
System Level Specification Beyond RTL

Tutorial

Design and Test Conference in Europe

Jianwen Zhu

Electrical and Computer Engineering

University of Toronto

March 4th, 2002

jzhu@eecg.toronto.edu

http://www.eecg.toronto.edu/˜jzhu

DATE 2002 Tutorial Copyright c© Jianwen Zhu, 2002, ECE, Univ. of Toronto 1



The Language Myths

The Language Panacea Myth

Language is only as good as the model it captures

Language is only as good as the tool that supports it

The Single Language Myth

As few as possible, but not fewer

The Standard Language Myth

Another billion-dollar mistake?

The C/C++ Language Myth

New semantics for old constructs introduce new language

DATE 2002 Tutorial Copyright c© Jianwen Zhu, 2002, ECE, Univ. of Toronto 2



Outline

Overview

Design models

Problems of HDLs

Languages beyond RTL

DATE 2002 Tutorial Copyright c© Jianwen Zhu, 2002, ECE, Univ. of Toronto 3



Languages in Traditional CAD Infrastructure

Models

Functional model

Structural model

Layout model

Metric model

Languages

Standardized

Design Database

Largely proprietary, unintegrated

Tools

Model
(Function)

Language
(VHDL/Verilog...)

Compiler

Database

API

Tools

Model
(Structure)

Language
(EDIF...)

Compiler

API

Model
(Layout)

Language
(CIF/GDSII...)

Compiler

API

DATE 2002 Tutorial Copyright c© Jianwen Zhu, 2002, ECE, Univ. of Toronto 4



Languages in IP-Centric CAD Infrastructure

IP Components

Any reusable design artifacts

Soft, Firm, Hard

Functional, Architectural, Physical

Torontoipsuite Infrastructure

Standardization at binary level

Definition of IP creation API with

COM interfaces

IP API Implemented by IP

Integrator’s CAD framework

IPs are remote software

components invoking IP API via

middleware

IP Vendor IP Vendor IP Vendor

IP Integrator

Model

Language

Compiler

IP Server

release

Distributed
Database

IP API

Model

Language

Compiler

IP Server

release

IP API

Model

Language

Compiler

IP Server

release

IP API

Tools

DATE 2002 Tutorial Copyright c© Jianwen Zhu, 2002, ECE, Univ. of Toronto 5



New Challenges for Language Development

The Content

Functional IP

Redefining RTL sign-off

Raising abstraction level

beyond RTL

Non-Functional IP

Redefining physical sign-off

Introducing architectural IP

The Form

What are the right languages?

How to incorporate legacy design?

Different models of an IP are

related: How do languages cross

reference each other?

DATE 2002 Tutorial Copyright c© Jianwen Zhu, 2002, ECE, Univ. of Toronto 6



Outline

Overview

Design models

Problems of HDLs

Languages beyond RTL

DATE 2002 Tutorial Copyright c© Jianwen Zhu, 2002, ECE, Univ. of Toronto 7



Functional Model

Signals: function from time to value

Goal: establish relationship between system input and output signals

Denotational semantics

Operational semantics: describe how system evolves with the
reference settime

Identify system stateS

ExpressO as trivial function ofS andI

Key: models state change

dS

dt
= f(S, I)

O = g(S, I)

DATE 2002 Tutorial Copyright c© Jianwen Zhu, 2002, ECE, Univ. of Toronto 8



Functional Model: Finite Automata

FSM = 〈S, f : S 7→ S, s0〉
Application

Software: lexical analysis, real time control,

UI

Hardware: random logic

Advantage: general (Turing complete)

Disadvantage: too general (state explosion)

DATE 2002 Tutorial Copyright c© Jianwen Zhu, 2002, ECE, Univ. of Toronto 9



Functional Model: FSMD

Separation of Control and
Computation

Object view: partition state space
into

Control objectsS

Data objectsD

Dynamic viewf :

S(next) = f(S, D)

Functional viewg:

D(next) = g(S, D)

Finite State Machine with Data

(Timed, untimed)

Refinement of data object
modeling

Object Modeling Technology

(OMT, Rumbaugh 1991)

Unified Modeling Language

(UML)

control object

data objectstate transition

data flow

DATE 2002 Tutorial Copyright c© Jianwen Zhu, 2002, ECE, Univ. of Toronto 10



Functional Model: Concurrent FSMD (CFSMD)

Separating threads of control

CFSMD =

〈FSMD1, ...FSMDn〉
Processes are interacting:

Communication: processes

sharing computational states

Synchronization: processes

sharing control states

Y

A

B

C

D

E

F

G

b

u

r

a
s

a

comm.

synch.

DATE 2002 Tutorial Copyright c© Jianwen Zhu, 2002, ECE, Univ. of Toronto 11



Functional Model: Hierarchical Concurrent FSMD

State chart (Harel 1987)

Each control state can be recursively defined by another machine.

Program state machine (PSM, Gajski et. al. 1994)

Each object can be a program, or sequential process.

Y

A

B

C

D

E

F

G

b

u

r

a
s

a

comm.

synch.

H

DATE 2002 Tutorial Copyright c© Jianwen Zhu, 2002, ECE, Univ. of Toronto 12



Architectural Model

Micro-architecture Model

Enable the mapping of FSMD

model to software or ASIC core

Instruction set

semantics, encoding, assembly syntax

Application Binary Interface

(ABI):

calling convention, relocation, dynamic

linking

Instruction-level parallelism (ILP)

temporal and spatial

Macro-architecture Model

Enable the mapping of application

to system-level architecture

On-chip network

High-level communication

protocol

RTOS abstraction

System configuration

Testing architecture

DATE 2002 Tutorial Copyright c© Jianwen Zhu, 2002, ECE, Univ. of Toronto 13



Physical Model

Enable the generation of silicon masks

Logic and Wire planning

Delay metric

Power metric

Constraints

Layout

DATE 2002 Tutorial Copyright c© Jianwen Zhu, 2002, ECE, Univ. of Toronto 14



Outline

Overview

Design models

Problems of HDLs

Languages beyond RTL

DATE 2002 Tutorial Copyright c© Jianwen Zhu, 2002, ECE, Univ. of Toronto 15



RTL Abstraction

Importance of RTL

Semantics: Timed FSMD

Syntax: Synthesizable VHDL/Verilog (IEEE)

Established industrial standard for ASIC design

Backend interface for higher level design

de factosoft IP exchange standard

Productivity improved by moving to behavioral/system level

Better language evenat RTL can improve productivity

DATE 2002 Tutorial Copyright c© Jianwen Zhu, 2002, ECE, Univ. of Toronto 16



Problems of HDLs: Simulation Semantics

HDL designed for simulation

How to synthesize delay

How to synthesize signal

synthesis subset

Problematic constructs excluded

Infer hardware that exhibits discrete event semantics

a

b c

...
if( a = ’0’ ) then
    c <= b;
end if;
...

DATE 2002 Tutorial Copyright c© Jianwen Zhu, 2002, ECE, Univ. of Toronto 17



Problems of HDLs: Design Reuse

Hardware reuse by component instantiation

Not sufficient for sequential components

No interface protocol captured

start done

din dout
Comp

Component user’s
   interface code

u1 : Comp( start, done, din, dout );
...
...
start <= ’1’;
for i in 0 to 8 do
    wait until clk’event and clk = ’1’;
    din <= a(i);
end for;
while( done = ’0’ ) do
    wait until clk’event and clk = ’1’;
    start <= ’0’;
end while;
while( done = ’1’ ) do
    wait until clk’event and clk = ’1’;
    b(j) := dout;
    j := j + 1;
end while;
...

DATE 2002 Tutorial Copyright c© Jianwen Zhu, 2002, ECE, Univ. of Toronto 18



Problems of HDLs: Type System

Type system: most effective error prevention in software

Untyped system in synthesizable HDL

enumerate type

bit vector

More abstract data type needed at RTL level

DATE 2002 Tutorial Copyright c© Jianwen Zhu, 2002, ECE, Univ. of Toronto 19



Problems of HDLs: Memory Abstraction

Any interesting application
involves the use of memory

Multimedia: data sample storage

Networking: routing table,

protocol states

No abstraction of memory at RTL
level

Interface protocol with memory

Dynamic allocation: pointer

concept

Address calculation: array and

record access

... 1
struct { 2

int field1; 3
struct { 4

char field3; 5
} field2; 6

} *p1; 7
short a, *p2; 8
char b[10]; 9

10
... 11
a = 0; 12
b[3] = ’a’; 13
p1->field1 = 1; 14
p1->field2.field3 = 2; 15
p2 = &a; 16
... 17

DATE 2002 Tutorial Copyright c© Jianwen Zhu, 2002, ECE, Univ. of Toronto 20



Outline

Overview

Design models

Problems of HDLs

Languages beyond RTL

DATE 2002 Tutorial Copyright c© Jianwen Zhu, 2002, ECE, Univ. of Toronto 21



Approaches for Language Definition

Library Extension

Approach: new C++ class library,

wrapper of IP API

Example: OCAPI

Semantics Extension

Approach: new C++ class library,

new semantics

Examples: SystemC, Cynlib

Syntax Extension

Approach: extension of existing

language

Examples: SpecC, Superlog,

VHDL+, MetaRTL

Extensible Language

Approach: language with

extensible semantics

Examples: XML, Rosetta, Babel

DATE 2002 Tutorial Copyright c© Jianwen Zhu, 2002, ECE, Univ. of Toronto 22



One’s Counter “System”

Not really a big system (a.k.o hello world)

Use it to compare different languages

Disclaimer: an example taken from

Schaumont et. al DAC’99

Input: IB

Output: OB

Two states: s0, s1;

Three RTL operations: rst, inc, hold

S0

S1

rst

!C / holdC / inc

register C;
register N;
input IB;
output OB;

rst :   N = 0;
         C = IB;

inc:   N = N + 1;
         C = IB;
         OB = N;
hold: C = IB;
         OB = N;

DATE 2002 Tutorial Copyright c© Jianwen Zhu, 2002, ECE, Univ. of Toronto 23



Library Extension: OCAPI (DAC’99 paper)

Developed at IMEC, Belgium

A success combined with SOC++

methodology

A C++ wrapper around IP API

Captures FSMD model

Leverage C++ inheritance for

“behavioral” reuse

http:

//www.imec.be/ocapi/

clk ck; 1
sig C(ck, 0), N(ck, 0), input, output; 2
bus IB, OB; 3

4
sfg rst; 5
N = 0; C = inputs; 6
rst << in(input, IB); 7

8
sfg inc; 9
N = N+1; C = input; output = N; 10
inc << in(input, IB) << out(output,OB); 11

12
sfg hold; 13
C = input; output = N; 14
hold << in( input, IB) << out(output,OB); 15

16
fsm ones cnt; 17
state S0, S1; 18
ones cnt << deflt(S0); 19
ones cnt << S1; 20
S0 << always << rst << S1; 21
S1 << cnd(C) << inc << S1; 22
S1 << !cnd(C) << hold << S1; 23

DATE 2002 Tutorial Copyright c© Jianwen Zhu, 2002, ECE, Univ. of Toronto 24



Library Extension: Pros and Cons

Pros:

Functional model can be captured

in OO fashion

But it doesn’t capture an OO model

No need for compiler frontend
Simulation can be done by
interpretation
Simulation can be done by code
generation

Synthesis can be done by code

generation

Well defined synthesis semantics

Cons:

Stretches the C++ syntax to the

limit

Specification not as concise as

approaches shown later

DATE 2002 Tutorial Copyright c© Jianwen Zhu, 2002, ECE, Univ. of Toronto 25



Semantics Extension Example: SystemC (Version 2.0)

The Open SystemC Initiative

A rich set of data types

Bit-true types

Fixed-point types

RTL: ports, signals, clocks

Modules

Processes

Method processes

Thread processes

Clocked Thread processes

http://www.systemc.org

SC MODULE( ones counter ) { 1
enum State S0, S1 ; 2
sc in<bool> IB; 3
sc out<int> OB; 4
sc in clk CLK; 5
sc signal<int> C, N; 6
sc signal<State> state; 7
SC CTOR( ones counter ) { 8

SC CTHREAD( entry, CLK.pos() ); 9
state = S0; 10
} 11

void entry( void ) { 12
switch( state ) { 13
case S0 : N = 0; C = IB; // reset 14

state = S1; 15
case S1 : if( C == 0 ) // hold 16

C = IB, OB = N; 17
else // inc 18

C = IB, OB = N; 19
state = S1; 20
} 21

wait(); 22
} }; 23

DATE 2002 Tutorial Copyright c© Jianwen Zhu, 2002, ECE, Univ. of Toronto 26



Semantics Extension: Pros and Cons

Pros: Expressive power of C++:

Simulator comes for “free”

Ease of extension

Leverage of C/C++ legacy design

SystemC
Strong support from EDA leader

A fast growing user community

Cons: Expressive power of C++:

Synthesis tool does not come for

free

Another synthesis subset?
Inheritance?
Multiple-dispatch?
Runtime typing?

Exception handling?

Another synthesis superset?
Have to define semantics for design
patterns/style

Ease of extension: standardization

efforts

DATE 2002 Tutorial Copyright c© Jianwen Zhu, 2002, ECE, Univ. of Toronto 27



Syntax Extension Example: SpecC (Version 2.0)

SpecC Technology Open

Consortium

A rich set of data types

Bit true data types

RTL: events, buffered variables,

signals

Statements

RTL: fsmd

Concurrency: par, pipe

State transition: fsm

Communication: channel

Exception and interrupt

http://www.specc.org

behavior ones counter( 1
signal in bool CLK, 2
signal in bool IB, signal out int OB 3
) { 4
buffered[CLK] int C, N; 5

6
void main( void ) { 7

fsmd( clk ) { 8
S0 : 9

N = 0; C = IB; // reset 10
goto S1; 11

S1 : 12
if( C == 0 ) // hold 13

C = IB, OB = N; 14
else // inc 15

C = IB, OB = N; 16
goto S1; 17

} 18
}; 19

DATE 2002 Tutorial Copyright c© Jianwen Zhu, 2002, ECE, Univ. of Toronto 28



Syntax Extension Example: MetaRTL (DATE’00)

A meta syntax for extension

An object-oriented, polymorphic

type system

Fields 7→ Storage

wires: in, out, inout, wire

registers:latch, reg

memory: normal fields

Methods7→ Logic

Assignment: predicated

connection semantics

Method dispatch: protocol inlining

Statement: logic

State label: state boundary

public class ones counter { 1
in clock; 2
in bit IB; 3
out int OB; 4
positive reg int C( clk), N( clk ); 5

6
always positive main( clk ) { 7

: N = 0; C = IB; // reset 8
for( ; ; ) { 9

: if( C == 0 ) // hold 10
C = IB, OB = N; 11

else // inc 12
C = IB, OB = N; 13

} 14
} 15

} 16

DATE 2002 Tutorial Copyright c© Jianwen Zhu, 2002, ECE, Univ. of Toronto 29



Syntax Extension: Pros and Cons

Pros

Transparent simulation process

Synthesis semantics can be well

defined

Leverage of C/C++ legacy design

Cons

Requires a compiler for simulation

Requires a separate frontend for

debugging

Learning curve: new syntax new

semantics

Not extensible

DATE 2002 Tutorial Copyright c© Jianwen Zhu, 2002, ECE, Univ. of Toronto 30



Extensible Language Example: Rosetta

System-Level Design Language

Standard (under Accellara)

The language substrate: meta
language

Type system

Component, facet, domain, item

Domain-specific models

Logic and mathematics

Axiomatic state based

Finite state

Infinite state

Discrete and continuous time

Constraints

Mechanical

Pros

Can specify functional model of

heterogeneous systems

Can specify non-functional models

Allows the interaction of models

Cons

Hard to incorporate legacy design

Domain completeness

Complexity of domain interaction

http://www.sldl.org

DATE 2002 Tutorial Copyright c© Jianwen Zhu, 2002, ECE, Univ. of Toronto 31



Extensible Language Example: Babel

Developed at University of Toronto

Focus only on Non-functional model

A general-purpose database language

Non-linear: captures arbitrary graph of data

Extensible: Type system to define

domain-specific data model

Specification are checked using type

inference engine

Domain-specific plug-ins to compile spec

into IP

Babel Langauge

Babel Compiler

Babel Plug-ins

Data
Model

Type
System

IP
Spec

Expr
System

Parser

Type Inference
Engine

ISA Domain
Plug-in

ABI Domain
Plug-in

ILP Domain
Plug-in

DATE 2002 Tutorial Copyright c© Jianwen Zhu, 2002, ECE, Univ. of Toronto 32



Conclusion

System-level design calls for the use of “new” languages for system

specification

IP-based design calls for the use of “new” languages for IP

component specification

Languages need to be evaluated under the context of models,

infrastructure, tools and methodology

Suggestion:

Be patient: the new system-level languages will improve

Keep an open mind: research community will continue to contribute

DATE 2002 Tutorial Copyright c© Jianwen Zhu, 2002, ECE, Univ. of Toronto 33


