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Abstract

In its most general sense, intellectual property compo-
nents (IPs) refer to any design artifacts that are reusable.
While the specification of the functional IPs, such as behav-
ioral and RTL specifications have been widely investigated,
the specifications of others, such as timing, constraints,
layouts and architectures are largely ad hoc. This leads
to different standard or proprietary file/database formats
with interoperatability problems, which eventually hinder
the distribution and integration of IPs. In this paper, we
address the difficult problem of integrating semantically di-
verse non-functional IPs by the use of a new, extensible lan-
guage called Babel. Despite its simple 1-page grammar,
Babel is frontend for a powerful IP-based design infras-
tructure. We demonstrate the effectiveness of our approach
by two case studies, one for the creation of parameterized
memory IPs and one for the creation of processor IPs.

1. Introduction

It is generally felt that the complexity involved in
systems-on-chip design can only be tamed by intellectual-
property (IP) based design. An IP can be intuitively in-
terpreted as any piece of design artifact that is reusable in
space (by other groups or companies) or time (in subsequent
projects). An IP infrastructure that helps define and dis-
tribute these reusable artifacts is essential to a successful IP
integration methodology. Without such an infrastructure, IP
users tend to spend more time understanding the third-party
IPs than creating their own. Without such infrastructure cre-
ated as a standard, IP users tend to spend more time solving
the interoperability problem than the design problem.

Existing standard bodies seem to focus more on the
“standard”, rather than the “infrastructure” aspect of the
much needed infrastructure standard. Effort has been heav-
ily invested in establishing an agreement on what the ex-
pected IP-deliverables are and what the corresponding file
formats are. Not surprisingly, these standards reuse many

de facto standard formats, often created by the dominant
EDA vendors. While these formats are certainly adequate to
capture the design information, the key problem is that they
are bloated with information not relevant to the IP users.
This leads to serious security problems, as the IP providers
are not necessarily willing to reveal the design information.

With the observation of this over-specification problem,
we created an experimental IP-infrastructure, called ipsuite,
which focuses on the interface between the IP providers
and IP users by abstracting away the design information
irrelevant to the IP users, even though it may be essential
to re-produce the IP. This interface is defined by a set of
APIs, which we will elaborate in Section 3. While cre-
ating an IP, or using an IP, is as easy as writing C code
that makes local or remote API calls in our infrastructure,
this approach is often cumbersome for the IP vendors and
therefore a language frontend is needed. Much effort has
been devoted to the development of functional specifica-
tion languages based on models of computations. However,
such languages cannot be readily applied to the other im-
portant aspects of IPs, which are data-centric rather than
computation-centric. Defining a universal language for the
specification of non-functional IP is challenging in that the
IP infrastructure needs to integrate information with com-
pletely different yet interacting semantics. To make things
worse, the IP infrastructure, and therefore its frontend lan-
guage, has to be extensible in order to accommodate the
rather rapid advancement of technology.

In this paper, we demonstrate our experimental language,
called Babel, to address this difficult challenge. The impor-
tant goals we manage to achieve in this language are sim-
plicity, since the definition of its grammar can be fit in only
one page; expressiveness, since the type system of the lan-
guage can be used to define data model of arbitary complex-
ity; and extensibility, since new IP models can be defined
without changing the language syntax.

In the sequel, we briefly review the related work in Sec-
tion 2. While it is not the focus of this work to define our IP
infrastructure, we give enough detail in Section 3 given its
relevance. We describe in detail the Babel language in Sec-



tion 4. In Section 5, we present two case studies, one for the
creation of parameterized hard IPs, and one for the creation
of processor IPs, under our IP-centric design environment.

2. Related Work

Since languages targeting system-on-chip design are
badly needed, many proposals from academia, industry
as well as standard bodies have emerged. The system
level design language (SLDL) Rosetta [1], can be consid-
ered a natural step after IEEE’s effort for standardizing
VHDL/Verilog. Rosetta tries to establish a language sub-
strate where different semantical domains, each of which
represents a model of computation, can interact with each
other. Another trend in SLDL is to leverage the legacy
of software programming languages C/C++ by extending
it to handle hardware as well. For example, CynApps an-
nounced its Cynlib [2], a C++ class library which provides
features so that C++ can be used to model hardware. The
Open SystemC Initiative, announced a similar library called
SystemC [3] [4]. Another implementation with arguably su-
perior simulation performance is the OCAPI library [5] de-
veloped by IMEC. The SpecC system level design language
[6] supports protocol level component reuse, although it
lacks the polymorphic type system desired. With its pow-
erful type systems, the OpenJ language [7] has provided a
language framework for experiments of system level design
languages, although it did not explicitly define an RTL ab-
straction.

The Babel language is a complementary effort to SLDL
research since it specifically addresses the specification of
non-functional aspects of the reusable design components.
In that sense, Babel shares much of its design goal and ar-
chitecture with XML, an extensible language for internet
document, which has become popular recently [8]. Other
than being more concise, the advantage of Babel over XML
in the context of IP specification is that Babel contains a
very expressive type system, which allows the precise def-
inition of data models. In addition, for IP integration tools,
a “type sound” Babel specification is easier to process than
untyped file formats.

3. IP Infrastructure

Many IP companies ran out of steam in a few years de-
spite their promising starts. One of the fundamental reasons
for a rather obviously viable business model to fail is the
lack of standardized infrastructure support from the EDA
industry. Today’s design frameworks offered by EDA com-
panies are monolithic: they consists of a set of proprietary
tools manipulating a proprietary design database, typically
mapped to the UNIX file system with tens of proprietary file
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Figure 1. ipsuite infrastructure.

Flexibility Treating IPs software components allow bi-directional com-
muncation between design tools and IPs.

Abstraction IPs do not have to carry irrelevant implementation detail,
which can be left to the integration framework.

Security Firewall-like proctocols can be supported by the interfaces.
Deployability IPs can be deployed by vendor using standard middleware

framework.
Interoperability Abstract and hence simple interfaces are easy to be standard-

ized.

Table 1. ipsuite features.

formats. While the standardization efforts are underway in
the semiconductor industry [9] to define IP deliverable for-
mats, the cost of using an IP sometimes exceeds the cost
of creating them, and hence IPs are rather referred to as
“Intense Pain” by many [10]. This is in contrast to the soft-
ware industry, where an application binary interface (ABI)
is defined for every platform to make sure software libraries
from different vendors can be linked to form an application.
Middleware standards such as CORBA, DCOM and Java
went one step further by allowing software components to
collaborate across different platforms.

To address the above issues, we have created a new
component-based EDA software infrastructure, called ip-
suite. A wide departure from the traditional tool-centric
EDA environment, ipsuite contains three types of primary
elements which collaborates to design system-on-chip: the
facets, the domains and the IPs, as shown in Figure 1. IPs
in ipsuit are in the form of dynamically loadable software
components provided at the IP vendor site. When loaded
and invoked via an access interface, an IP create in mem-
ory a facet at the IP integrator site. Each facet represents
a particular view of a design component such as behavioral
facet and layout facet. IPs create facets by invoking stan-
dard APIs, called domain interfaces, each of which is asso-
ciated with one type of facet. Table 1 summaries the char-
acteristics and potential advantages over traditional design
framework under the context of IP-centric design paradigm.

In our experimental infrastructure, the domain interfaces
are defined in the form of COM interfaces, a language-
independent binary standard defined by Microsoft [11]. The



COM components can be dynamically loaded or even re-
motely loaded anywhere over the internet given enough
middleware support.

We have defined and implemented the necessary do-
mains to create different facets:

• behavioral facet, which captures the functional view of
a design component at the algorithm, as well as register
transfer and logic level;

• planning facet, which captures the physical planning
of a design component;

• mask facet, which captures the mask layout of design
component;

• architecture facets, which capture the architectural in-
formation of the design component; one typical use is
to help retargetting a compiler for a processor core.

While the development of ipsuite is still ongoing, a re-
cent snapshot shows 5K lines of interface definitions, as
well as 100K lines of C code implemenation, not includ-
ing the CAD software packages we chose to reuse such as
the Berkley magic layout database. In addition, retargetable
compilers and high-level synthesis tools are being devel-
oped on top of this infrastructure.

4. Babel Langauge

4.1. Language Architecture

Instead of delivering functional IPs in source code form
or non-functional IPs in proprietary formats, which reveal
all the design information, the IP vendors now only need
to ship small software components. While each of these
software components can be created by compiling C code
to make dynamic function calls to the domain interfaces, for
many cases it is rather cumbersome to manually write the C
code. A more user-friendly IP authoring methodology is to
capture IP by a formal language, leaving the job of C code
generation to a specialized IP compiler. We have developed
such compilers for C, Java, Verilog as well as a new object-
oriented SLDL called Wenyan into behavioral facets, yet
there is no language for other non-functional IPs, hence the
creation of Babel.

The unique and often conflicting requirements of non-
functional IPs shape the design of Babel.

• Non-functional IPs model complex data, rather than
complex function.

• There is no way to unify the semantics of non-
functional IPs.

• The interactions of non-functional IPs need to be spec-
ified on a common language substrate for simplicity.

Figure 2 shows the architecture of the Babel system, in-
cluding its compiler. In contrast to the traditional language
design where a syntax is devised for a specific semantics,
we designed the syntax for a meta-semantics, where a type
system is devised so that it is expressive enough to de-
fine the data model for each facet type. Typically, a data
model is provided in a header file as a set of type defini-
tions. Such header files can be included in IP specifications,
which consist of data using the expression system of the lan-
guage. A Babel compiler includes a parser which translates
an IP specification into an intermediate representation, af-
ter which a type inference engine is invoked to ensure the
soundness of the specification. Any specification resulting
in a type error, in other words, violating the defined data
model, will be dismissed. The type-checked intermediate
representation will be fed into a dynamically loadable soft-
ware component, called domain plugins, to be further com-
piled into the IP form acceptable to the ipsuite infrastruc-
ture. Babel language is said to be extensible in the sense
that whenever a new domain is needed, one only has to add
a header file containing the data model, as well as the corre-
sponding domain plugin, while keeping the language syntax
and compiler proper intact.
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Figure 2. Babel language architecture.

As specified in the BNF grammar shown in Figure 3,
a Babel specification consists of a set of enumerate type
declarations (enumDecl) and class type declarations (class-
Decl) to specify new types, and a set of facet declarations
(facetDecl) to specify the IPs. For convenience, aliases to
types can be declared as well (aliasDecl). Class declara-
tions are typically used to specify the data model of a facet.
Like any object-oriented languages, a class contains a set



of fields and methods. In addition, classes in Babel can be
polymorphic, in the sense it can be parameterized over other
types or constants (genericDecl).

babel ::= (enumDecl | classDecl | aliasDecl | facetDecl)*
enumDecl ::= "enum" ID "{" (ID "[" "=" exprBinary "]")* "}"
classDecl ::= "class" ID [genericDecl] classBody
genericDecl ::= ( "class" ID | type ID )*
classBody ::= "{" (classDecl | fieldDecl | methodDecl)* "}"
fieldDecl ::= type ID [ "=" expr ] ";"
methodDecl ::= type ID "(" [parameters] ")"
(";" | "{" "return expr ";" "}")
parameters ::= type ID ( "," type ID )*
aliasDecl ::= "typedef" type ID ";"
facetDecl ::= "facet" ID "::" ID "=" exprCons

Figure 3. Declarations.

4.2. Type System

In addition to the predefined primitive types (typePri-
mary) and the elaborated class types (typeClass), one can
construct complex types not found in traditional languages,
as specified by the type system grammar in Figure 4. A
type in Babel can be considered as a set. One can thus
define mathematical concepts such as function (typeFunc-
tion), union set (typeUnion), Cartesian set (typeProduct),
sequence and power set (typeUnary).

type ::= typeFunction
typeFunction::= typeUnion "->" typeUnion
typeUnion ::= typeProduct "|" typeUnion
typeProduct ::= typeUnary "ˆ" typePoduct
typeUnary ::= ["[]" | "<>" ] (typePrimary | typeClass)
typePrimary ::= [unsigned ] int | [unsigned] long |

[unsigned] char | float | double
typeClass ::= ID [("." ID)*]

[ "[" typeParam ("," typeParam)* "]"]
typeParam ::= type | exprBinary

Figure 4. Types.

Example 1 A data model specification fragment.

typedef intˆint Cell; // a pair of integers

typedef []field CellGroup; // a sequence of fields

class Store {
Store( int gran, int size ); // required properties

// optional properties
int depth;
int overlap;
field pointer;
{}CellGroup cells; // a set of groups
}

4.3. Expression System

An IP is specified in the facet declaration (facetDecl)
construct whose content is specified as a constructor ex-
pression (exprCons). A constructor expression creates a
complex graph of data conforming to the data model speci-
fied by a class type. The content of a constructor is a hierar-
cical list of statements (exprStmt). A statement can either be
a field assignment, where the field has to be declared in the
corresponding class; or a method call, where the method
has to be declared in the corresponding class. Typically,
the method body of a class body is empty. It is up to the
domain plug-ins to interpret the semantics of the method
calls. One can also specify conditional statements or gen-
erate statements for more complex data. An expression can
also be specified hierarchically with binary or unary opera-
tors in the same way as traditional programming languages
(exprBinary, exprUnary); it means that the leaves can either
be a constant, a set, a sequence, or a tuple. Note that each
expression can be prefixed with an alias, which can later be
referenced. In this way, an expression not only can specify
a tree of data, but also a graph of data.

Example 2 An IP specification fragment.

stores = {
sGPR = new Store( 32, 32 ) {
depth = 128;
overlap = 24;
pointer = cwp;
maps = {

gpr = [
g0, g1, g2, g3, g4, g5, g6, g7,
o0, o1, o2, o3, o4, o5, o6, o7,
l0, l1, l2, l3, l4, l5, l6, l7,
i0, i1, i2, i3, i4, i5, i6, i7
]

alias = [
x, x, x, x, x, x, x, x,
x, x, x, x, x, x, sp, x,
x, x, x, x, x, x, x, x,
x, x, x, x, x, x, fp, x
]

}
}

...
}

4.4. Domain Plug-ins

Babel is very much like functional languages where
types of expressions can be automatically determined by the
type inference engine of its compiler. This ensures that IPs
can be captured in a concise fashion. The type checker en-
sures that the specification is free of type errors, in other
words, conforms to the required domain data model. Note
that the type inference engine and type checker can elimi-
nate most of the mundane modeling errors. Both of them
can be shared by all domains. The domain plug-ins trans-
late each parsed and checked Babel specification into the



exprCons ::= "new" typeClass [ expr ("," expr)* ]
[ "(" expr ( "," expr )* ")" ]
( ";" | "{" (exprStmt)* "}" )

exprStmt ::= ID "=" expr ";" |
ID [expr ("," expr)* ";" |
"if" "(" exprBinary ")" exprStmt

["else" exprStmt] |
"generate" "(" ID "," expr "," expr ")"

exprStmt
expr ::= "new" exprCons | exprBinary
exprBinary ::= exprUnary ("+" | "-" | "*" | ...) exprBinary
exprUnary ::= ("*" | "˜" | "!") exprPrimary
exprPrimary ::= literal | ID | type |

[typeClass "." ] ID
[ "(" [type ("," type)*] ")" ] |
exprList | exprSeq | exprSet | exprTuple

exprSeq ::= "[" [ID "="] expr ("," expr)* "]"
exprSet ::= "{" [ID "="] expr ("," [ID "="] expr)* "}"
exprTuple ::= "<" [ID "="] expr ("," [ID "="] expr)* ">"
exprList ::= "(" [ID "="] expr ("," [ID "="] expr)* ")"

Figure 5. Expressions.

raw C code, which contains calls to the corresponding do-
main interfaces, and can be compiled into non-functional
IPs accepted by the ipsuite infrastructure.

5. Case Studies

In this section, we present two case studies. The first
case study demonstrates how ipsuite infrastucture can be
directly interfaced to create non-functional IPs. The second
case study demonstrates how Babel can be used to create
non-functional IPs in a more efficient way.

5.1. Parameterized Memory Cores

A large class of SOC components have well-defined, reg-
ular layout structures which render the synthesis methodol-
ogy unsuitable. Such components include ROMs, PLAs,
SRAMs, FIFOs, and datapaths. For these circuits, the
designer often has an algorithm in mind to combine ba-
sic components, usually by tiling, into a layout structure.
Such algorithms are designed to work with different param-
eters. Since components have their own specific algorithms,
which are difficult to generalize, it is impossible to write a
tool that can generate them all. A better and extensible ap-
proach is to implement each component in the form of ip-
suite IP, which itself is a software component. The ipsuite
defines two interfaces, IMaskTech, which abstracts the
technology information such as design rules, and IMask,
which defines the API for plain layout generation. A C++
wrapper of these two interfaces, called SimpMask, is cre-
ated to further simplify the usage. In addition, SimpMask
defines the tiling abstraction to simplify the job of layout
composition.

We used SimpMask to create a small SRAM. We
reused 58 custom designed leaf cells originally developed
in Berkeley’s low-power cell library [12], including the 6-T
storage cell and the sense amplifier. We use a polymorphic
class to represent a SRAM component, which contains pa-
rameters such as the number of words and the number of
bits. The SRAM IP is hierarchically defined using 6 C++
files, each of which accesses ipsuite domain interfaces via
SimpMask. With only 665 lines of C++ code, we are able
to generate a parameterized SRAM IP. Figure 6 shows one
instance of this IP. With this case study, we believe that the
traditional silicon compilers fit very well into the ipsuite
paradigm.

Figure 6. SRAM IP.

5.2. Processor Cores

Not all IPs can be conveniently captured by C/C++ pro-
grams. In this case study, we demonstrate how Babel can be
used to create processor IPs. While the common perception
of a processor core is its RTL, a truly reusable processor
core should also contain the software development environ-
ment including compilers, assemblers, linkers, and instruc-
tion set simulators. In order for these tools to be automati-
cally retargetted to the core, abstract architectural informa-
tion has to be supplied, which we refer to as architectural
IPs. We define several domains, ISA, ABI and MICRO to
capture the instruction set, application binary interface, and
instruction-level parallelism respectively. For each domain,
a Babel data model is defined using the Babel type system.
The architectural information of the processor core can then
be captured using the Babel facet construct.

Table 2 shows the complexity of Babel specifications for
SPARC processor, SimpleScalar processor and Alpha pro-
cessor. For each processor, we show the size of its behav-
ioral, ISA and ABI facets in terms of the number of lines of
code. Both the size of Babel specification and the size of C
code generated by corresponding Babel domain-plugins are
shown. It is evident that the generated C codes are many
times larger than its Babel counterpart.



Processor BEH facet (#lines) ISA facet (#lines) ABI facet (#lines)
Babel C Babel C Babel C

SPARC 196 2892 2300 7245 56 563
SimpleScalar 90 1598 1048 3244 45 633
Alpha 1144 9015 4511 11039 52 643

Table 2. Architectural IPs using Babel.

File #line
BFD library 12361
opcodes 3185
gas 6424
ld 997
total 22967

Table 3. Machine dependent code generated.

Our integration framework contains a set of automatic
retargeting tools. Our rbinutils tool is used to automat-
ically port GNU’s binary utilities binutils. The package
contains a wide range of production-quality binary tools de-
signed to manipulate object files for example, the GNU as-
sembler gas and the GNU link editor ld. The package is
also highly complex with a daunting size of a quarter mil-
lion lines of C code. The package contains several com-
ponents that are machine-dependent, including BFD library,
which is a foundation library for object file manipulation,
opcodes library, which is a library for instruction disas-
sembling and assembly parsing, gas, which is an assem-
bler, and ld, which is a link editor. Our tool can automati-
cally generate the machine-dependent components from the
information provided by the architectural IP, thereby port-
ing the binutils package for the corresponding proces-
sor core. Table 3 shows the machine-dependent code auto-
matically generated for different components of the pack-
age for the SPARC processor. We verified the methodology
by comparing the executable produced by the generated bi-
nary tools against the manually developed ones distributed
by GNU.

We have also developed rscalar, a tool that can au-
tomatically port SimpleScalar [13], a popular instruction
set simulator developed at University of Wisconsin. Sim-
pleScalar was originally developed only for one instruc-
tion set. Our tool leverage its rich set of micro-architecture
simulation components, such as those for memory, cache,
scheduler and branch predictor, while automatically gener-
ates the machine dependent part according to the architec-
tural IP provided. Table 4 shows the simulation runtime of
the SPEC2K benchmark using our generated simulator for
the SPARC processor. The simulation is performed on a
750MHz SunBlade 1000 workstation.

Benchmark Simulation Native
runtime (s) runtime (s)

181.mcf 338.47 1.22
197.parser 1480.69 4.46
183.equake 2143.50 6.20
188.ammp 12774.84 36.66

Table 4. Runtime of generated simulator.

6. Conclusion

We believe an IP-infrastructure needs to be investigated
before a comprehensive IP standard is finalized. Such
IP-infrastructure needs language frontends which not only
specify the functionality, as many of the previous efforts,
but also other aspects of design that need to be reused. The
proposed Babel language works very well with our experi-
mental component-based IP infrastructure.
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