
Saturating the Transceiver Bandwidth: Switch Fabric
Design on FPGAs

Zefu Dai Jianwen Zhu
Department of Electrical and Computer Engineering

University of Toronto, Toronto, ON, Canada, M5S 3G4
{zdai,jzhu}@eecg.utoronto.ca

ABSTRACT
Driven by the demand of communication systems, field pro-
grammable gate array (FPGA) devices have significantly en-
hanced their aggregate transceiver bandwidth, reaching ter-
abits per second for the upcoming generation. This paper
asks the question whether a single-chip switch fabric can be
built that saturates the available transceiver bandwidth.

In answering this question, we propose a new switch fab-
ric organization, called Grouped Crosspoint Queued switch,
that brings significant memory efficiency over the state-of-
the-art organizations. This makes it possible to build high
bandwidth, high radix switches directly on FPGA that ri-
vals ASIC performance. The proposal was validated at small
scale by a 16x16 160Gps switch on the available Virtex-6
device, and simulated at a larger scale of fat-tree switching
network with 5Tbps capacity.

Categories and Subject Descriptors
C.1.2 [Multiple Data Stream Architectures]: Intercon-
nection architectures

General Terms
Design

Keywords
Switch Fabric, Input Queued, Output Queued, Crosspoint
Queued, Transceiver

1. INTRODUCTION
Recent evolution of field programmable gate array (FPGA)

devices has seen a tremendous growth of transceiver speed,
boasting 28 Gbps per link and Terabits per second aggregate
bandwidth per device. Understandably, this is largely driven
by the communication sector, reportedly FPGA’s largest
customer.

While the two largest FPGA vendors are drumming up
the competition on delivering the highest IO bandwidth, the
question remains on whether it can be fully utilized on key
applications. For example, although there are announce-
ments and reports on 100G-400G line cards, little was re-
ported whether, and how, high radix (port count) switch

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’12, February 22–24, 2012, Monterey, California, USA.
Copyright 2012 ACM 978-1-4503-1155-7/12/02 ...$10.00.

fabric can be built with FPGAs that can saturate their avail-
able IO bandwidth.

The choice of switch fabric architecture is heavily influ-
enced by the ratio of link speed and memory access speed [11].
This is because the minimum packet size is fixed and does
not scale with the link speed. With higher link speed, pack-
ets arrive and leave faster. As a result, memories that imple-
ment packet buffers have to be accessed at a higher speed.
To cope with the memory speed challenge, the switch fabric
architecture used by application-specific integrated circuit
(ASIC) based chips has evolved from the Output Queued
(OQ) to Combined Input and Output Queued (CIOQ) and
then to the Combined Input and Crosspoint Queued (CICQ)
architecture. This is exemplified by the three generations of
the IBM Prizma switch [10].

The literature on FPGA implementation of the switch fab-
ric seems rather sparse. Early demonstrations from Actel
and Xilinx [4, 24] follow the straightforward crosspoint cross-
bar architecture. The latest whitepaper from Altera speaks
about the available device bandwidth [5], hinting the possi-
bility of high-radix switches, but did not give design details
or achieved performance of the switch itself. The NetF-
PGA provides an excellent platform for building low-radix
switches and routers [16], but as a platform, do not discrim-
inate specific switch architectures. The most comprehensive
designs available using Virtex FPGA [25, 23] employ the
CICQ architecture. But is good choice for ASICs automat-
ically a good choice for FPGAs?

We argue that the CICQ is a bad choice for the FPGA
implementation of high radix switch fabric. This is primarily
due to its requirement of N2 crosspoint buffers, where N is
the port count. The SRAM resources on FPGAs will simply
run out, for the large number of N permitted by modern
FPGA devices. Given the known complexity of scheduling
logic, the Input Queued (IQ) and CIOQ switch architectures
are not favorable either.

In light of this, it becomes necessary to thoroughly investi-
gate the switch fabric design, if the FPGA industry intends
to adds it to the list of ASIC replacements, which seems
to be attractive given its ubiquitous usage in carrier net-
work, internet, data center network, and high-performance
computing.

In this paper, we show that indeed it is possible to con-
struct a high radix switch fabric using FPGAs that satu-
rates their transceiver bandwidth: for Xilinx’s Virtex-7, this
promises terabits per second single-chip switching perfor-
mance. In addition, in contrast to the common belief that
FPGAs may suffer significant performance disadvantage, we
show that the performance can rival its ASIC counterpart.
More specifically, we make the following contributions:

• We propose a new switch fabric organization, called
Combined Input and Grouped Crosspoint Queued ar-
chitecture (GCQ), and demonstrate that it can, given
the same memory resources, outperform the CICQ ar-

chitecture, the state-of-the-art switch fabric architec-
ture;

• We show that how FPGA hard resources, instead of its
logic fabric, can be best utilized to “impedance match”
the GCQ architecture and give ASIC-like performance.

The rest of the paper is organized as follows. In Section 2,
we review important milestones in packet switch architec-
ture. In Section 3, we discuss the proposed switch fabric
architecture in detail. In Section 4, we describe FPGA im-
plementation issues. In Section 5, we provide evaluation
result.

2. BACKGROUND
A switch fabric performs two major tasks: 1) provide dat-

apath connections between inputs and outputs; and 2) re-
solve congestion. Usually, a crossbar is used to provide data-
path connections between different inputs and outputs. And
packet buffers are used to store data temporarily at times
of congestion, i.e., when data from multiple inputs destinate
to the same output simultaneously. The importance of high
performance switch fabric has led to the publication of nu-
merous switch architectures. They can be categorized into
3 basic types based on their buffer organizations:

Output Queued switch which buffers data at output ports;

Input Queued switch which buffers data at input ports;

Crosspoint Queued switch which buffers data at the cross-
bar;

2.1 Basic Definitions
For the following sections, we consider a switch fabric with

N input and N output ports, each running at a link speed
of R, e.g. 10 Gb/s. We assume packets can be segmented
into fixed-length cells of size C, which are referred to as flits.
The arrival time between flits at any input (C/R) is called
a time slot. The internal speedup S of a switch is defined
as the ability to remove up to S flits from any input buffer
and store up to S flits to any output/crosspoint buffer at
any time slot.

Table 1: Roadmap for optical fiber and SERDES speed.
Process nm 45 30 22

Link
Char.

Link Speed Gb/s 80 160 320
Max Link Length m 10
In Flight Data bytes 1107 2214 4428

Optical
Params

Data Wavelengths 8 16 32
Optical Data Rate Gb/s 10

Electrical
Params

SERDES Speed Gb/s 10 20 32
SERDES Channels 8 8 10

The link speed has increased rapidly over the past years
from OC-3 (155Mb/s) to OC-768 (40Gb/s). However, when
going beyond 10Gb/s, higher link speeds in the optical fiber
are achieved by ganging multiple channels of 10Gb/s to-
gether. And the processing of such link speeds is usually
done by dividing a single link to multiple parallel switches,
each processing part of the data at a lower data rate, i.e.
10Gb/s. Table 1 shows the technology roadmap for opti-
cal fiber and SERDES [6]. The Dense Wavelength-Division
Multiplexing technology vastly increases the number of chan-
nels available in a single fiber. But the speed of a single
channel stays the same. As a consequence, low radix, high
line rate (fat) switches can be implemented using parallel
low-radix, low line rate (thin) switches. Therefore, in this
paper, we focus on the design of more challenging high-radix
switches with thin ports, rather than low radix switches with
fat ports.

Figure 1: The Output Queued switch.

2.2 The OQ Switch
The OQ switch is the reference switch which can achieve

the best possible switching performance. It has high re-
quirements on memory access time, but low demand on
packet scheduling logic. Example OQ switches include the
early generation of IBM’s PRS switch [9] published in 1995
and Fulcrum’s FocalPoint FM4000 switch [7] published in
2009. Both switches employ the Centralized Shared Mem-
ory (CSM) architecture (which belongs to the OQ switch
architecture) to achieve high throughput and low latency,
as well as efficient support for multicast. The CSM archi-
tecture minimizes the amount of memory needed for con-
gestion buffering as the memory is shared across all ports.
However, the number of ports it can support is limited by
the memory access time. The early generation of the IBM
PRS switch supports 16 ports. Although Fulcrum’s Focal-
Point FM4000 switch supports 24 ports, it has exceeded the
limit of memory access time. And there is a jitter of up to
70 ns when multiple output ports need to access the same
memory location in parallel.

Figure 2: The Input Queued switch.

2.3 The IQ Switch
The IQ switch becomes attractive as the memory technol-

ogy fails to satisfy the increasing demand on memory speed.
It is advantageous that buffers in IQ switches only need to
run at 2R, compared to 2NR in OQ switches. However, due
to the Head-of-Line (HOL) blocking problem, the through-
put of the IQ switch could be limited to approximately
58% [14]. Although the Virtual Output Queue (VOQ) tech-
nique [22] can solve this blocking problem, complex schedul-
ing algorithm is required to achieve high performance. In
fact, ideal scheduling algorithms [19] are too complex to
implement and practical algorithms usually take multiple
stages. For example, the Tiny Tera IQ switch designed
by McKeown et. al. at 1996 [18] uses a 3-step iSLP [17]
scheduling algorithm to achieve high throughput for unicast
traffic. In addition to the complex scheduling problem, the
IQ switch does not support multicast well. Since all buffers
are running at 2R, a broadcast packet will take N time slots
for each of its flits to pass through the switch. Otherwise,
a dedicate logic has to be built for mutlticast traffic as was
done in the Tiny Tera switch.

2.4 The CIOQ Switch
To improve the performance of the IQ switch, the Com-

bined Input and Output Queued (CIOQ) switch has been
studied and became one of the most popular switch archi-
tecture. The idea is: with an internal speedup of S, it is

Figure 3: The Combined Input and Output Queued

switch.

possible for the CIOQ switch to emulate an OQ switch with
a memory speed of (S + 1)R. Previous work has shown
that with S = 2 and a complex centralized scheduling al-
gorithm, the CIOQ can emulate an OQ switch [12]. How-
ever, practical implementations usually use larger internal
speedup to simplify the scheduling algorithm. For example,
the second generation of IBM’s Prizma switch [20] is a CIOQ
switch with a speedup of N . Using high internal speedup,
the switch requires only a simple localized scheduler at each
input port to achieve high throughput. However, despite its
popularity in both academia and industry, the CIOQ switch
requires either a complex centralized scheduling logic or high
memory access speed.

Figure 4: The Combined Input and Crosspoint Queued

switch.

2.5 The CICQ Switch
The Combined Input and Crosspoint Queued (CICQ) switch

was proposed to address both the complex scheduling and
high memory access speed problems. The CICQ switch de-
ploys a packet buffer in each crosspoint of its switching cross-
bar, so that flits from input queues are delivered to the cross-
point buffers first instead of going to output ports directly.
As a result, the input and output scheduling are decoupled
and no centralized scheduler is needed. Also, each cross-
point buffer only needs to run at 2R as it is shared by a
single input and a single output port. Therefore, the CICQ
switch can scale to support high port speed. Moreover, it can
achieve high throughput and low latency with reasonable
size crosspoint buffers [13]. These appealing features have
increased the industry’s interest in the CICQ switch. For
example, FORTH implemented a 32 × 32 single chip CICQ
switch [21] in 2004. And IBM’s third generation Prizma
switch also adopted the CICQ architecture [3] to build a 4
Tb/s single stage switch. However, the major problem of the
CICQ switch lies in its requirement of N2 crosspoint buffers,
which makes it less scalable in terms of port number. Also,
by distributing packet buffers across N 2 crosspoint memo-
ries, it becomes difficult to balance the workload of different
buffers, resulting in low memory space efficiency in packet
buffers.

2.6 The Hierarchical Crossbar Switch
In an attempt to address the port number scalability prob-

lem of the CICQ architecture and build high radix switch,
Kim et. al. proposed the Hierarchical Crossbar (HC) archi-

Figure 5: Single stage port extension.

tecture in 2005 [15]. The HC aims to reduce memory cost
of the CICQ switch by partitioning the buffered crossbar
into sub-switches, and implementing each sub-switch using
a CIOQ architecture. It was estimated by the authors that
by partitioning a 64×64 crossbar into 64 8×8 sub-switches,
there is a 40% saving in memory. The HC switch can be
viewed as a single stage port extension version of the CIOQ
switch, as illustrated in Figure 5. Although memory sav-
ing can be achieved, complex scheduling logic is still needed
in the sub-switches. In this paper, we follow a similar way
of thinking as Kim’s work; however, we target FPGA plat-
form, which dictates us to address the problem of switch
fabric design from a different angle. In summary, we list
the resource requirements of different switch architectures
including our proposed switch organization in Table 2. De-
tails of the proposed switch organization will be explained
in following sections.

Table 2: Requirement of different switch architectures.
OQ IQ CIOQ CICQ Proposed

Input Buffer 0 N N N N
Crosspoint Buffer 0 0 0 N2 (N/S)2 · P
Output Buffer N 0 N 0 0
Internal Speedup N 1 S 1 S
Scheduling D* C* C D D
*D = Distributed; *C = Centralized

3. MAIN IDEAS
In this section, we describe the main idea of our proposal.

3.1 Memory Is the Switch
Switching fabric often involves crossbars, well known to

be wire dominated since wide multiplexers often need to be
implemented. Ironically, while FPGAs are arguably made of
multiplexers, they are not efficient to implement multiplex-
ers, not to mention the long delay associated with long wires
necessary to bring signals from geographical far locations to
the central switch. So the conventional wisdom seems to
have been that FPGAs would be inefficient, compared to
the ASIC switch.

While the FPGA fabric is admittedly slow, FPGAs also
integrate large amount of hardcore resources like SRAMs,
which can run, in principle, at the same level of speed and
power consumption as ASIC chips.

Memories have been widely used as buffers in all switches.
The CICQ architecture, the most favourable today for the
ASIC switches today, leverages the bandwidth of on-chip
SRAMs by allocating a separate SRAM buffer at each cross-
point. Unfortunately, this does not always lead to the best
utilization of SRAM bandwidth.

Example 1. The dual-port SRAMs on Xilinx’s Virtex-6
FPGA have an access time of approximately 2.5ns. Assum-
ing a line rate of 10Gb/s and a minimum packet size of 40B,
the fastest possible packet arrival speed is 12.5ns. Therefore,
one SRAM can accommodate multiple ports by way of time
multiplexing. Furthermore, if multiple dual-port SRAMs can
run in parallel, up to 12 input and output ports can be ser-
viced simultaneously.

This example illustrates that by clever organization of
SRAMs both in time (by time multiplexing) and space (but
using parallel memories), one can achieve a decent speedup,
and as a result, one buffer can serve multiple port accesses at
the same time. This leads us to the first idea that memory
can be shared: let S be the memory speedup, a shared
buffer can replace S × S crosspoint buffers.

Further examination reveals that it is not necessary to
implement S × S logical crosspoint buffers. In fact, one
only needs to implement S logical output buffers. This in-
sight leads to the second idea that memory is the switch:
while FPGA logic fabric might be slow, the FPGA SRAMs,
which run at the ASIC speed, can serve as a small-scale
switch: In fact, the hardwired decoding logic and sense-
amplifier boosted data bus can serve the same purpose of
wide multiplexers! Now the shared buffer serves the dual
purposes of buffering and switching, and can be considered
as a S × S OQ subswitch. We can therefore organize the
high radix switch fabric as a two dimensional switch, in the
same spirit of [15]. In the mean time, the total number
of buffers has reduced to (N/S)2, a S2 reduction from the
CICQ architecture.

Figure 6: The organization of the proposed switch.

The third idea, which is not new, but comes as added ben-
efit of using shared buffers, is that memory can be bor-
rowed: we do not have to reserve fixed buffer size for each
logical queue in the shared buffer. By using dynamic mem-
ory allocation, a “busy” output queue could occupy more
memory spaces than less busy ones, and as a result, can
accommodate bursty traffic or congestion better. The in-
put queue buffers then can afford to be smaller due to less
congestion burden.

We call each shared buffer a Memory Based Switch (MBS),
as it uses memory to implement both switching and buffer-
ing, the two major tasks of a switch.

As dipicted in Figure 6, since each shared buffer functions
as a small switch, the input queues only need to maintain
N/S VOQs. And the size of both input and output sched-
ulers is reduced from N − to− 1 to N/S − to− 1, as part of
the switching is done by the MBSs.

In summary, by leveraging the speedup of the SRAMs on
FPGAs, we can reap the following benefits:

1. reduced number of packet buffers.

2. reduced input-queue length.

3. reduced number of VOQs in the input queues.

4. reduced complexity for both the input and output schedul-
ing.

We name the resulting switch fabric architecture, which
employs an array of memory-based subswitches, the Com-
bined Input and Grouped Crosspoint Queued (GCQ) switch.

3.2 The Shared Buffer Design
To allow access time sharing, the memories that imple-

ment the shared buffers in the crossbar should run S times
faster than the flit arrival rate. And the S input and output
ports are serviced in a time-multiplexing manner, as shown
in Figure 7. Now because the shared buffers in the cross-
bar are running at a different clock frequency, clock domain
crossing logic is needed both before and after the crossbar.

Figure 7: The structure of the shared buffer.

To achieve memory space sharing, a dynamic memory
management scheme is implemented using a Free Address
Pool, Output Pointer Queues and an Address Recycle Bin.
Each incoming data is provided an address out of the Free
Address Pool. The data is then written into the shared
buffer using allocated address. At the same time, this ad-
dress is pushed into destination Output Pointer Queues.
The output de-multiplexer uses pointers from the Output
Pointer Queues to access the shared buffer and sends data
to corresponding output ports. Using the Output Pointer
Queue structure, it is trivial to support multicast. The ad-
dress of each multicast data is pushed into multiple Output
Pointer Queues simultaneously, while only one copy of the
multicast data is stored in the shared memory. The Ad-
dress Recycle Bin keeps track of all references of each data
in the shared buffer. When all references of a data are sent
to the output, the address of that data is recycled to the
Free Address Pool.

3.3 Scalability
Using the shared buffer design, the GCQ switch can, in

theory, reduce the number of buffers in the crossbar by a
factor of S2. However, there are memory overhead associ-
ated with the shared buffer design. For example, it may
require multiple SRAMs to provide an aggregate bandwidth
of 2SR; the Free Address Pool, Address Recycle Bin and
Output Pointer Queues costs extra SRAMs to implement.
Assume the implementation of each shared buffer requires
P times more SRAMs compared to a single crosspoint buffer
in the CICQ swith, the actual memory requirement becomes
(N/S)2 · P . For example, if S = 4 and P = 4, there will be
a 75% saving in the memory resource.

Assuming a single SRAM can provide a maximum band-
width of B, each crosspoint buffer in the CICQ switch needs
to achieve a total bandwidth of 2R, thus requiring 2R/B
SRAMs. Similarly, each shared buffer in the GCQ switch
with a speedup of S costs 2SR/B SRAMS to implement. If
2R/B

�
1, each shared buffer needs S times more SRAMs

compared to a single crosspoint buffer. Therefore, P
�

S.
Otherwise if 2R/B � 1, each crosspoint buffer in the CICQ
switch still need at least 1 SRAM to implement, and the
overhead of each Shared Buffer becomes 2RS/B. Then the
total memory saving will be (1 − 2R/(SB)).

Example 2. The 18Kb dual-port BRAMS in Xilinx’s Virtex-
6 have a maximum frequency of 525 MHz, and a data width
of 36-bit, providing a total bandwidth of 37.8Gb/s. For a
10Gb/s line rate, the shared buffer of the GCQ switch can be
implemented with an SRAM overhead of 0.53S. For S = 8,
the memory saving is 93%.

4. HARDWARE IMPLEMENTATION
This section describes the implementation details of the

proposed switch. We first discuss optimizations that are
made in order to achieve a feasible hardware implementa-
tion. Later, we detail the hardware costs for different im-
plementions of the proposed design. We target a 10 Gb/s
link speed as it is and will likely continue to be widely used.
Throughout this section, we use Xilinx’s FPGA devices.

4.1 Clock and Memory Optimizations
Before hardware is implemented, the design parameter S

should be determined according to the target memory tech-
nology. The 18Kb Block SRAM (BRAM) available on Xil-
inx FPGAs has two physical ports and a data width of 36
bits when operates in the Simple Dual Port mode. The
BRAMs have an access time of around 2.5 ns on Virtex-6
(-1 speed grade) FPGA devices and 4 ns on Spartan-6 (-2
speed grade) devices. Assuming a minimum packet size of
40 bytes, the dual-port BRAMs can service up to 12 switch
ports on Virtex-6 devices and 8 ports on Spartan-6 devices.
However, it is impractical for FPGA designs to run at clock
frequencies as high as 400 MHz. To make a feasible hardware
design, we chose to have S = 4 and a data width of 32-byte,
which requires 8 BRAMs running at 160 MHz, amounting
to a total shared buffer size of 18 KB. With a 32-byte data
width, the flit arrival rate is 40 MHz.

As the port logic and shared buffers in the crossbar are
running at different clock frequencies, clock domain crossing
logic is needed both before and after the crossbar. The input
queues can be implemented as asynchronous FIFOs directly
to reduce the resource overhead. Due to the large buffer
size (18 KB) available in the shared buffers, the input queue
buffers only need small amount of memory space to account
for pipeline latencies. In order to save BRAMs, we used
distributed RAMs to implement all the input queues.

4.2 Dynamic Memory Management Optimiza-
tions

To achieve a frequency of 160 MHz, the dynamic memory
management logic for each shared buffer in the crossbar has
to be simple enough. As shown in Figure 7, besides the data
SRAMs, the dynamic memory management logic consists of
the Output Pointer Queues, Free Address Pool and Address
Recycle Bin. All data SRAMs operate in Simple Dual Port
mode, and require straight forward read and write control
logic. In current design, we assume First-Come-First-Serve
service model, so that the Output Pointer Queues can be im-
plemented as standard FIFOs. The Free Address Pool costs
a single BRAM to implement multiple free address queues,
and each input port is serviced in a time multiplexing man-
ner.

The Address Recycle Bin however is not as straight for-
ward especially when multicast support is required. For
multicast packets, only one copy of the data is stored in
the shared buffer, but could be accessed multiple times by
different output ports. Since different outputs are not syn-
chronous with each other, these multiple accesses could hap-
pen in different time slots. As a result, a counter is needed
for each data item to maintain reference status and do proper
address recycling.

A naive solution uses a bit vector to represent the desti-
nations of each memory location in the shared buffers, with
each bit corresponding to a specific output port. For every
data written to shared buffers, its associated destination vec-
tor is updated with ‘1’s, whereas each departing flit clears
a corresponding bit. For each departing flit, the Address
Recycle Bin checks if its destination vector becomes zero,
and determines if the address should be recycled into the
Free Address Pool. But the destination vectors are not easy

to implement because they are not small and have to be
accessed in parallel.

Example 3. In a 4 × 4 shared buffer, each destination
vector consists of 4 bits. The 18 KB shared buffer can store
up to 576 flits of 32-byte data and requires 576 destination
vectors, which is 2304 bits in total. In each time slot, a
maximum of 4 flits will leave the shared buffer. If these 4 flits
all read from the same memory location, the corresponding
destination vector has to be updated 4 times continuously.

Implementing the destination vectors using LUTs will in-
crease the area of core logic greatly and make it difficult to
meet timing. Although BRAM can be used to implement
large bit vector arrays, it has read and write latency of at
least 1 cycle, therefore do not support continuous updating.
This problem can be solved by leveraging the byte-enable
feature of the BRAM. Instead of representing each destina-
tion port with a single bit, one byte is used to denote a single
destination port. Then the bit vector becomes a byte vec-
tor. The continuous updates can be done with byte-enable
writes. In order for destination vectors to be checked after
each update, the BRAM has to be configured to work in the
“WRITE-FIRST” mode, so that each write to the BRAM
will result in the updated vector appearing in the output
port after certain latency. As a result, the Address Recycle
Bin can be implemented with a True-Dual-Port BRAM plus
a check logic in the output.

Figure 8: The Address Recycle Bin.

Figure 8 shows the implementation of destination vec-
tors using a True-Dual-Port BRAM. For each incoming data
written into the shared buffer, its corresponding destination
vector is updated through Port A of the BRAM. Each de-
parting flit will update a single byte in its destination vector
using Port B with valid byte-enable signals. The updated
vector will then appear in the output of Port B after a read
latency. Figure 9 depicts the timing diagram of a continu-
ous update operation. A stream of 4 updates is performed to
the same address in the BRAM using different byte-enable
signals. The updated data is streamed out after a latency
of 1 cycle. The check logic at the output port examines the
output data and generates a ‘Free’ signal when it finds that
the output data is equal to zero.

Figure 9: Timing diagram of a WRITE-FIRST SRAM.

Although feasible, the above method wastes a lot of mem-
ory space because one byte is used to represent the informa-
tion of a single bit. For Virtex-6 FPGAs, this problem can
be solved by exploiting the BRAM feature of independent
read and write port width. For example, we can configure

Port B of the BRAM in Figure 8 to have a write width of 1
bit and a read width of 4 bits. As a result, the byte-enable
signals are no longer needed and no memory area is wasted.

By examining the implementation details of all compo-
nents, we show that the dynamic memory management logic
of the shared buffer can be implemented with SRAMs and
built-in FIFOs.

4.3 Wire Optimizations
For large switch designs, the internal wire routing is a big

challenge. Considering a 16 × 16 GCQ switch with S = 4,
and a data width of 32 bytes, each input port requires a
256-bit bus, which needs to be broadcast to 4 shared buffers
in the same row of the crossbar. The entire switch requires a
4096-bit broadcasting bus. Given that the transceiver I/Os
are typically distributed across different I/O banks, those
broadcasting buses may need to travel a long distance and
consume many routing resources. To alleviate this problem,
we leverage the signal serialization method. As illustrated in
Figure 10, the 4 input data buses are serialized into a single
256-bit bus using a 4-to-1 multiplexer, and then connected
to 4 shared buffers. The serialized data bus has to run 4
times faster than the input data buses, at 160 MHz.

Figure 10: Wire optimization.

Signal serialization can reduce the width of the broadcast-
ing bus, but it does not help with the long distance wiring
problem. To cut the long wires down into shorter wires,
registers have to be inserted. And the broadcasting bus be-
comes a multi-stage pipeline. The shared buffers connected
to different stages of the pipeline therefore need to adjust
their data arrival latency accordingly.

4.4 Hardware Cost
We chose 2 different FPGA devices to evaluate the hard-

ware cost of the GCQ switch: Xilinx Virtex-6 XC6VLX240T-
1 and Spartan-6 XC6SLX150T-3. The Virtex-6-240T device
has a transceiver bandwidth of 158.4 Gb/s and 832 18Kb
BRAMs; the Spartan-6-150T device has a transceiver band-
width of 25.6 Gb/s and 268 18Kb BRAMs. Implementation
and analysis was performed using version 13.1 of the Xilinx
ISE Design Suite.

After applying the above described optimizations, the tool
successfully routed a 16 × 16 switch for the Virtex-6-240T
device and a 9 × 9 switch, with S = 3, for the Spartan-6-
150T device. For our current designs, we assume the logic
that transfers data into and out of the FGPA device through
transceiver I/Os already exists. And we focus on the on-chip
circuit implementation of the switch design. The resource
utilization is listed in Table 3.

The 16× 16 switch implemented on the Virtex-6 uses 224
18Kb BRAMs in total. As a comparison, a 16 × 16 CICQ
switch has 256 crosspoint buffers. For each crosspoint buffer
to run at 160 MHz, it requires at least 2 18Kb BRAMs
to provide the data width. This results in a total of 512
BRAMs. Therefore, the proposed switch architecture is able
to save 288 BRAMs for S = 4, which is 56% of the original
requirement.

In the Spartan-6 case, the 9 × 9 switch costs 95 18Kb
BRAMs in total. Compared to a 9 × 9 CICQ switch, which

Table 3: Resource Utilization.
Virtex6-240T Spartan6-150T

N 16 9
S 4 3
Data Width 256 bits 256 bits
Core Frequency 160 MHz 120 MHz
Latency 250 ns 250 ns
Registers 36945(12%) 27028(14%)
LUTs 49537(32%) 37285(40%)
BRAMs 224(27%) 95(36%)
BRAM Saving 288(56%) 67(41%)

requires at least 162 18Kb BRAMs to run at 120MHz, the
proposed architecture achieves a saving of 67 BRAMs (41%)
for S = 3. In Spartan-6, each 18Kb BRAM in Spartan-
6 FPGAs can be used as two independent 9Kb BRAMs,
enabling more efficient implementation of the control logic
in the core switch. For example, the Output Pointer Queues
and Free Address Pool favors smaller BRAMs with narrower
data width, because they only deal with small pointer size.
Therefore, the dynamic memory management logic can be
packed into fewer number of 18Kb BRAMs.

Both designs use many LUTs and registers to implement
the clock domain crossing logic, and the broadcasting data
buses. In total, the designs cost about 32% of total LUT re-
source of the target Virtex-6 device and 40% of the Spartan-
6 device. The cost of the clock domain crossing logic can be
further reduced by employing the source synchronous clock
domain crossing technique in future design. The transceiver
bandwidth is successfully saturated in both devices. The
efficient utilization of the hardware resource provides large
room for other applications, so that they can easily integrate
with the switch design.

Both implementations achieve a port-to-port latency of
250 ns, most of which is spent on the clock domain crossing
logic. But, we did not consider the latency of data going into
and out of the FPGA through the transceiver I/Os, which
normally has a total latency of around 50ns. Compared to
the ASIC design of Fulcrum’s FocalPoint FM4000 switch
published in 2009 [7], which has a latency of 300 ns, the
proposed design performs closely.

Since the proposed design is very symmetric in physical
layout and only simple control logic is involved, it is possi-
ble that the speed and quality of the Place & Route can be
greatly enhanced with the help of manually BRAM place-
ment. And a higher internal speedup can be expected. Fur-
thermore, the dynamic memory management logic of the
shared buffer in the crossbar is necesitated by the support
multicast traffic. If only unicast is required, the memory
overhead associated with the dynamic memory management
can be eliminated. And the proposed design will achieve
better resource saving as discussed in Section 3.3.

5. PERFORMANCE EVALUATION
Having validated the implementation feasibility with a

16x16 switch with 160Gps switching performance, which sat-
urates the bandwidth of the device available to us, we now
turn to evaluate the the strength and weakness of the general
GCQ switch architecture relative to those in the literatures,
in particular, the CICQ architecture.

5.1 Evaluation Setup
To evaluate switch architecture performance, we imple-

mented a cycle-accurate C model of the proposed switch ar-
chitecture, and integrated in to Booksim, a comprehensive
interconnection network simulator [1], supplied as a com-
panion for a classic textbook on the subject [8]. The simu-
lator provides standard traffic generators, different network
topologies and performance measurement facilities, there-
fore enabling the fair comparison of different architectures.

We compare proposed GCQ switch architecture with IQ,

OQ, and CICQ switch architectures. For GCQ, we provide
two variants: GCQ-S4, for internal speed up S = 4, and
GCQ-S8, for S = 8. Key simulation configuration settings
are summarized in Table 4. Here because for a flit to travel
from the input queues to the crossbar it is necessary to cross
clock domains, we set aside two cycles of delay. Same is true
for credit packets (for flow control). The switch radix is set
as 16, same as the one demonstrated in the previous sec-
tion. We also simulated small packet with size of 1 flit, and
size of 16 flits. The traffic is chosen as uniform traffic using
an independent and identical Bernoulli process. Finally, the
simulator is warmed up with traffic load before real mea-
surement is taken.

Table 4: Simulation settings.
Flit delay 2
Credit delay 2
N 16
Flit size 32 bytes
Packet size 1 flit, 16 flit
Traffic uniform
Network Topology fat tree
Routing Nearest common ancestor

For fair comparison, we assume all switch architecture
have the same total buffer space.

We study both the single switch (16x16) performance, as
well as network performance. The network topology is cho-
sen as a 3-level fat-tree, which contains 192 switches and 512
ports, resulting in a total of 5 Tb/s switching capacity.

5.2 Throughput Test
We first evaluate if the proposed switch is able to achieve

ideal throughput. In this experiment, we fix the buffer space
in the the crossbar, and sweep the different input queue sizes.
We set a single-flit buffer for each crosspoint for the CICQ
switch (CICQ-1flit). We set the equivalent (for equal total
buffer space) of 16-flit and 64-flit shared buffer for GCQ-S4
and GCQ-S8. Test results are shown in Figure 11 and 12
for different packet sizes. The horizontal axis captures the
depth of each input queue and the vertical axis captures the
throughput. We are interested in the “knees” of the curve
for different architectures.

Figure 11: Throughput test with single-flit packets.

5.2.1 Small Packet
Figure 11 shows the test results using traffic consists of

single-flit packets. Due to the flit traversing latency, when
the input-queue-depth is smaller than 4, all switches have
low throughput. The IQ switch has slightly higher through-
put than others at small input-queue-depths because it only
has a single stage of packet buffering inside the switch, while
others buffer each packet twice inside the switches.

When input-queue-depth increases to 32, all switches ex-
cept the IQ switch reach a saturation throughput close to
100%.

The CICQ switch has a much lower throughput than oth-
ers at an input-queue-depth of 8. It is because the flit trans-
ferring delay between input queues and the crossbar will
cause the input queue with small depth to overflow.

To see the small cross point buffer does cause problems, we
also show performance of CICQ switch with 4-flit crosspoint
buffers (CICQ-4flit): throughput does enhance.

The IQ switch has a saturation throughput fixed at about
58% due to the HOL blocking phenomenon.

5.2.2 Large Packet

Figure 12: Throughput test with 16-flit packets.

Figure 12 shows the test results using traffic consists of 16-
flit packets. With longer packets, there is higher demand on
congestion buffers, as it needs much larger packet buffers to
temporarily store multiple packets. The CICQ switch with
1-flit crosspoint buffer performs worst compared to other
switches when the input-queue-depth is 16, because there is
not enough packet buffer to resolve congestion.

The GCQ-S8 and OQ switches achieve very high through-
put even with small input queue sizes because their cross-
bar buffers or output-queue buffers are deep enough to re-
solve congestion. When input-queue-depth increases to 128-
flit and higher, the changes in saturation throughput of
all switches become very small, indicating that the perfor-
mance is now limited by the buffers in the crossbar or output
queues. with an input-queue-depth of 128, the total packet
buffer size of different switches is 2304 flits.

Figure 13: Throughput test with fixed IQ-depth.

5.3 Memory Efficiency
The above taught us that GCQ architecture is more “tol-

erant” on the input buffer space. Put it on another way, for
the same input buffer space, it requires less packet buffers
in the crossbar in order to achieve full throughput.

In this experiment, we fix the input-queue-depth as 16
flits. We then sweep the different cross-point buffer size and
compare the throughput. For example, for a total buffer
size of 2304 flits, we dedicate 256 flits of space the input
queues, which left us with 2048-flit total space for others.
For the CICQ switch, that means a maximum of 8-flit in

each crosspoint buffer, while the GCQ-S4 and GCQ-S8 can
have a maximal buffer size of 128 and 512 flits respectively.

Using traffic of 16-flit packets, the throughput of differ-
ent switches with different total buffer sizes is shown in
Figure 13. The OQ switch arrives at a stable result with
a total buffer size of 768 flits. The GCQ-S8 achieves the
same throughput of the OQ switch at a total buffer size of
2304 flits. The GCQ-S4 performs slightly worse than the
OQ switch with a total buffer size of 2304 flits. The CICQ
switch performs much worse due to its N2 crosspoint buffer
requirement. Because the total buffer size will increase fast
with a small increase in each of its crosspoint buffer, there
is not enough buffer depth to resolve congestion when the
input-queue-depth is also small.

It is interesting to note that to achieve 80% throughput,
the CICQ requires 2304 flit space, whereas the GCQ-S4 re-
quires only 512 flit space.

5.4 Latency Test
We are also interested in latency result of different switch

architectures under different traffic loads. We chose to com-
pare the CICQ switch with 4-flit crosspoint buffer, the OQ
switch with 1024 flits of total output-queue buffers as well
as the GCQ switch with S = 4 and different sizes of shared
buffers from 8 flits to 64 flits. The input-queue-depth of dif-
ferent switches are set to 16 flits. The IQ switch with 80 flits
in each input queue is also tested. Test results are shown in
Figure 14 and 15. The horizontal axis captures the injected
traffic load and the vertical axis captures the average packet
latency.

Figure 14: Latency test witch single-flit packets.

Figure 14 shows the test results using traffic consists of
single-flit packets. The average latency of different switches
is quite stable for a traffic load lower than 95%. For traffic
loads higher than 95%, the GCQ-S4-64flit switch achieves
the same performance as the OQ switch. The GCQ-S4-8flit
switch performs closely to the CICQ switch. However, the
total buffer size of the tested CICQ switch is more than 3
times larger than that of the GCQ switch with an 8-flit size
of shared buffers.

Figure 15: Latency test witch 16-flit packets.

Figure 15 shows the test results using traffic consists of
16-flit packets. Again, the GCQ-S4-8flit switch performs
closely to the CICQ switch. And the GCQ-S4-64-flit switch

performs closely to the OQ switch. These tests demonstrates
that, with a small internal speedup of 4, the GCQ switch is
able to approach the ideal OQ switch performance. And
the GCQ switch is much more memory efficient in terms of
performance than the CICQ switch.

Looking from another angle, with the same total buffer
space, the “knees” of the GCQ curve is much more later
than that of the CICQ curve. In other words, the GCQ
will sustain low latency at much higher traffic load than the
CICQ.

5.5 Network Performance
For scalability test, we constructed a 3-level fat-tree using

different switches as the base element. As is shown in Fig-
ure 16, the fat-tree has 192 switches and 512 switch ports.
Assume a 10 Gb/s port speed, this fat-tree provides a total
capacity of 5 Tb/s. The Nearest Common Ancestor with
random output selection is used as the routing algorithm in
the fat-tree. A packet will go through a maximum of 5 hops
to reach any destination port in the tree. Same as previous
tests, we use uniform traffic to test the performance of the
fat-tree, and results are shown in Figure 17 and 18.

Figure 16: The Fat-tree switch network.

Figure 17 plots the test results using traffic consists of
single-flit packets. The fat-trees constructed from different
switch elements exhibit similar performance features as their
base switches, but have higher packet latency. The GCQ-
S4-32flit fat-tree achieves almost the same performance as
the GCQ-S4-64flit as well as OQ fat-trees, which indicates
the GCQ switch with a shared buffer size of 32 flits already
has enough packet buffer for fat-tree topology in this test.
The fat-tree constructed from the CICQ switch performs
closely to the GCQ-S4-16flit fat-tree when the traffic load
is high. The IQ fat-tree saturates at a traffic load of about
60%, which is similar to the single switch performance.

Figure 17: Fat-tree test witch single-flit packets.

Figure 17 shows the test results using traffic consists of
16-flit packets. The GCQ-S4-8flit, GCQ-S4-16flit and CICQ
fat-trees quickly saturate at a traffic load of around 60%, be-
cause there are not enough buffer depth.The IQ fat-tree ben-
efits from the long packet traffic and saturates at around 65%
traffic load. The GCQ-S4-64flit fat-tree performs closely to
the OQ fat-tree with a saturation throughput of approx-
imately 85%. These results demonstrate that, the GCQ

switch with a shared buffer size of 64 flits performs closely to
the ideal OQ switch with the same total packet buffer size,
and is less sensitive to changes of burst length of the traffic.

Figure 18: Fat-tree test witch 16-flit packets.

6. CONCLUSION
In this paper, we describe a new switch fabric organization

and argue its merits against other organizations in general,
the combined input and crosspoint queued (CICQ) switch
in particular. The proposal was demonstrated by an im-
plementation of a single-chip 16x16 switch fabric, reaching
160Gps switching capacity. This is the largest permissible
for the Virtex6-240T device available to us on a ML605 de-
velopment board, running at a modest frequency of 40Mhz
for port processing logic, and 160Mhz for the BRAMs.

We now return back to our question raised in the begin-
ning of the article: is it possible to implement a single-chip
switch on FPGA that saturates its transceiver bandwidth?

Consider the largest, the latest (not yet shipped, but ad-
vertised) Xilinx Virtex-7 XC7VH870T device, which has a
maximum transceiver bandwidth of about 1.4 Tbps (with
72 13.1Gps links and 16 28.05Gps links), and the maximum
frequency of 600 MHz for 2820 18-Kb, 36-bit wide dual-port
BRAMs [2]. For ease of calculation, consider the implemen-
tation of a high radix, 100x100 switch with 10Gps link speed,
running 400Mhz for its BRAMs.

For CICQ, each cross point buffer requires 1 BRAM, there-
fore a total of at least 10,000 BRAMs, not including input
buffers. This is far from being possible.

In contrast, with the proposed GCQ architecture with a
speed up of S = 8, each Shared Buffer requires 6 BRAMs,
therefore a total of 1014 BRAMs, about half of what is avail-
able on the device.

7. ACKNOWLEDEGEMENTS
The authors like to thank Canwen Xiao for his critiques

and help in the network simulation. The authors also like
to thank the support of National Sciences and Engineering
Research Council of Canada, as well as China Scholarship
Council for the first author.

8. REFERENCES
[1] Booksim interconnection network simulator.

http://nocs.stanford.edu/cgi-
bin/trac.cgi/wiki/resources/booksim.

[2] Xilinx virtex-7 data sheet.
http://www.xilinx.com/support/documentation/data_
sheets/ds183_Virtex_7_%Data_Sheet.pdf.

[3] F. Abel, C. Minkenberg, R. P. Luijten, M. Gusat, and
I. IIiadis. A four-terabit packet switch supporting long
round-trip times. 2002.

[4] Actel, Inc. Designing high-speed ATM switch fabrics by
using Actel FPGAs.
http://www.actel.com/documents/hispeedatm an.pdf,
1996.

[5] Altera, Inc. Integrating 100-GbE switching solutions on
28-nms fpgas. http://www.altera.com/literature/wp/wp-
01127-stxv-100gbe-switching.pdf,
2010.

[6] N. Binkert, A. Davis, N. P. Jouppi, M. McLaren,
N. Muralimanohar, R. Schreiber, and J. H. Ahn. The role
of optics in future high radix switch design. In Proceedings
of the 38th annual international symposium on Computer
architecture, ISCA ’11, pages 437–448, New York, NY,
USA, 2011. ACM.

[7] U. Cummings, D. Daly, R. Collins, and V. Agarwal.
Fulcrum’s FocalPoint FM4000: A scalable, low-latency 10
gige switch for high-performance data centers. In 17th IEEE
Symposium on High Performance Interconnects, 2009.

[8] W. J. Dally and B. Towles. Principles and Practices of
Interconnection Networks. Morgan Kaufman, 2004.

[9] W. E. Denzel, A. P. J. Engbersen, and I. Iliadis. A flexible
shared-buffer switch for ATM at Gb/s rates. Computer
Networks & IDSN Systems, 27:611–624, January 1995.

[10] A. P. J. Engbersen. Prizma switch technology. IBM Journal
of Research and Development, March, 2003.

[11] S. Iyer. Load balancing and parallelism for the internet.
PhD. Thesis, Standford University, July, 2008.

[12] S. Iyer and N. McKeown. Using constraint sets to achieve
delay bounds in CIOQ switches. IEEE Communications
Letters, 7(6), June, 2003.

[13] Y. Kanizo, D. Hay, and I. Keslassy. The crosspoint-queued
switch. In IEEE International Conference on Computer
Communications, Rio de Janeiro, Brazil, 2009.

[14] M. J. Karol, M. G. Hluchyj, and S. P. Morgan. Input vs.
output queuing on a space-division packet switch. IEEE
Transactions on Communication, 35(12):1347–1356, 1987.

[15] J. Kim, W. J. Dally, B. Towles, and A. K. Gupta.
Microarchitecture of a high-radix router. In 32nd Annual
International Symposium on Computer Architecture, New
York, NY, USA, 2005.

[16] A. W. Lockwood, N. McKeown, G. Watson, G. Gibb,
P. Hartke, J. Naous, R. Raghuraman, and J. Luo.
NetFPGA - an open platform for gigabit-rate network
switching and routing. In IEEE Microelectronic Systems
Education, San Diego, CA, USA, June 2007.

[17] N. McKeown. Scheduling algorithms for input-queued cell
switches. PhD. Thesis, University of California at
Berkeley, 1995.

[18] N. McKeown, M. Lzzard, A. Mekkittikul, W. Ellersick, and
M. Horowitz. The tiny tera: A small high-bandwidth
packet switch core. In Proceedings of Hot Interconnects IV.

[19] N. McKeown, A. Mekkittikul, V. Anantharam, and
J. Walrand. Achieving 100% throughput in an input queue
switch. In IEEE International Conference on Computer
Communications, San Francisco, CA, USA, 1996.

[20] C. Minkenberg and T. Engbersen. A combined input and
output queued packet switched system based on PRIZMA
switch-on-a-chip technology. IEEE Communication
Magazine, 38:70–77, 2000.

[21] D. Simos. Design of a 32x32 variable-packet-size buffered
crossbar switch chip. MSc. Thesis, University of Crete,
July, 2004.

[22] Y. Tamir and G. Frazier. High performance multi-queue
buffers for VLSI communication switches. In 15th Annual
International Symposium on Computer Architecture, HI,
USA, June 1988.

[23] Xilinx, Inc. High-speed buffered crossbar switch design
using Virtex-EM devices.
http://japan.xilinx.com/support/documentation/
application_notes/xapp240%.pdf, 2000.

[24] Xilinx, Inc. Building crosspoint switches with
CoolRunner-II CPLDs. http://www.xilinx.com/support/
documentation/application_notes/xapp380.p%df, 2002.

[25] K. Yoshigoe, K. Christensen, and A. Jacob. The RR/RR
CICQ switch: Hardware design for 10-Gbps link speed. In
IEEE International Performance, Computing, and
Communications Conference, 2003.

