1.1, the comparison is carried out on each
input character. This task is done with the help of an Element
Name Stack. Whenever an element opens, its name is pushed into
the Element Name Stack character by character. When it is being
closed, one character is popped from the Element Name Stack per
cycle and compared with the incoming character. Because the
element tags are required to nest properly, a mismatch in the input
character of closing element with the output of Element Name
Stack always means a violation. The usage example is shown in
Figure 9.

S
t
u
d
e
n

U

10
…

…

SP

NSP

Element Name Stack

<University>
<Department name = “ECE”>

<Students>
…

</Students>
…

</Department>
</University>

t

8
s

Figure 9. Example of Element Name Stack operation. When the
‘Students’ element is being closed, SP starts at ‘S’ and moves cycle
by cycle to ‘8’. At the end of the matching. The whole element is
popped off the Element Name Stack by updating NSP=NSP - 8 -1
and SP=NSP-10 – 1.

5.1.3.2 Attribute Name Uniqueness Checking
The uniqueness checking requires each attribute name to be
compared against multiple preprocessed names. This problem is
identified as membership test dwarf in section 4.1.2. We employed
the concept of Bloom Filter [19][20] and implemented a 3-stage
pipeline for this task as shown in Figure 10. In the first stage, a
HashCode Generator generates k independent hash codes for each
attribute name. In the second stage, the k hash codes are used to
access k different bits in a bit array. In the third stage, the fetched k
bits are examined whether any bit is ‘0’ (initial value), which
means the attribute name is guaranteed to be unique. Once
uniqueness is confirmed, all corresponding k bit in the bit array are
updated to ‘1’ and the attribute name is stored into the Attribute
Name Stack. In case, all k locations returned ‘1’, it infers potential
violation, hence the whole pipeline will be stalled to compare the

attribute name against each strings previously stored inside the
Attribute Name Stack, character by character, to remove the false-
positive case (Figure 11).

HashCode
Generator

Input
character

…

0 31

0

k

h2

h1

hk

… … … …

Attribute name end Addr_valid Data_valid

update

positive

Bit Array
Indexing Stage

Hash code
Generating Stage

Matching
Stage

Output

Figure 10. Bloom Filter pipeline for Attribute Name Uniqueness

Checking.

0 1 0 1 0 0 1 0 1 1

Current set = {name, gender, hobby}

Input = field

<student name=“john” gender=“m”, hobby=“guitar” field=“math”>

Figure 11. Example of false positive of the Bloom Filter. There

are 3 attributes existing in current test set when parsing token
“field” which generates 2 hash codes colliding with “gender” and
“hobby”. This potential violation turns out to be a false positive in
this case.

5.2 Schema Validation Stage
A valid element/attribute token not only needs to be syntax correct,
but also contain its conforming definition in its XSD file in the
correct context. Due to the relatively small volatility of schema
files, we first pre-compile the current schema file into a custom
local memory format that is efficient for lookup. We use three
tables to store the contents: Rule Header Table (RHT), Rule Name
Table (RNT) and Rule Content Table (RCT), each maintaining the
tree structure of every rule, the name of each rule and the rule
contents respectively.

5.2.1 Rule Match Unit
The Rule match Unit is responsible for selecting the corresponding
schema rule for each element name and attribute name among a set
of candidate rules.

Rule R0 R 1 R2 R3 R4
String graduate

Hashcode
freshman sophomore junior senior

...001 ...101 ...011 ...110 ...010

R3
R0

0
1

 freshman
...001

R4
R1 R2

Figure 12. Example of the BART scheme. From Figure 1 and 2,

there are 5 candidate rules when parsing “freshman” element
name. By setting P=4, bit 0 can be used as a bit mask to divide
into 2 groups with less than 4 members. Each incoming hash code
only accesses a row that its bit 0 indexes and guarantees be able to
select one rule by doing at most 4 parallel comparisons. In this
case, R0, R1 and R2 are compared against input in parallel.

As discussed in Section 4.1.3, we employed the idea of the
Balance Routing Table Search (BART) scheme [4][8]. BART is
based on a novel hash function with the special property that the
maximum number of collisions for any hash index can be limited

by a configurable bound P. The hash index is extracted from bit
positions within the input hash code, which are selected to realize
the maximum collision bound P. The value of bound P is based on
the memory access granularity to ensure that all collisions for a
given hash index can be resolved by a single memory access and
by at most P parallel comparisons. A simple illustration is shown
in Figure 12.

The Rule Match Unit consists of a two-stage pipeline where the
first stage selects at most P rules (We chose 4 for our design) using
XORed value of input hash code and a bit mask as index into the
Rule Header Table and passes them to the second stage for the
parallel hash code comparison. Then in the second stage, one or no
rule is selected and outputted to the next module with information
on type and length of the token as well as pointers to the Rule
Name Table and Rule Content Table (Figure 13). After every
selection, the result is used to advance the document context by
updating the table address register and bit mask register. One
exception is that when the input is a closing element, the table
address and bit mask register need to be restored to previous level.
To handle the case, a Table Address Stack is maintained to store
the history of the two values in a stack fashion.

Table Addr
Register

rule R0 rule R1 rule R2
rule R3 rule R40

1

Rule Selector

RHT
Address

Generator

Bit Mask
Register

Table Addr
Stack

Table Addr
Manager

Output FIFO

HashCode RNTAddr RCTAddr TableAddr BitMask

b)

a)

Input FIFO

0 63

Figure 13. a) Data format of RHT entry b) Block diagram of the

Rule Match Unit.

5.2.2 Rule Check Unit
The Rule Check Unit is responsible for the schema validation on
the contents. It is further divided into 2 sub units: Rule Name
Check Unit and Rule Content Check Unit. Rule Name Check Unit
verifies the selected rule from the Rule Match Unit is hash-code-
collision error free. The Rule Content Check Unit checks if the
contents of elements and attributes conform to the selected rule.

5.2.2.1 Rule Name Check Unit
The logic of the Rule Name Check Unit is shown in Figure 14.

Input FIFO

RNT Addr

stringXCB

Element1
Element2

XMLDoc

Content1
Attribute0

Element1

+ stringRNT

strLength = Match?

8B

8B

RNT

XCB
Figure 14. Block diagram of the Rule Name Check Unit.

When a rule arrives from the Rule Match Unit, it starts reading out
characters from two different local memories: the XML Cyclic
Buffer (XCB), which contains the actual string of the input token
pushed in by the Token Handler Unit, and the Rule Name Table
pointed by the RNTAddr in Figure 13. Both data are fetched out
and compared, 8-byte by 8-byte, to verify the match.

5.2.2.2 Rule Content Check Unit
The Rule Content Check Unit (Figure 15) is responsible for
performing schema validation on element and attribute contents as
well as checking their arrival sequence. Once the Rule Match Unit
finds a rule, this unit fetches the corresponding rule contents
(Figure 15 a) and use them to configure four different checking
units for next arriving content check. The Rule Content Stack is
required to store the history of rule content for similar reason as
the Table Address Stack in section 5.2.1. The actual check is again
executed in 8-byte by 8-byte manner and is triggered as soon as a
valid element content or attribute content appears in the output of
the XML Cyclic Buffer. The four checking units implemented in
our design are: sequence check, type check, range check and key
check.

Input FIFO

valid

RCT

XCB

Rule Content
Stack

Rule Content
Selector

Rule Content Register

Key
Check

Sequence
Check

Type
Check

Range
Check

valid valid valid

T KRs A SRd DType totalDigitSeqNOAllNO maxValue minValue
check instruction parameters

0 63
a)

b)

Figure 15. a) Data format of RCT entry. b) Block diagram of

the Rule Content Check Unit. T=Type, R=Range, K=Key,
A=All and S=Sequence.

The Sequence check block ensures if the sequence of incoming
tokens follow the specified order in XSD. (e.g. <Sequence> in
Figure 2) we use a stack to record the latest sequence number in
each level of tree hierarchy and compare against the SeqNO field
in Figure 15. The Type check block checks if the pattern of the
content is correct. We currently support string, integer, decimal
and date. The Range check block checks if a content value falls
within the allowed range, such as “minOccur” in Figure 2. Lastly
but not least, the Key check block checks if a token marked as
“key” is unique throughout a document. This problem is
categorized as the dwarf in section 4.1.2 because each ‘key’ type
value needs to be compared against a previously parsed “key” to
verify the uniqueness. The same Bloom Filter approach as
described in section 5.1.3.2 is used except that actual strings of the
key contents are stored in DRAM instead of local memory as the
set could grow over thousands. (e.g. list of student numbers)

5.3 DOM Construction Stage
The DOM Constructor Unit is responsible of building a DOM tree
of the input XML document in DRAM, which can then be used to
develop a DOM Application Programming Interface. In order to
support industry specified efficient tree operations, the base data
structure should contain enough pointers in each node such that
every part of XML data is tightly connected. In our current design,

a simple and straight forward 32-byte aligned data structure is
employed to implement the DOM Construction (Figure 16). With
the data structure, each element name requires a) as its header and
c) to contain its name strings. Each attribute name uses b) as
header and c) for its name strings. Contents only use a c) with
parent link linked back to their parents.

The DOM Constructor exercises three main tasks, new node
allocation, update of parent and update of sibling. When a new
token other than closing element is parsed, it allocates a new node
in DRAM in an appropriate format. If the token has a previous
sibling in the same hierarchy, the NextSibling pointer in previous
sibling header is updated in the next cycle. When parsing a closing
element, the ChildList pointer of the corresponding element header
is updated if it appears to be a parent of already parsed nodes. In
addition, we employed multiple techniques such as a stack to store
DRAM addresses of active parent nodes and register last closed
element to locally keep track of DRAM addresses for update of
parent and sibling respectively. Because the DOM Constructor
requires no DRAM read operation, the data structure is optimized
for write only data access by reducing page crossing.

*Parent
*PrevSibling
*NextSibling
*Content
*AttrList
*ChildList

*Parent
*PrevSibling
*NextSibling
*Content

*Parent
Length(2B)

Name or
Content

a) b) c)
Figure 16. Data structure of nodes: a) Element name header b)

Attribute name header c) String data.

6. Evaluation
In this section, we carry out comparative performance study of our
design against 4 publicly accessible software XML processors. We
use throughput in both CPB and Gbps as performance metrics. In
addition, we examine the implementation cost and speed on FPGA,
and scalability issues.

6.1 Hardware Experimental Setup
Our design is implemented and tested on Xilinx Virtex-5
XC5VSX50T FPGA on the ML506 evaluation board. To perform
the test under a practical environment, we connect the input of the
XPA to a Tri-mode Ethernet MAC, configured to work with a
1Gbps SGMII PHY device. A simple UDP receiving protocol is
used to extract data and commands from incoming UDP packages.
The test files are fed from a laptop to the Xilinx board through a 1
Gbps Ethernet link. The output data of the XPA is written to an
on-board 256MB SODIMM DDR2-533 memory module through
the Memory Controller (MC). A serial port is integrated to display
experimental results. The structure of the XPA test bed is shown in
Figure 17.

8b
XML

Engine

Ethernet
M

ac

asyn_fifo

MC

UART

125MHz

8b

8b

cmd
data

Display

DDR2
Memory

Xilinx Virtex - 5 XC5VSX50T

125MHz 200MHz

Laptop 1Gbps
SGMII

UDP

Figure 17. Block diagram of the XPA test bed.

The test bed is separated into 3 clock domains. The Ethernet MAC
works with a 125MHz clock in order to cope with 1Gbps wire
speed. The XPA communicates with the Ethernet MAC using a
1KB asynchronous FIFO and runs at a different 125MHz user
clock. The serial port and the Memory Controller work with a
200MHz clock.

6.2 Software Experimental Setup
To compare the performance of the XPA against other XML
processors, we test 4 software XML parsers with the same set of
benchmarks. The parsers are chosen from well-known open source
commercial tools that have the best reported performance
according to [24]. The tests of software XML parsers are carried
out under the configurations listed in Table 2.

Table 2. Software experimental setup.
Hardware and software platform Tested XML parsing libraries
Intel Core 2 Quad Q9300 (2.5GHz, 6MB
L2 Cache)
2GB DDR2-800 Memory
Debian Linux 2.6.18-6 x86-64
GNU C 4.1.2

Xerces-c 2.8.0 x86-64
Libxml2
DOM4J-1.6
JAVA API for XML Processing
(JAXP) 1.6.0

We used the XML Benchmark Tool [23] from Intel to gather
performance results for the 4 software XML parsers. For each
benchmark, the XML Benchmark Tool will perform multiple
iterations of warm-up and test to get stable results such that the
overhead of memory load and operation system management are
minimized. All the benchmarks are read from local hard drive for
software tests.

6.3 Benchmarks
The benchmarks are chosen from different XML projects. Each
benchmark contains multiple test files from the same project. The
file size varies from 3 KB to 116MB. The benchmarks are
separated into 2 groups: DOM parsing benchmarks and schema
validation benchmarks. Schema validation benchmarks contain
one XSD file for each benchmark. Table 3 lists the names of these
projects, the maximum sizes of test files as well as the source of
the projects.

Table 3. Information of benchmarks.
Group Benchmark XML Size XSD Size Source

Security 3 KB - Intel Corporation
Structure 12 KB - codesynthesis
Tpox 15 KB - tpox
Hl7 136 KB - hl7-testharness
Qedeq 211 KB - qedeq.org

DOM
Parsing

Xmark 116 MB - xml-benchmark
CustomInfo 1 KB 2 KB Intel Corporation
CDCatalog 105KB 2 KB w3schools

Schema
Validation

Workflow 13 KB 10 KB qedeq.org

6.4 Measurement
6.4.1 Throughput
The detailed test results on performance of different XML
processors are presented in Table 4 and Table 5 (‘-’ indicates that
certain functionality is not implemented and thus result
unavailable). Table 4 lists the throughput of different tests in Gbps.
Table 5 presents the same results in CPB.

As illustrated by Table 4, XPA achieves the raw throughput it is
designed for, 1Gbps. The throughput is in fact bounded by the
Ethernet link speed. Sine the maximum frequency achieved is
130MHz, which we did not make an effort to further improve, the
actual raw throughput can be slightly higher: 1.04Gps. Note that

although the software parsers run on processors with 2.5GHz of
frequency, XPA is still faster. For parsing benchmarks, which
involves only well-formed checking and tree construction, XPA
outperforms the best performing software parser (JAXP) by 2.8
times. For the much more difficult validation benchmarks, XPA
outperforms the best performing software parser (libxml) by 3.7
times.

Table 4. Results of performance tests (throughput: Gbps).
Benchmark JAXP DOM4J Libxml2 Xerces-c XPA XPAmax

Security 0.199 0.059 0.294 0.100 1.000 1.040
Structure 0.274 0.110 0.202 0.091 1.000 1.040
Tpox 0.292 0.099 0.264 0.124 1.000 1.040
Hl7 0.415 0.189 0.360 0.128 1.000 1.040
Qedeq 0.481 0.221 0.338 0.133 1.000 1.040
Xmark 0.550 0.256 0.416 0.187 1.000 1.040
Average_par 0.373 0.158 0.314 0.127 1.000 1.040
CustomInfo 0.062 - 0.107 0.054 1.000 1.040
CDCatalog 0.128 - 0.232 0.113 1.000 1.040
Workflow 0.227 - 0.396 0.185 1.000 1.040
Average_vld 0.161 - 0.283 0.134 1.000 1.040
Average_all 0.267 0.158 0.299 0.131 1.000 1.040

As illustrated by Table 5, XPA outperforms other tested software
XML processors by more than 66 times in term of CPB, which
illustrates the potential of XPA architecture when implemented in
ASIC with more aggressive frequency optimizations.

Table 5. Results of performance tests (CPB).
Benchmark JAXP DOM4J Libxml2 Xerces-c XPA
Security 100.6 339.7 67.9 201.0 1.0
Structure 73.1 181.3 99.1 220.5 1.0
Tpox 68.5 201.3 75.9 161.0 1.0
Hl7 48.2 106.0 55.6 155.8 1.0
Qedeq 41.5 90.4 59.2 150.6 1.0
Xmark 36.4 78.0 48.0 106.7 1.0
Average_pars. 53.6 126.9 63.6 157.2 1.0
CustomInfo 321.8 - 186.2 373.7 1.0
CDCatalog 156.5 - 86.3 176.8 1.0
Workflow 88.3 - 50.4 108.3 1.0
Average_valid. 124.4 70.6 148.8 1.0
Average_all 75.0 126.9 66.9 152.9 1.0

6.4.2 Stall Rate
To further understand the performance of the XPA, Table 6 lists
the statistics of pipeline stalls in each parsing stage and memory
controller (only the maximum number of stalls for each benchmark
is shown). In addition, the average memory bandwidth requirement
for each benchmark is also shown in Table 6.

Table 6. Stall rate of the XPA.
Benchmark Well-

formed
Checking

DOM
Cons-
tructor

Schema
Valid-
ation

Memory
Con-
troller

Memory
Bandwidth
Requirement

Security 0 0 - 0 719 MB/s
Structure 0 1 - 0 652 MB/s
Tpox 0 0 - 0 1250 MB/s
Hl7 0 2 - 0 994 MB/s
Qedeq 0 4 - 0 614 MB/s
Xmark 0 1263 - 0 782 MB/s
CustomInfo 0 0 0 0 1030 MB/s
CDCatalog 0 0 0 0 1460 MB/s
Workflow 0 0 0 0 798 MB/s
Average Memory Bandwidth Requirement: 908MB/s

No stall on the well-formed checking stage and schema validation
stage is observed. This indicates that common XML documents are
not likely to cause a false positive on our Bloom filters.

All observed stalls occur in the DOM construction stage. This is
because the DOM constructor often needs to generate multiple

write requests at the same clock cycle on cases when multiple
pointers in a DOM tree need to be updated. Normally the extra
requests are buffered. When these cases happen too close to each
other, the buffer might become full. However, these types of stalls
do not happen frequently as illustrated by Table 6: 1263 stalls
occur for a 116 MB input file, which contributes to tiny portion of
the whole processing time.

No stall is observed on the Memory Controller either, thanks to the
large command FIFO deployed in the Memory Controller and the
high performance of DDR2 memory. For each benchmark, the
memory bandwidth requirement is calculated by counting the
number of memory accesses. As shown in Table 6, the average
memory bandwidth requirement of all benchmarks is 908 MB/s.
Because DDR2-533 memory has a maximum available bandwidth
of 4.2 GB/s [25], it is sufficient to consume the memory requests
generated by DOM constructor. Therefore, Memory Controller is
not likely to generate a stall.

6.4.3 Area and Clock Frequency
The device utilization of our design is shown in Table 7. The XPA
accounts for about 2/3 of the total area cost, almost 3 times larger
than the Memory Controller. The Memory Controller employs a
simple request scheduling algorithm, thus most of its resources are
spent on implementing the physical interface to DDR2 memory.
The EMAC requires only small amount of logic to implement the
packet FIFOs thanks to Xilinx’s Embedded MAC. Besides, the
XPA uses 13 Block RAM for FIFOs and local memories. However,
most of the Block RAMs are configured to be less than 1KB. Thus
the actual memory usage is much less than reported. The reported
maximum frequency achieved by the design is 130 MHz.

Table 7. Details of device utilization.
Logic
Utilization

Slice Register Slice LUT Block RAM

XPA 4455 (13%) 6594 (20%) 13 (11%)
MC 1960 (6%) 1683 (5%) 5 (3%))
EMAC 927 (2%) 712 (2%) 3 (2%)
UART 151 (1%) 187 (1%) 2 (1%)
TOTAL 7493 (22%) 9176 (28%) 23 (17%)

6.5 Scalability Study
In this section, we study the sensibility of various design
parameters against XML file sizes and characteristics, to ensure
the robustness of our design.

6.5.1 Bloom Filter Requirement
The Bloom Filter is one of the key enabling techniques of our
design. However, its false positive rate also has great impact on the
scalability. Thus it is important to examine the requirements of
achieving a low false positive rate.

The false positive rate of the Bloom Filter depends on the size of
the tested set n, the size of the bit array m and the number of
independent hash functions k. A false positive can be described as
the probability of k hashed locations all equal to 1. It can be
calculated using following equation as presented in [20]:

k))/11(1(kn
fp mRate −−=

To verify the space efficiency of the Bloom Filter, a separate
experiment is performed on the Attribute Name Uniqueness test. A
set of test files containing a large number of elements, each having
a certain number of attributes, are generated. The names of

attributes are randomly chosen from popular Google keywords and
Wikipedia articles on different subjects. The files are tested on
Bloom Filters with different configurations. And results are shown
in Table 8.

For every false positive, assume an overhead of 100 clock cycles is
needed for doing real string comparison. We hope there are less
than 10 false positives, so that the extra cycles can be tolerated by
the 1 KB buffer in the Character Scanner Unit. A reasonable test
case is when the attribute tokens consist of 25% percent of all the
tokens, and each token of any type has an average size of 4
characters. Then a 100 KB file would require a practical false
positive rate of:

(number of false positives / number of attribute name tokens) =
(10/((100 K/4)*25%))=0.01%

This means that for every 10,000 attribute name tokens there
should be less than 1 false positive. Therefore, the test results
illustrated by Table 7 show that a configuration of 1-kb bit array
with 3 hash functions or 2-kb bit array with 2 hash functions
should be practical enough for the Attribute Name Uniqueness test
task.

Table 8. False positive rate test results.
m_k G4x1k G8x1k G16x1k W4x1k W8x1k W16x1k
64b_2h 1 66 509 6 129 502
256b_2h 0 5 60 1 8 56
256b_3h 0 0 14 1 3 9
1kb_2h 0 1 6 1 2 2
1kb_3h 0 0 1 0 0 0
2kb_2h 0 0 1 0 0 0
2kb_3h 0 0 0 0 0 0

Table 8 also shows that, increasing the bit array size from 64 bits
to 256 bits, the false positive rate of all tests is reduced by 10 times.
Besides, by increasing the number of independent hash functions
from 2 to 3, the false positive rate is reduced by more than 5 times
in most test cases.

6.5.2 On-chip Storage Requirement
In this section, we analyze the scalability of the XPA in term of
on-chip memory requirement for processing different sizes of
XML files.

The required size of the Element Name Stack is determined by the
depth of the XML document tree. And the size of the Attribute
Name Stack is determined by the largest number of attributes one
element has in a document. Both are not likely to scale with XML
file size.

The Schema Rule Memory used in schema validation stage
consists of the Rule Header Table, Rule Name Table and Rule
Content Table. To support variable types of XML documents, the
schema Rule memory needs to be large enough to store their XSD
files. A typical schema file like XHTML schema requires less than
70 KB. Thus, the storage requirement of the Schema Rule Memory
is not likely to become a limit.

7. Conclusion
In the paper, we present an innovative XML processing
architecture and design that achieves 1 CPB performance on both
tree construction and schema validation with very good scalability.
The architecture is implemented on a Virter-5 FPGA board and
successfully saturates a 1 Gbps Ethernet Link when running at

125MHz clock frequency. With our demonstration, we believe
FPGAs can become a valid contender in winning the enterprise
XML processing sockets.

8. Limitations
We acknowledge the following omissions of our design in the
interest of time. First, our token extractor does not handle the full
UTF-8 character set, and settles only with the ASCII character set.
Second, our schema validation does not yet handle full regular
expression check. It can be argued that both features are unlikely
to be performance bottlenecks, as efficient implementations have
been demonstrated elsewhere [7][12][22].

9. ACKNOWNLEDGEMENTS
The authors like to thank the support of National Sciences and
Engineering Research Council of Canada, as well as China
Scholarship Council for the first author.

10. REFERENCES
[1] Extensible Markup Language, http://www.w3.org/XML.
[2] XML Schema, http://www.w3.org/XML/Schema.
[3] Document Object Model, http://www.w3.org/DOM.
[4] J. V. Lunteren, T. Engbersen, J. Bostian, B. Carey, C. Larsson,

XML Accelerator Engine, In Proceedings of the First
International Workshop on High Performance XML
Processing, New York, USA, May 2004.

[5] M. Nicola, J. John, XML Parsing: A Threat to Database
Performance, In Proceedings of the 12th International
Conference on Information and Knowledge Management,
Louisiana, USA, Nov 2003.

[6] R. Krishnamoorthy, Hardware Implementation of an XML
Parser, MSc Thesis, Computer Engineering, North Carolina
State University, North Carolina, USA, 2008.

[7] J. Moscola, J. W. Lockwood, Reconfigurable Content-based
Router using Hardware-Accelerated Language Parser, In the
ACM Transactions on Design Automation of Electronic
Systems, Vol. 13, No. 2, Apr 2008.

[8] J. v. Lunteren, Searching Very Large Routing Tables in Wide
Embedded Memory, In Proceedings of the Global
Telecommunications Conference, Texas, USA, Nov 2001.

[9] W. Lu, K. Chiu, Y. Pan, A Parallel Approach to XML Parsing,
In Proceedings of The 7th IEEE/ACM International
Conference on Grid Computing, Barcelona, Spain, Sept 2006.

[10] J. Zhang et al., VTD-XML: The Future of XML Processing,
http://vtd-xml.sourceforge.net.

[11] L. Zhao, L. Bhuyan, Performance Evaluation and
Acceleration for XML Data Parsing, In Proceedings of the 9th
Workshop on Computer Architecture Evaluation using
Commercial Workloads, Texas, USA, Feb 2006.

[12] A. V. Aho, M. J. Corasick, Efficient String Matching: an Aid
to Bibliographic Search. In the Communication of the ACM,
Vol. 18, No. 6, Jun 1975.

[13] R. D. Cameron, K. S. Herdy, D. Lin, High Performance XML
Parsing Using Parallel Bit Stream Technology, In
Proceedings of the Conference of the Center for Advanced
Studies on Collaborative Research, Ontario, Canada, Oct
2008.

[14] M. G. Kostoulas, M. Matsa, N. Mendelsohn, E. Perkins, A.
Heifets, XML Screamer: An Integrated Approach to High
Performance XML Parsing, Validation and Deserialization, In
Proceedings of the 15th International World Wide Web
Conference, Edinburgh, UK, May 2006.

[15] M. R. Head, M. Govindaraju, R. v. Engelen, W. Zhang,
Benchmarking XML Processors for Applications in Grid Web
Services, In Proceedings of the ACM/IEEE Conference on
Supercomputing, Florida, USA, Nov 2006.

[16] Y. Pan, Y. Zhang, K. Chiu, Parsing XML Using Parallel
Traversal of Streaming Trees, In Proceedings of the 15th
International Conference on High Performance Computing,
Bangalore, India, Dec 2008.

[17] P. Apparao, R. Iyer, R. Morin, N. Nayak, M. Bhat, D.
Halliwell, W. Steinberg, Architectural Characterization of an
XML-centric Commercial Server Workload, In Proceedings
of the International Conference on Parallel Processing,
Quebec, Canada, Aug 2004.

[18] M. Leventhal, E. Lemoine, The XML Chip at 6 Years, In
Proceedings of the International Symposium on Processing
XML Efficiently. Quebec, Canada, Aug 2009.

[19] A. Kirsch, M. Mitzenmacher, Less Hashing, Same
Performance: Building a Better Bloom Filter, In Proceedings
of the 14th Annual European Symposium on Algorithms,
Zurich, Switzerland, Sept 2006.

[20] B. H. Bloom, Space/Time Trade-offs in Hash Coding with
Allowable Errors, In the Communications of the ACM, Vol.
13, No. 7, Jul 1970.

[21] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P.
Husbands, K. Keutzer, D. A. Patterson, W. L. Plishker, J.
Shalf, S. W. Williams and K. A. Yelick, The Landscape of
Parallel Computing Research: A View from Berkeley, EECS
Department, University of California, Berkeley, Technical
Report No. UCB/EECS-2006-183, Dec 2006.

[22] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, J. Turner,
Algorithms to Accelerate Multiple Regular Expressions
Matching for Deep Packet Inspection, In Proceedings of the
Conference on Applications, Technologies, Architectures and
Protocols for Computer Communications, Pisa, Italy, Sept
2006.

[23] Intel XML Benchmark Tools, http://software.intel.com/en-
us/articles/xml-benchmark-tool-10-accept-end-user-license-
agreement-and-download.

[24] XML Benchmarks, http://xmlbench.sourceforge.net/results.
[25] DDR2 performance. http://ixbtlabs.com/articles2/ddr2-

rmma/ddr2-rmma-fsb266.html.
[26] IBM Websphere Datapower XML Accelerator XA35,

http://www-1.ibm.com/software/integration/datapower/xa35.

