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ABSTRACT 
Extensible Markup Language (XML) is playing an increasing 
important role in web services and database systems.  However, 
the task of XML parsing is often the bottleneck, and as a result, the 
target of acceleration using custom hardware or multicore CPUs. 
In this paper, we detail the design of the first complete field 
programmable gate array (FPGA) accelerator capable of XML 
well-formed checking, schema validation, and tree construction at 
a throughput of 1 cycle per byte (CPB). This is a significant 
advancement from 40 CPB, the best previous reported commercial 
result. We demonstrate our design on a Xilinx Virtex-5 board, 
which successfully saturates a 1 Gbps Ethernet link.   

Categories and Subject Descriptors 
B.4.1 [Input/output and Data Communications]: Data 
Communication Devices – processor. I.7.2 [Document and Text 
Processing]: Document Preparation – Markup languages 

General Terms 
Performance, Design, Experimentation, Languages. 

Keywords 
XML Parsing, Schema Validation, Tree Construction, DOM, 
Bloom Filter, BART, String Comparison, Ethernet. 

1. INTRODUCTION 
Extensible Markup Language (XML) has become a standard for 
data representation and exchange. It is prevalent in a wide variety 
of applications like web services, database systems, content-based 
routing, and scientific applications, thanks to its platform-
independence, interoperability and flexibility. As a result, XML 
processing has become an important workload for web servers, 
database servers, etc. However, XML parsing consumes a 
significant portion of execution time of web servers, and has 
become a threat to database performance [5]. 

XML parsing consists of three major tasks: well-formed checking, 
which checks the document against syntactic rules, schema 
validation, which checks the document against semantic rules, and 
tree construction, which builds the in-memory data structure for 
further processing. To characterize the performance of XML 

parsers, the metric of cycle per byte (CPB) is often used. Similar to 
cycle per instruction (CPI) found in computer architecture, CPB 
counts the average number of cycles used to process each byte of 
XML document. Since it is independent of the clock frequency, 
whose scaling can be arguably enjoyed by all platforms, it is a 
preferred figure of merit for achieved parallelism of a design.   

Current commercial software XML parsers, such as libxml, Xerces 
and XML4C, can only achieve a best processing rate of 40 CPB on 
tree construction and 70 CPB on schema validation [4][5][11][23]. 
A large array of research results have been reported, which often 
exploit the SIMD instruction set extension of CPUs, or multicore 
CPUs to speed up XML processing in software [9][13][14][16]. 
However, their results are often incomplete, e.g. with result only 
on well-formed checking. While the leading IT companies such as 
IBM, Intel, HP and Dell offer hardware-accelerated solutions to 
different XML processing tasks, neither performance metric nor 
design detail was revealed. The latest commercial result of a full 
ASIC-based XML accelerator, presumably with highest 
performance, achieves well-formed checking of 10 CPB, schema 
validation of 40 CPB, and tree construction of 20 CPB [18]. 

In this paper, we present a high performance XML Parsing 
Accelerator (XPA) capable of performing all thee tasks at 1 CPB. 
More specifically, we make the following contributions: First, we 
identify recurring computational idioms in XML processing, and 
devise corresponding hardware structures to achieve efficiency. 
Second, we devise a speculative pipeline structure such that tree 
construction can be initiated before validated. Third, we devise a 
skewed pipeline structure in which it achieves high throughput 
under the common case where the XML document being parsed is 
correct, and stalls the pipeline for long latency operations only 
under non-common cases. Last but not the least, we detail the 
design of a complete hardware accelerator, which to the best of our 
knowledge, has not been found in the literature. Although our 
design has employed many techniques reported elsewhere in other 
contexts, we believe a synthesis of these techniques to achieve a 
record performance milestone is valuable to the community by 
itself.  

We believe our contributions are particularly relevant to FPGAs in 
addition to the fact that our design is demonstrated on an FPGA 
platform. First, we took advantage of the availability of on-chip 
memory resources and bandwidth, as well as the availability of 
network IOs and intellectual properties. Second, as web services 
evolve at a fast rate, FPGAs present an inherit advantage over 
ASICs due to its field programmability. Our results show that by 
architectural and design innovations, FPGAs implementation can 
outperform existing ASICs. Combined with the fact that web 
services belong to the low volume infrastructure market where 
FPGAs have the economic advantage, we hope our contributions 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
FPGA’10, February 21-23, 2010, Monterey, California, USA. 
Copyright 2010 ACM 978-1-60558-911-4/10/02…$10.00. 



make a case that XML processing is a promising area for FPGAs 
to win more sockets and expand more market.  

The rest of the paper is organized as follows. In Section 2, we 
review the related work. In Section 3, we describe some 
background information about XML. In Section 4, we describe our 
key ideas. In Section 5, we detail our design. In Section 6, we 
discuss our experimental result.  

2. Related Work 
Two styles of XML parsers are involved, depending on if an in-
memory data structure is constructed for later “random access”. 
The popular style builds the Document Object Model (DOM) [3] 
tree, a standard data structure for web processing. The less popular, 
but faster style, called Simple API for XML (SAX), relies on the 
fact that the XML can be processed by later stages in the same 
order they are transmitted. It is therefore less flexible and of 
limited use.  

The software community reported many implementations of XML 
parsers, with varying styles and compromises. In 2004, Zhang et al. 
developed the VTD-XML (Virtual Token Descriptor) parser [10]. 
They employ the concept of binary XML to avoid performance 
bottleneck of XML parsing, and achieves a performance of 20 to 
27 CPB on tree construction and schema validation. However, 
binary XML is not an industry standard and their parsed data can’t 
be used by other XML applications directly. In 2006, Lu et al. 
presented a parallel approach to XML parsing [9]. Their technique 
uses a light weight XML parser to build a skeleton of the XML 
document in a first pass parsing to guide the partition of the 
document into chunks that can be processed independently on 
different threads. Using this technique, the parser achieves tree 
construction performance of 30 CPB on a 4-core processor. 
However, the extra skeleton building process, done sequentially, 
may become a performance bottleneck. In 2006, Kostoulas et al. 
presented a schema-based XML parsing technique named XML 
Screamer [14], which improves the performance by schema-
dependent compilation and tight integration across layers of 
software. The parser achieves a performance of 22 to 43 CPB on 
SAX parsing and schema validation. However, for each different 
type of XML documents, a new parser needs to be generated. In 
2008, Cameron et al. developed an open-source non-validating 
XML parser Parabix (parallel bit streams for XML) which exploits 
the SIMD capabilities of modern-day commodity processors to 
process multiple characters at the same time, achieving 
performance of 6 to 15 CPB on SAX parsing [13]. However, no in-
memory tree data was built and schema validation was not 
implemented. 

In the hardware community, Lunteren et al. proposed in 2004 an 
approach to build an efficient and scalable general purpose state 
machine for accelerating XML processing [4]. However, no full 
system was demonstrated. In 2007, Moscola et al. presented a 
technique to automatically map regular expressions directly onto 
FPGA hardware and implemented a simple XML parser for 
demonstration [7]. Their technique could be useful but not 
sufficient to solve all problems since XML syntax rule is not a 
regular language. In addition, hardware recompilation is required 
each time it is applied to a different type of XML documents. In 
2008, Krishnamoorthy presented a hardware XML parser [6], 
which constraints on the length and types of tokens. In 2009, 
Leventhal et al. presented an ASIC-based XML Accelerator, 

which achieves performance of 20 CPB on tree construction and 
40 CPB on schema validation [18]. In addition, there are a number 
of commercial products provided by the leading IT companies, 
such as IBM’s WebSphere DataPower XML accelerator XA35 
[26], however neither performance metric nor design detail was 
revealed.  

The achieved performance of previous work, along with our 
proposed design, is summarized in Table 1. (‘?’ means the data is 
not reported, and ‘-’ means not implemented). 

Table 1. XML parser performance (CPB) comparison. 
Techniques Well-formed 

checking 
Tree 

construction
Schema 

Validation
Zhang [10] ? 20-27 20-27 
Lu [9] ? 27 33 
Kostoulas [14] 22-43 - 22-43 
Cameron [13] 6-15 - - 
Leventhal [18] 10 20 40 
MIT-libxml [24] ? 64 71 
XPA 1 1 1 

3. Background 
XML parsing consists of three major tasks: well-formed checking, 
schema validation and in-memory data construction. Other XML 
applications including XSLT, XPATH, XQuery are based on the 
results of these 3 basic tasks.  

3.1 Well-formed Checking 
The task of Well-formed Checking is to perform syntax checking 
on XML documents to ensure that it conforms to XML syntax 
rules provided in XML specifications [1]. A sample XML 
document is shown in Figure 1. 

The content of the document is organized in a tree structure with a 
unique root. Each element is delimited by an opening (‘<>’) and a 
closing tag (‘</>’) and may contain multiple attributes delimited 
by a space. 

<?xml version = “1.0” encoding = “UTF-8” ?>
<!-- this is an example xml document -->
<University>

<Department name = “ECE”>
<Students>

            <freshman>310</freshman>
            <sophomore>298</sophomore>
            <junior>213</junior>
            <senior>178</senior>
            <graduate>86</graduate>

…
</Students>
<Professors>

<professor name=“Mike” field=“network”/>
…

</Professors>
</Department>
…

</University>
 

Figure 1. A sample XML document. “University” is the unique 
root element. “Department” is an element name which contains 
attribute name called “name” and attribute content “ECE”. Text 
between the opening and closing tag of an element is called the 
content of the element, which can be either child elements or 
simply plain text. 

A well-formed checker scans characters of an XML document, 
checks if the characters are valid, extracts tokens from scanned 



characters and perform syntax checking on the extracted tokens. 
Syntax rules include a) the opening tag of an element must match 
its closing tag; b) an attribute name must be unique within its 
parent element; c) element tags must be properly nested.  

3.2 Schema Validation 
Due to the flexibility of user-defined markups in XML, servers 
commonly only accept specific type of XML documents that 
conforms to set of rules described in certain formats: DTD (Data 
Type Definition) or its successor XSD (XML Schema Definition) 
[2]. An example of XSD file, which itself is an XML file, is shown 
in Figure 2. 

A schema validator needs to interpret XSD files and to apply the 
rules to the tokens extracted by WFC processor. The challenge of 
schema validation is to select the correct rule to apply to each 
token out of a set of candidates as well as the token content 
validation against the selected rules. 

<?xml version =“1.0”?>
<xs:schema xmlns:xs=“http://www.w3.org/XMLSchema”>

<xs:element name=“University”>
<xs:complexType>

<xs:element name=“Department”  minOccurs=“2” >
<xs:complexType>

<xs:sequence>
<xs:element name=“Students”>

    <xs:complexType>
        <xs:all>
          <xs:element name=“freshman” type=“xs:string” />
          <xs:element name=“sophomore” type=“xs:string” />
          <xs:element name=“junior” type=“xs:string” />
          <xs:element name=“senior” type=“xs:string” />
          <xs:element name=“graduate” type=“xs:string” />
        </xs:all>
    </xs:complexType>
 </xs:element>

<xs:element name=“Professors” type=“professorType”/>
</xs:sequency>

</xs:complexType>
</xs:element>

</xs:complexType>
</xs:element>

</xs:schema>  
Figure 2. A sample XML Schema Definition (XSD) file. Element 
“University” is defined as complexType that is only allowed to 
have “Department” as its child. “Department” requires 
“Students” and “Professors” in the order. Finally, “Students” 
may contain “freshman” to “Graduate” in any order.  

3.3 In-memory Data Construction 
Given that the size of an XML file can be very large, the DOM 
representation, which captures the parental relationship between 
elements and attributes, or nodes, must be stored in DRAM. Such 
tree data structure requires extra headers with pointers to connect 
parent, sibling and child nodes. Not only does this require extra 
memory footprint, but also non-uniform memory access caused by 
updating previously written memory locations to connect a new 
node to rest of the tree. Such accesses might cause DRAM page 
crossing and degrade performance. 

4. Key Ideas 
In this section, we first identified several recurring computational 
idioms (fondly referred to as dwarfs in recent literature [21]). Not 
surprisingly, in the context of XML processing, these idioms are 

all related to the processing of strings. Isolating these idioms allow 
us devise or choose efficient hardware structures to implement 
them. We then describe the key architectural decisions by refining 
a familiar, baseline architecture, which ultimately leads to the 1 
CPB performance target.  

4.1 Recurring Idioms 
4.1.1 One-to-one String Match 
This idiom tests if a subject string equals to a reference string.  

Example 1. During well-formed checking, the syntax rules require 
that opening and closing tags of an element be matched, the root 
element must be unique within the document and elements should 
be properly nested. This implies that the opening tag of each 
element needs to be compared with the root element, and each 
closing tag needs to be compared with the last opening tag.  

Due to the fact that the reference string is known at time of input, 
the commencement of matching task need not wait until the 
subject string is present in its entirety. Instead, the matching can be 
executed in a streaming fashion. This not only achieves the best 
latency, but also scales well on strings with large, variable length 
due to its minimal requirement of storage.  

4.1.2 One-to-many String Membership Test 
This idiom tests if a subject strings equals to any member of a set 
of reference strings. 

Example 2. There are rules in both well-formed checking and 
schema validation that require an element/attribute name or its 
value to be unique within a certain range. This is equivalent to ask 
if an incoming element/attribute name matches with one of the 
previously seen names. 

In general, performing such tests require string comparison of all 
reference strings, which can be prohibitively expensive. However, 
the number of full comparisons can be reduced if one can filter out 
“obvious” cases, where a simple test can determine that an 
incoming string does not belong to the set. We employ the concept 
of Bloom Filter, which defines a set of independent hash values for 
each reference string. The set of reference strings is then 
approximated by a bit vector where the corresponding bits of all 
hash values of the reference strings are set to ‘1’s. If the hash 
values of the subject string produce a new ‘1’ in the bit vector, 
then we can conclude that the subject string does not belong to the 
set. 

4.1.3 One-to-many String Search 
This idiom finds a subject string among a set of reference strings. 
Note that while seemingly similar, the previous idiom only needs 
to return a binary answer, whereas this idiom effectively performs 
a lookup into an associative array (dictionary) of strings. 

Example 3: During schema validation, each element or attribute 
needs to search for its corresponding schema rule among a set of 
candidates.  

This idiom is commonly implemented as a hash table in software. 
We employ the BART scheme [8], originally proposed in the 
context of network routing table lookup. Unlike software hash 
table implementation where the lookup time can be 
undeterministic in the presence of hash value conflict, the BART 
scheme guarantees that the number of conflicts is bounded to a 



predefined value. Therefore, a string search amounts only to an on-
chip memory access and parallel comparisons of bounded size.  

4.2 Key Architectural Decisions 
Before describing our architectural decisions, it is instructive to 
describe a naïve baseline architecture shown in Figure 3. The 
architecture mimics a textbook decomposition of compiler 
frontend, which suffer from poor performance even when the 
individual blocks are pipelined. First, the number of pipeline 
stages is large, leading to long latency in processing. Second, 
blocks have diverse worst case, leading to poor overall throughput. 
In the sequel, we describe architectural techniques to improve the 
baseline architecture. 

Lexical 
Analysis

Well-formed 
Checking

Schema 
Validation

DOM 
Construction

input output

 
Figure 3. Conventional serial XML parsing. 

4.2.1 Speculative Pipeline 
While a compiler usually constructs a syntax tree only after it 
passes correctness check, we choose to construct DOM tree 
immediately after lexical analysis, as shown in Figure 4. This is 
speculative since we may construct a tree only later to find out 
invalid. Although in this case the tree has to be discarded, this 
mechanism allows the DOM tree construction stage to run 
independently of well-formed checking and schema validation 
stage, thereby significantly reducing the latency of the accelerator.  
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input

output

 
Figure 4. Hardware speculation XML parsing. 

4.2.2 Multi-rate Pipeline 
Well-formed checking and schema validation are different in 
processing rate and granularity. Well-formed checking performs 
the syntax checks on each single character, while schema 
validation validates the semantics of extracted token flow. Well-
formed rules are simpler compared to schema rules. To achieve a 
balanced pipeline design, we device a 3-level multi-rate pipeline 
structure as shown in Figure 5.  
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Rule Check 0

Rule Check 1
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8b 16b 64b

Rule Checking Units

 
Figure 5. Multi-rate pipeline structure. 

In the first level, the well-formed rules are checked against each 
character. In the second level, a rule math unit inside the schema 
validation stage search for the corresponding schema rule for each 
token, which is hashed into a 16 bit integer. In the third level, the 
rule checking units perform checking on multiple bytes of data 

simultaneously, such that they have multiple cycles of time budge 
to achieve the same throughput as the other stages. 

4.2.3 Common Case Optimized Stallable Pipeline 
A pipeline stage can have dynamically different latencies. If 
following the regular, static pipeline design, then we have to use 
the worst case latency as criterion to advance the pipeline. We 
employ a skewed, stallable pipeline structure where under the 
common cases, each pipeline stage is designed to have latency of 
one. They are stalled to carry out long latency computations only 
under uncommon cases. More specifically, we exploit the 
observation that in most cases, the XML document being parsed is 
a valid document. For example, in implementing the membership 
test idiom, we use the Bloom filter to detect the majority of 
common cases where the string uniqueness requirement is satisfied. 
Under these cases, no further test is needed and the pipeline can be 
advanced. Only in rare occasions where Bloom filtering fails, a 
long-latency string comparisons is invoked, in which case the 
pipeline is stalled.  

4.2.4 High-bandwidth On-chip Data Structure 
To perform schema validation, many rules have to be checked 
against an XML construct under parsing. Typically, the types of 
checks need to be encoded in memory. To reduce latency, it is 
desirable to parallelize the rule checking, which dictates that the 
encoded rule information needs to be accessible in parallel.  

FPGAs offer very large bandwidth on-chip memories. We devised 
a custom schema rule representation. The schema rules are divided 
into three portions and distributed into three local memories. Each 
memory has a wide data bus, allowing a single-cycle access of all 
schema rules associated with the XML construct under validation. 

4.2.5 Final Architecture of the XPA 
The final architecture of the XPA as a result of above decisions is 
shown in Figure 6. The lexical analysis stage is merged into well-
formed checking stage, since some well-formed rules are also 
checked during lexical analysis.  
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Figure 6.  Top level diagram of the XPA. 

The entire design has three stages: well-formed checking stage, 
schema validation stage and DOM construction stage. Functional 
units in well-formed checking stage scan XML character streams 
from the Ethernet, extract tokens from the streams and perform 
syntax rules checking on the tokens. In schema validation stage, 
the Rule Match Unit searches for corresponding schema rule for 
each valid token. The Rule Checking Unit is configured according 
to the schema rules and rules checking are performed on the 
content of each token. The schema rules are distributed into three 
local memories: Rule Header Table, Rule Name Table and Rule 



Content Table. FIFOs are used between units to accommodate 
processing rate changes. The DOM construction stage runs in 
parallel with the schema validation stage and the well-formed 
checking stage. Tokens extracted from input streams are fed 
immediately into DOM construction stage to generate tree data, 
and written into DRAM memory through a memory controller.  

5. Design 
This session will present the detailed implementation of each 
functional unit of the XPA.  
5.1 Well-formed Checking Stage 
5.1.1 Character Scanner Unit 
The Character Scanner Unit retrieves data from the Embedded 
Ethernet MAC (EMAC), and outputs data byte by byte to the next 
unit in the XPA. The block diagram of Character Scanner Unit is 
shown in Figure 7. 

A 1Gbps PHY is connected to the Embedded MAC through a 
SGMII interface. We implemented a simple UDP receiving logic 
block to deliver the incoming packet payload sent from host PC 
into the parser. In addition, a 1KB asynchronous FIFO is used to 
bridge the different clock domains between the Character Scanner 
Unit and the next cores. 

PHY
EMAC
Wrapper

Tx Client 
FIFO

Rx Client 
FIFO

LocalLink
Interface

Ethernet 
FIFO SGMII Link

Client 
Interface

UDP 
Receiver Asynchronous 

FIFO

125 MHz 
Rx Clock

User Clock

Read Data
Copper 

pair

FPGA

Character Scanner Unit

 
Figure 7.  Block diagram of the Character Scanner Unit. 

5.1.2 Token Extractor Unit 
The Token Extractor Unit is responsible for recognizing all the 
tokens from the input stream. It is implemented as a finite state 
machine that makes state transitions on valid input characters.  
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Figure 8. The FSM and output waveform of the Token 

Extractor Unit. 

In contrast to software parser states, the goal of our finite state 
machine is not to perform the entire well-formed checking but to 
extract the tokens and output their types as well as the position 

signals as “begin”, “enable” and “end”. The finite state machine 
and sample signal behavior are shown in Figure 8. The core well-
formed checking functions are then executed in the Token Handler 
Unit. 

5.1.3 Token Handler Unit 
The Token Handler Unit performs a series of operations on each 
token extracted by the Token Extractor. Main operations include: 
A) Checking the correct nesting of each element, and the 
uniqueness of root element name. B) Checking the uniqueness of 
each attribute name within every element. C) Generating 
information of type, length and hash code for each token, passing 
them down to schema validation stage through FIFO. D) Storing 
useful characters into XML Cyclic Buffer for schema validation. 
The first two tasks are described in details. 

5.1.3.1 Element Name Correct Nesting Checking 
To check the correct nesting of each element, the closing tag of 
each element needs to be compared with the last opening tag. As 
described in section 4.1.1, the comparison is carried out on each 
input character. This task is done with the help of an Element 
Name Stack. Whenever an element opens, its name is pushed into 
the Element Name Stack character by character. When it is being 
closed, one character is popped from the Element Name Stack per 
cycle and compared with the incoming character. Because the 
element tags are required to nest properly, a mismatch in the input 
character of closing element with the output of Element Name 
Stack always means a violation. The usage example is shown in 
Figure 9.  
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Figure 9.  Example of Element Name Stack operation. When the 
‘Students’ element is being closed, SP starts at ‘S’ and moves cycle 
by cycle to ‘8’. At the end of the matching. The whole element is 
popped off the Element Name Stack by updating NSP=NSP - 8 -1 
and SP=NSP-10 – 1. 

5.1.3.2 Attribute Name Uniqueness Checking 
The uniqueness checking requires each attribute name to be 
compared against multiple preprocessed names. This problem is 
identified as membership test dwarf in section 4.1.2. We employed 
the concept of Bloom Filter [19][20] and implemented a 3-stage 
pipeline for this task as shown in Figure 10. In the first stage, a 
HashCode Generator generates k independent hash codes for each 
attribute name. In the second stage, the k hash codes are used to 
access k different bits in a bit array. In the third stage, the fetched k 
bits are examined whether any bit is ‘0’ (initial value), which 
means the attribute name is guaranteed to be unique. Once 
uniqueness is confirmed, all corresponding k bit in the bit array are 
updated to ‘1’ and the attribute name is stored into the Attribute 
Name Stack. In case, all k locations returned ‘1’, it infers potential 
violation, hence the whole pipeline will be stalled to compare the 



attribute name against each strings previously stored inside the 
Attribute Name Stack, character by character, to remove the false-
positive case (Figure 11). 
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Figure 10.  Bloom Filter pipeline for Attribute Name Uniqueness 

Checking. 
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Figure 11. Example of false positive of the Bloom Filter. There 

are 3 attributes existing in current test set when parsing token 
“field” which generates 2 hash codes colliding with “gender” and 
“hobby”. This potential violation turns out to be a false positive in 
this case. 

5.2 Schema Validation Stage 
A valid element/attribute token not only needs to be syntax correct, 
but also contain its conforming definition in its XSD file in the 
correct context. Due to the relatively small volatility of schema 
files, we first pre-compile the current schema file into a custom 
local memory format that is efficient for lookup. We use three 
tables to store the contents: Rule Header Table (RHT), Rule Name 
Table (RNT) and Rule Content Table (RCT), each maintaining the 
tree structure of every rule, the name of each rule and the rule 
contents respectively. 

5.2.1 Rule Match Unit 
The Rule match Unit is responsible for selecting the corresponding 
schema rule for each element name and attribute name among a set 
of candidate rules.  

Rule R0     R 1              R2 R3      R4
String  graduate

Hashcode                                   
freshman sophomore junior senior

...001 ...101 ...011 ...110 ...010

R3
R0

0
1

    freshman  
...001          

R4
R1   R2

 
Figure 12.  Example of the BART scheme. From Figure 1 and 2, 

there are 5 candidate rules when parsing “freshman” element 
name. By setting P=4, bit 0 can be used as a bit mask to divide 
into 2 groups with less than 4 members. Each incoming hash code 
only accesses a row that its bit 0 indexes and guarantees be able to 
select one rule by doing at most 4 parallel comparisons. In this 
case, R0, R1 and R2 are compared against input in parallel. 

As discussed in Section 4.1.3, we employed the idea of the 
Balance Routing Table Search (BART) scheme [4][8]. BART is 
based on a novel hash function with the special property that the 
maximum number of collisions for any hash index can be limited 

by a configurable bound P. The hash index is extracted from bit 
positions within the input hash code, which are selected to realize 
the maximum collision bound P. The value of bound P is based on 
the memory access granularity to ensure that all collisions for a 
given hash index can be resolved by a single memory access and 
by at most P parallel comparisons. A simple illustration is shown 
in Figure 12. 

The Rule Match Unit consists of a two-stage pipeline where the 
first stage selects at most P rules (We chose 4 for our design) using 
XORed value of input hash code and a bit mask as index into the 
Rule Header Table and passes them to the second stage for the 
parallel hash code comparison. Then in the second stage, one or no 
rule is selected and outputted to the next module with information 
on type and length of the token as well as pointers to the Rule 
Name Table and Rule Content Table (Figure 13). After every 
selection, the result is used to advance the document context by 
updating the table address register and bit mask register. One 
exception is that when the input is a closing element, the table 
address and bit mask register need to be restored to previous level. 
To handle the case, a Table Address Stack is maintained to store 
the history of the two values in a stack fashion. 
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Figure 13.  a) Data format of RHT entry b) Block diagram of the 

Rule Match Unit. 

5.2.2 Rule Check Unit 
The Rule Check Unit is responsible for the schema validation on 
the contents. It is further divided into 2 sub units: Rule Name 
Check Unit and Rule Content Check Unit. Rule Name Check Unit 
verifies the selected rule from the Rule Match Unit is hash-code-
collision error free. The Rule Content Check Unit checks if the 
contents of elements and attributes conform to the selected rule.  

5.2.2.1 Rule Name Check Unit 
The logic of the Rule Name Check Unit is shown in Figure 14. 
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Figure 14. Block diagram of the Rule Name Check Unit. 



When a rule arrives from the Rule Match Unit, it starts reading out 
characters from two different local memories: the XML Cyclic 
Buffer (XCB), which contains the actual string of the input token 
pushed in by the Token Handler Unit, and the Rule Name Table 
pointed by the RNTAddr in Figure 13. Both data are fetched out 
and compared, 8-byte by 8-byte, to verify the match.  

5.2.2.2 Rule Content Check Unit  
The Rule Content Check Unit (Figure 15) is responsible for 
performing schema validation on element and attribute contents as 
well as checking their arrival sequence. Once the Rule Match Unit 
finds a rule, this unit fetches the corresponding rule contents 
(Figure 15 a) and use them to configure four different checking 
units for next arriving content check. The Rule Content Stack is 
required to store the history of rule content for similar reason as 
the Table Address Stack in section 5.2.1. The actual check is again 
executed in 8-byte by 8-byte manner and is triggered as soon as a 
valid element content or attribute content appears in the output of 
the XML Cyclic Buffer. The four checking units implemented in 
our design are: sequence check, type check, range check and key 
check.  
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Figure 15.  a) Data format of RCT entry. b) Block diagram of 

the Rule Content Check Unit. T=Type, R=Range, K=Key, 
A=All and S=Sequence. 

The Sequence check block ensures if the sequence of incoming 
tokens follow the specified order in XSD. (e.g. <Sequence> in 
Figure 2) we use a stack to record the latest sequence number in 
each level of tree hierarchy and compare against the SeqNO field 
in Figure 15. The Type check block checks if the pattern of the 
content is correct. We currently support string, integer, decimal 
and date. The Range check block checks if a content value falls 
within the allowed range, such as “minOccur” in Figure 2. Lastly 
but not least, the Key check block checks if a token marked as 
“key” is unique throughout a document. This problem is 
categorized as the dwarf in section 4.1.2 because each ‘key’ type 
value needs to be compared against a previously parsed “key” to 
verify the uniqueness. The same Bloom Filter approach as 
described in section 5.1.3.2 is used except that actual strings of the 
key contents are stored in DRAM instead of local memory as the 
set could grow over thousands. (e.g. list of student numbers) 

5.3 DOM Construction Stage 
The DOM Constructor Unit is responsible of building a DOM tree 
of the input XML document in DRAM, which can then be used to 
develop a DOM Application Programming Interface. In order to 
support industry specified efficient tree operations, the base data 
structure should contain enough pointers in each node such that 
every part of XML data is tightly connected. In our current design, 

a simple and straight forward 32-byte aligned data structure is 
employed to implement the DOM Construction (Figure 16). With 
the data structure, each element name requires a) as its header and 
c) to contain its name strings. Each attribute name uses b) as 
header and c) for its name strings. Contents only use a c) with 
parent link linked back to their parents. 

The DOM Constructor exercises three main tasks, new node 
allocation, update of parent and update of sibling. When a new 
token other than closing element is parsed, it allocates a new node 
in DRAM in an appropriate format. If the token has a previous 
sibling in the same hierarchy, the NextSibling pointer in previous 
sibling header is updated in the next cycle. When parsing a closing 
element, the ChildList pointer of the corresponding element header 
is updated if it appears to be a parent of already parsed nodes. In 
addition, we employed multiple techniques such as a stack to store 
DRAM addresses of active parent nodes and register last closed 
element to locally keep track of DRAM addresses for update of 
parent and sibling respectively. Because the DOM Constructor 
requires no DRAM read operation, the data structure is optimized 
for write only data access by reducing page crossing. 
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*Content 
*AttrList
*ChildList

*Parent 
*PrevSibling
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*Content 

*Parent 
Length(2B)

Name or 
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Figure 16. Data structure of nodes: a) Element name header b) 

Attribute name header c) String data.  

6. Evaluation 
In this section, we carry out comparative performance study of our 
design against 4 publicly accessible software XML processors. We 
use throughput in both CPB and Gbps as performance metrics. In 
addition, we examine the implementation cost and speed on FPGA, 
and scalability issues. 

6.1 Hardware Experimental Setup 
Our design is implemented and tested on Xilinx Virtex-5 
XC5VSX50T FPGA on the ML506 evaluation board. To perform 
the test under a practical environment, we connect the input of the 
XPA to a Tri-mode Ethernet MAC, configured to work with a 
1Gbps SGMII PHY device. A simple UDP receiving protocol is 
used to extract data and commands from incoming UDP packages. 
The test files are fed from a laptop to the Xilinx board through a 1 
Gbps Ethernet link. The output data of the XPA is written to an 
on-board 256MB SODIMM DDR2-533 memory module through 
the Memory Controller (MC). A serial port is integrated to display 
experimental results. The structure of the XPA test bed is shown in 
Figure 17. 
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Figure 17.  Block diagram of the XPA test bed. 



The test bed is separated into 3 clock domains. The Ethernet MAC 
works with a 125MHz clock in order to cope with 1Gbps wire 
speed. The XPA communicates with the Ethernet MAC using a 
1KB asynchronous FIFO and runs at a different 125MHz user 
clock. The serial port and the Memory Controller work with a 
200MHz clock. 

6.2 Software Experimental Setup 
To compare the performance of the XPA against other XML 
processors, we test 4 software XML parsers with the same set of 
benchmarks. The parsers are chosen from well-known open source 
commercial tools that have the best reported performance 
according to [24]. The tests of software XML parsers are carried 
out under the configurations listed in Table 2. 

Table 2. Software experimental setup. 
Hardware and software platform Tested XML parsing libraries 
Intel Core 2 Quad Q9300 (2.5GHz, 6MB 
L2 Cache) 
2GB DDR2-800 Memory 
Debian Linux 2.6.18-6 x86-64 
GNU C 4.1.2 

Xerces-c 2.8.0 x86-64 
Libxml2 
DOM4J-1.6 
JAVA API for XML Processing  
(JAXP) 1.6.0 

 
We used the XML Benchmark Tool [23] from Intel to gather 
performance results for the 4 software XML parsers. For each 
benchmark, the XML Benchmark Tool will perform multiple 
iterations of warm-up and test to get stable results such that the 
overhead of memory load and operation system management are 
minimized. All the benchmarks are read from local hard drive for 
software tests. 

6.3 Benchmarks 
The benchmarks are chosen from different XML projects. Each 
benchmark contains multiple test files from the same project. The 
file size varies from 3 KB to 116MB. The benchmarks are 
separated into 2 groups: DOM parsing benchmarks and schema 
validation benchmarks. Schema validation benchmarks contain 
one XSD file for each benchmark. Table 3 lists the names of these 
projects, the maximum sizes of test files as well as the source of 
the projects.  

Table 3. Information of benchmarks. 
Group Benchmark XML Size XSD Size Source 

Security 3 KB - Intel Corporation 
Structure 12 KB - codesynthesis 
Tpox 15 KB - tpox 
Hl7 136 KB - hl7-testharness 
Qedeq 211 KB - qedeq.org 

DOM 
Parsing  

Xmark 116 MB - xml-benchmark 
CustomInfo 1 KB 2 KB Intel Corporation 
CDCatalog 105KB 2 KB w3schools 

Schema 
Validation  

Workflow 13 KB 10 KB qedeq.org 
 
6.4 Measurement 
6.4.1 Throughput 
The detailed test results on performance of different XML 
processors are presented in Table 4 and Table 5 (‘-’ indicates that 
certain functionality is not implemented and thus result 
unavailable). Table 4 lists the throughput of different tests in Gbps. 
Table 5 presents the same results in CPB.  

As illustrated by Table 4, XPA achieves the raw throughput it is 
designed for, 1Gbps. The throughput is in fact bounded by the 
Ethernet link speed. Sine the maximum frequency achieved is 
130MHz, which we did not make an effort to further improve, the 
actual raw throughput can be slightly higher: 1.04Gps. Note that 

although the software parsers run on processors with 2.5GHz of 
frequency, XPA is still faster. For parsing benchmarks, which 
involves only well-formed checking and tree construction, XPA 
outperforms the best performing software parser (JAXP) by 2.8 
times. For the much more difficult validation benchmarks, XPA 
outperforms the best performing software parser (libxml) by 3.7 
times.    

Table 4. Results of performance tests (throughput: Gbps). 
Benchmark JAXP DOM4J Libxml2 Xerces-c XPA XPAmax

Security 0.199 0.059 0.294 0.100 1.000 1.040 
Structure 0.274 0.110 0.202 0.091 1.000 1.040 
Tpox 0.292 0.099 0.264 0.124 1.000 1.040 
Hl7 0.415 0.189 0.360 0.128 1.000 1.040 
Qedeq 0.481 0.221 0.338 0.133 1.000 1.040 
Xmark 0.550 0.256 0.416 0.187 1.000 1.040 
Average_par 0.373 0.158 0.314 0.127 1.000 1.040 
CustomInfo 0.062 - 0.107 0.054 1.000 1.040 
CDCatalog 0.128 - 0.232 0.113 1.000 1.040 
Workflow 0.227 - 0.396 0.185 1.000 1.040 
Average_vld 0.161 - 0.283 0.134 1.000 1.040 
Average_all 0.267 0.158 0.299 0.131 1.000 1.040 

 
As illustrated by Table 5, XPA outperforms other tested software 
XML processors by more than 66 times in term of CPB, which 
illustrates the potential of XPA architecture when implemented in 
ASIC with more aggressive frequency optimizations.  

Table 5. Results of performance tests (CPB). 
Benchmark JAXP DOM4J Libxml2 Xerces-c XPA
Security 100.6 339.7 67.9 201.0 1.0 
Structure 73.1 181.3 99.1 220.5 1.0 
Tpox 68.5 201.3 75.9 161.0 1.0 
Hl7 48.2 106.0 55.6 155.8 1.0 
Qedeq 41.5 90.4 59.2 150.6 1.0 
Xmark 36.4 78.0 48.0 106.7 1.0 
Average_pars. 53.6 126.9 63.6 157.2 1.0 
CustomInfo 321.8 - 186.2 373.7 1.0 
CDCatalog 156.5 - 86.3 176.8 1.0 
Workflow 88.3 - 50.4 108.3 1.0 
Average_valid. 124.4  70.6 148.8 1.0 
Average_all 75.0 126.9 66.9 152.9 1.0 

6.4.2 Stall Rate 
To further understand the performance of the XPA, Table 6 lists 
the statistics of pipeline stalls in each parsing stage and memory 
controller (only the maximum number of stalls for each benchmark 
is shown). In addition, the average memory bandwidth requirement 
for each benchmark is also shown in Table 6.  

Table 6. Stall rate of the XPA. 
Benchmark Well-

formed 
Checking 

DOM 
Cons-
tructor  

Schema 
Valid-
ation 

Memory 
Con-
troller 

Memory 
Bandwidth 
Requirement 

Security 0 0 - 0 719 MB/s 
Structure 0 1 - 0 652 MB/s 
Tpox 0 0 - 0 1250 MB/s 
Hl7 0 2 - 0 994 MB/s 
Qedeq 0 4 - 0 614 MB/s 
Xmark 0 1263 - 0 782 MB/s 
CustomInfo 0 0 0 0 1030 MB/s 
CDCatalog 0 0 0 0 1460 MB/s 
Workflow 0 0 0 0 798 MB/s 
Average Memory Bandwidth Requirement: 908MB/s 

 
No stall on the well-formed checking stage and schema validation 
stage is observed. This indicates that common XML documents are 
not likely to cause a false positive on our Bloom filters.  

All observed stalls occur in the DOM construction stage. This is 
because the DOM constructor often needs to generate multiple 



write requests at the same clock cycle on cases when multiple 
pointers in a DOM tree need to be updated. Normally the extra 
requests are buffered. When these cases happen too close to each 
other, the buffer might become full. However, these types of stalls 
do not happen frequently as illustrated by Table 6: 1263 stalls 
occur for a 116 MB input file, which contributes to tiny portion of 
the whole processing time.  

No stall is observed on the Memory Controller either, thanks to the 
large command FIFO deployed in the Memory Controller and the 
high performance of DDR2 memory. For each benchmark, the 
memory bandwidth requirement is calculated by counting the 
number of memory accesses. As shown in Table 6, the average 
memory bandwidth requirement of all benchmarks is 908 MB/s. 
Because DDR2-533 memory has a maximum available bandwidth 
of 4.2 GB/s [25], it is sufficient to consume the memory requests 
generated by DOM constructor. Therefore, Memory Controller is 
not likely to generate a stall. 

6.4.3 Area and Clock Frequency 
The device utilization of our design is shown in Table 7. The XPA 
accounts for about 2/3 of the total area cost, almost 3 times larger 
than the Memory Controller. The Memory Controller employs a 
simple request scheduling algorithm, thus most of its resources are 
spent on implementing the physical interface to DDR2 memory. 
The EMAC requires only small amount of logic to implement the 
packet FIFOs thanks to Xilinx’s Embedded MAC. Besides, the 
XPA uses 13 Block RAM for FIFOs and local memories. However, 
most of the Block RAMs are configured to be less than 1KB. Thus 
the actual memory usage is much less than reported. The reported 
maximum frequency achieved by the design is 130 MHz. 

Table 7. Details of device utilization. 
Logic 
Utilization 

Slice Register Slice LUT Block RAM

XPA 4455 (13%) 6594 (20%) 13 (11%) 
MC 1960 (6%) 1683 (5%) 5 (3%)) 
EMAC 927 (2%) 712 (2%) 3 (2%) 
UART 151 (1%) 187 (1%) 2 (1%) 
TOTAL 7493 (22%) 9176 (28%) 23 (17%) 

 
6.5 Scalability Study 
In this section, we study the sensibility of various design 
parameters against XML file sizes and characteristics, to ensure 
the robustness of our design.  

6.5.1 Bloom Filter Requirement 
The Bloom Filter is one of the key enabling techniques of our 
design. However, its false positive rate also has great impact on the 
scalability. Thus it is important to examine the requirements of 
achieving a low false positive rate. 

The false positive rate of the Bloom Filter depends on the size of 
the tested set n, the size of the bit array m and the number of 
independent hash functions k. A false positive can be described as 
the probability of k hashed locations all equal to 1. It can be 
calculated using following equation as presented in [20]: 

k))/11(1( kn
fp mRate −−=  

To verify the space efficiency of the Bloom Filter, a separate 
experiment is performed on the Attribute Name Uniqueness test. A 
set of test files containing a large number of elements, each having 
a certain number of attributes, are generated. The names of 

attributes are randomly chosen from popular Google keywords and 
Wikipedia articles on different subjects. The files are tested on 
Bloom Filters with different configurations. And results are shown 
in Table 8.  

For every false positive, assume an overhead of 100 clock cycles is 
needed for doing real string comparison. We hope there are less 
than 10 false positives, so that the extra cycles can be tolerated by 
the 1 KB buffer in the Character Scanner Unit. A reasonable test 
case is when the attribute tokens consist of 25% percent of all the 
tokens, and each token of any type has an average size of 4 
characters. Then a 100 KB file would require a practical false 
positive rate of:  

(number of false positives / number of attribute name tokens) = 
(10/((100 K/4)*25%))=0.01% 

This means that for every 10,000 attribute name tokens there 
should be less than 1 false positive. Therefore, the test results 
illustrated by Table 7 show that a configuration of 1-kb bit array 
with 3 hash functions or 2-kb bit array with 2 hash functions 
should be practical enough for the Attribute Name Uniqueness test 
task. 

Table 8. False positive rate test results. 
m_k G4x1k G8x1k G16x1k W4x1k W8x1k W16x1k
64b_2h 1 66 509 6 129 502 
256b_2h 0 5 60 1 8 56 
256b_3h 0 0 14 1 3 9 
1kb_2h 0 1 6 1 2 2 
1kb_3h 0 0 1 0 0 0 
2kb_2h 0 0 1 0 0 0 
2kb_3h 0 0 0 0 0 0 

 
Table 8 also shows that, increasing the bit array size from 64 bits 
to 256 bits, the false positive rate of all tests is reduced by 10 times. 
Besides, by increasing the number of independent hash functions 
from 2 to 3, the false positive rate is reduced by more than 5 times 
in most test cases.  

6.5.2 On-chip Storage Requirement 
In this section, we analyze the scalability of the XPA in term of 
on-chip memory requirement for processing different sizes of 
XML files. 

The required size of the Element Name Stack is determined by the 
depth of the XML document tree. And the size of the Attribute 
Name Stack is determined by the largest number of attributes one 
element has in a document. Both are not likely to scale with XML 
file size. 

The Schema Rule Memory used in schema validation stage 
consists of the Rule Header Table, Rule Name Table and Rule 
Content Table. To support variable types of XML documents, the 
schema Rule memory needs to be large enough to store their XSD 
files. A typical schema file like XHTML schema requires less than 
70 KB. Thus, the storage requirement of the Schema Rule Memory 
is not likely to become a limit.  

7. Conclusion 
In the paper, we present an innovative XML processing 
architecture and design that achieves 1 CPB performance on both 
tree construction and schema validation with very good scalability. 
The architecture is implemented on a Virter-5 FPGA board and 
successfully saturates a 1 Gbps Ethernet Link when running at 



125MHz clock frequency. With our demonstration, we believe 
FPGAs can become a valid contender in winning the enterprise 
XML processing sockets.  

8. Limitations 
We acknowledge the following omissions of our design in the 
interest of time. First, our token extractor does not handle the full 
UTF-8 character set, and settles only with the ASCII character set. 
Second, our schema validation does not yet handle full regular 
expression check. It can be argued that both features are unlikely 
to be performance bottlenecks, as efficient implementations have 
been demonstrated elsewhere [7][12][22].  
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