
DynamoSim: A Trace-based Dynamically Compiled
Instruction Set Simulator

Wai Sum Mong Jianwen Zhu
Department of Electrical and Computer Engineering

University of Toronto, Toronto, Ontario, Canada{
mong, jzhu

}
@eecg.toronto.edu

ABSTRACT
Instruction set simulators are indispensable tools for the architec-
tural exploration and verification of embedded systems. Different
techniques have recently been proposed to speed up the simulation
over the classical interpretation-based simulators, while maintain-
ing their flexibility. In this paper, we introduce a suite of techniques
inspired by recent advances in dynamic compilers to construct a
hybrid simulation framework. Compared with compiled simulators
reported earlier, our framework is more flexible, since any instruc-
tion can be interpreted; and faster, since only frequently executed
instructions are translated on-the-fly into native code for direct ex-
ecution, and the scope of our translation is extended from basic
blocks to traces, and sophisticated register allocation is performed.
Comprehensive results on SPEC2000 benchmarks are reported for
the standard SimpleScalar processor to demonstrate the efficiency
of proposed techniques.

1. INTRODUCTION
The increasing market demands of innovative electronic prod-

ucts result in a growing demand of processors embedded in systems-
on-chip. In order to meet the required performance and power con-
sumption constraints, the architecture of such an embedded pro-
cessor is often application-specific and need to work with the rest
of intellectual-property components that are often custom designed
hardware. To verify such systems and perform the so-called ar-
chitectural exploration, instruction set simulators (ISS) are widely
used to validate and evaluate new processor architectures, and study
their interactions with the rest of the on-chip components [1], be-
fore the actual hardware is built.

Instruction set simulation is a software technique that mimics the
behavior of executing binary instructions on the target processor.
The processor on which the binary instructions should run is called
the target processor, while the processor on which the ISS runs is
called thehost processor.

The simplest ISS is usuallyinterpretation based. An example of
an interpreted simulator is the widely usedSimpleScalar toolset[2].
Such simulators go through a loop offetch-decode-executecycle
for each instruction to be simulated. Despite the flexibility it offers,

an interpretation based ISS suffers from a performance problem.
For example, thegzipbenchmark in the standard SPEC2000 suite
takes one week to simulate in SimpleScalar.

Compiled simulators translate the simulated target instructions
into host instructions for direct execution, thereby eliminating the
redundant computation involved in the decoding stage of interpreted
simulation when an instruction is executed multiple times. Such
binary translation can be carried out at compile time, calledstatic
compiled simulation[3, 4], or on-the-fly, calleddynamic compiled
simulation[5, 6, 7]. While compiled simulators can be made almost
as fast as native execution [4], such performance is achieved with-
out simulating all target machine states, for example, the condi-
tional codes; or simulating the detailed memory architecture, such
as caches. In addition, self-modifying codes which dynamically
update the program instruction, cannot be simulated with compiled
simulators, especially static compiled simulators.

To address the flexibility problem of compiled simulators, recent
efforts explore the option calledcache-compiled simulation[8, 9].
Instead of emitting native code for instruction to be simulated, this
technique instead caches the decoded information of an instruc-
tion. The cost of instruction decoding can therefore be amortized
over loops. On the other hand, the simulation framework is still
interpretation-based and therefore flexibility is retained.

In this paper, we extend the line of work on compiled simulators
based on dynamic instruction translation to further push the achiev-
able simulation performance envelop, while retaining the flexibil-
ity to simulate arbitrary binary. More specifically, we make the
following contributions in the paper: First, we propose an infras-
tructure that allowshybrid simulation: an instruction is by default
interpreted, and is translated for native execution only when it is
profitable. The flexibility offered by interpreted simulators are thus
preserved. Second, inspired by recent advances in Just-in-Time
compilers, we propose to extend the scope of dynamic translation,
which is traditionally limited to basic blocks, to frequently executed
traces spanning multiple basic blocks. A larger instruction-level
parallelism can therefore be exploited by the host processor. Third,
we perform atrace-wide register allocationto map the target ma-
chine state directly to host machine registers, thereby reducing the
cost of frequent memory accesses.

The remainder of this paper is organized as follows. Section 2
gives a more detailed review of the related work reported in the lit-
erature. In Section 3, we describe our simulator infrastructure. In
Section 4, we describe the trace-based compiled simulation tech-
nique. In Section 5, we describe the register allocation technique.
We report our experimental results in Section 6 before we draw
conclusions. Our simulator is built and evaluated for the Sim-
pleScalar processor with the PISA instruction set. Since it is widely
used in the academic community, throughout the paper we assume



the target program is in PISA. However, our proposed technique is
by no means limited to PISA.

2. RELATED WORK
Most instruction set simulators reported in embedded systems re-

search are interpreted [10, 11, 12, 13, 14, 15]. Their major research
goal is to equip retargetability to the simulators. In this paper we
limit the discussion on simulation performance and flexibility only.
Our retargeting strategy is reported in [16].

Zivojnvic et al. reported a static compiled simulator for DSP pro-
cessors. The performance is 200-640 faster than the corresponding
interpretive-based simulators. However, the simulation speed still
ranges from 0.8 MIPS to 2.5 MIPS, partly due to the fact that bit
true simulation of DSP instructions is more complex than RISC
instructions. Zhu and Gajski reported a very fast static compiled
simulator that can simulate up to 100 MIPS (within 1.6 times na-
tive time) by aggressively utilizing host machine resources. Dy-
namic compilation-based approach is pioneered by the Shade [5],
Embra [6] and FastSim [7], which typically simulate RISC pro-
cessors within 3-10 times native time. Compared to the proposed
method, these simulators are not flexible, and do not simulate tar-
get machine state such as conditional codes, which can significantly
slow down simulation.

The cache compiled simulator is first proposed by Nohl et al. [8]
and later improved by Reshadi et al. [9]. Compared to the inter-
preted SimpleScalar [2], they report a speedup of around 4 for
ARM7 processor on the JPEG and ADPCM benchmarks. Our work
shares the same goal as cache compiled simulators for both speed
and flexibility, however we achieve the goal by extending the work
of dynamic compiled simulation using more aggressive techniques.

Two other fields are closely related to the compiled instruction
simulators. Binary translation [17, 18, 19, 20, 21] promises to em-
ulate the software of one platform, for example, a Microsoft Win-
dows application, on another platform, for example, a Sun work-
station. It is obvious that our technique can be used for the purpose
of binary translation. However, the reverse is not true. The reason
is that binary translation only needs the translated executable to
produce the same result as the original. On the other hand, the sim-
ulation also needs to correctly maintain the target machine state at
every simulated machine cycle. Given such freedom, binary trans-
lation can potentially achieve better performance by performing the
so-called dynamic compilation.

Dynamic compilation is commonly used to optimize programs
based on information which is not available until runtime. Widely
used dynamic compilers include Just-in-Time Java compilers [22]
which emit optimized native code for Java byte code. Since de-
laying all compilation tasks until runtime is expensive and unnec-
essary, systems like the DyC system [23] adopt the selective dy-
namic compilation approach. The same strategy is adopted in our
simulator. As another example, the Dynamo [24] compiler inter-
prets the input application and identifies the frequently taken paths
(traces) at the same time. A trace is compiled and optimized into
a fragment and it is cached for reuse. The overhead of Dynamo’s
operations will be amortized over the repeated executions of the
fragments found in cache. The dynamic trace concept in our simu-
lator is exactly like Dynamo. Our contribution here is to adapt it in
a simulation environment and show it is beneficial.

3. HYBRID SIMULATOR INFRASTRUCTURE
Past simulators are either interpreted or compiled. In this section,

we describe the proposed hybrid simulator infrastructure which
features both a interpretation engine and dynamic compilation en-

Memory

Interpretation 
   Engine

Translation
   Cache

OS Emulation

Program Loader

Compilation
   Engine

Execution
  Engine

VCODE

Machine
  State

Figure 1: DynamoSim infrastructure.

bucket

translation

associativity = 4

si
ze

 =
6 

4

Figure 2: Translation cache.

gine.
The rationale behind such a hybrid structure is as follows. First,

our simulator offers flexibility. With an interpretation engine al-
ways acting as a backup, any “irregular” code that cannot be han-
dled well by compiled simulators, such as dynamic program code,
can be adequately dealt with. Second, with the strategy that only se-
lected code is dynamically compiled, our simulator does not suffer
the problem of enormous memory usage experienced by dynamic
compiled simulators. Our own experience indicate that each target
instruction may be translated up to 20 host machine instructions.
Therefore translating all instructions is not an option for large ap-
plications. Third, by selecting only code that is profitable for com-
pilation, we can achieve the true speedup. Typical candidate code
for compilation are those contained in loops. Code outside the loop
is unprofitable to compile since the overhead offsets the gain.

Figure 1 gives the block diagram of the proposed simulator in-
frastructure. Like interpreted simulators, the infrastructure main-
tains the simulated target machine states, including general purpose
registers and conditional codes, as well as the simulated memory.
Unlike interpreted simulators, the infrastructure also maintains a
data structure, calledtranslation cache, which maps theselected
code regionsin the target program to the corresponding compiled
native instructions. As shown in Figure 2, the translation cache is
organized to mimic a configurable set associative cache. Eachtag
of the cache identifies a unique target code region characterized by
its starting address. The content of the cache line is abucketwhich
points to atranslation, which itself is a linked list of fixed sized
blocks used to hold dynamically emitted native instructions. The
link list data structure is necessary since we do not know in ad-
vance how large the selected code region and the translated host
machine code will be. Therefore, a translation should be allowed
to grow its size on demand.

The core of the infrastructure includes three engines, called the
interpretation engine, compilation engine and execution engine. In
the simulation main loop, the simulator is always executing one
of the three engines. Three peripheral modules manage the inter-



action with the outside world: the program loader is responsible
for the reading of binary executable; the OS emulation is respon-
sible for handling operating system related system calls; and the
VCODE [25] package is responsible for on-the-fly host code gen-
eration.

In the text that follows, we explain in detail each of the module
contained in Figure 1 starting by the peripherals. Since the goal
of our infrastructure is to establish a common framework so that
different implementation schemes can be evaluated and compared,
the description in this section will be general. The discussion will
be substantiated in Section 4 when our proposed techniques are
described.

3.1 Program Loader
The software program loader is responsible for loading the input

executable stream into the simulated memory and initializing the
execution environment. The loader requires the understanding of
the binary file format in order to load the instructions and appro-
priate data to the simulated memory. We leverage the API supplied
by GNU’s BFD library [26] to identify the loadable sections in the
executable. For each such section, memory as large as the section
size is allocated, and APIs are invoked to copy the data from the
executable on the disk to the allocated memory. Then, the loaded
section data is copied to the simulated memory at the specified vir-
tual memory address.

3.2 Operating System Emulation
Since in this work we do not simulate operating systems, an em-

ulation layer has to be constructed to handle system calls, which are
invoked by a trap instruction. According to the trap number carried
in a simulated target register (e.g.GPR(2) in PISA), the required
system call parameters are first obtained from the simulated regis-
ters, and the system call is then routed to the equivalent system call
at the host system. The returned value is then copied back to the
simulated registers. Implementing a small subset of POSIX system
calls is usually enough to execute the common benchmarks.

3.3 The VCODE System
The VCODE (very fast dynamic code generation) is a dynamic

code generation system developed by Engler [25]. We use the
VCODE system to add the dynamic compilation ability to thesim-
safesimulator. The VCODE system is a set of C macros and sup-
port functions that allow users to generate machine code at runtime.
The VCODE interface provides the client with a view of a simple
load-store RISC architecture, which is independent to the ISA of
the generated instructions. Through the interface, an application
can dynamically create, compile and run afunction, which is the
smallest unit of code generated by VCODE at a time.

3.4 The Interpretation Engine
The interpretation engine executes a loop where each iteration

goes through the usual cycle of instruction interpretation. At the
fetchstage, the instruction addressed by the PC register is copied
from the simulated memory to the simulated instruction register
(IR). The fetched instruction is then decoded at thedecodestage,
which extracts the necessary information needed for execution from
the instruction word. Decoding complex instruction set typically
involves walking down a decision tree implemented by nested switch
statements. By using the decoded value, the appropriate instruction
semantics definition is selected and executed.

Unlike traditional interpreted simulators, our interpretation en-
gine handles the additional task of instructionmonitoring: depend-
ing on the type of the instruction being interpreted, the interpreta-

tion engine may perform a translation cache lookup. If it is a hit,
it will exit the interpretation loop and hand off the control to the
execution engine. It may also keep track of acounterso that when
a threshold value is reached, it will exit the interpretation loop and
hand off the control to the compilation engine.

3.5 Compilation Engine
The compilation engine is triggered when some candidate target

code regions are identified for dynamic compilation. It is respon-
sible for translating target machine instructions into host machine
instructions stored in the corresponding translation.

Our compilation engine translates one instruction at a time us-
ing the VCODE interface. Since it may bring some performance
improvement, we actually interpret each instruction as we translate
it. The emitted native code consists of three parts: theprologue,
consisting of code to load simulated machine state from memory to
host machine registers, theepilogue, consisting of code to commit
values contained in host machine registers to the simulated machine
state, as well as thebody, consisting of codes implementing the se-
mantics of the instruction. It is important to note that to simulate
all the machine state, simulating anadd instruction on the target
involves much more than finding anadd instruction on the host. In
fact, in order to find the correct conditional code after executing the
targetadd instruction, a list of 10 extra instruction has to be emit-
ted. We found for the PISA instruction set, an average number of
host instructions per target instruction is 20.

The scope of translation is referred to as regions, and each such
region is traditionally a basic block, in which case a branch taken
instruction signals the end of the region. In addition, an instruction
which is the starting address of an already compiled region also
signals the end of current region.

When the compilation engine reaches the end of the region, it
hands off control to the execution engine, or the interpretation en-
gine, depending on whether there is a hit in the translation cache
lookup.

3.6 Execution Engine
The execution engine is responsible for the execution of transla-

tions, or dynamically generated native code for the corresponding
regions. VCODE dictates that dynamically generated codes are en-
capsulated in procedures. Therefore the execution of translations
amounts to an indirect procedure calls to the translation. When re-
turned, a lookup to the translation cache will be performed with
the current PC. If it is a hit, the found translation will be invoked.
Otherwise, a counter maybe updated and depending on whether its
value exceeds certain threshold, control may be handed off either
to the interpretation engine or the compilation engine.

4. TRACE-BASED DYNAMIC COMPILED
SIMULATION

It is obvious that the most profitable regions for dynamic compi-
lation are those frequently executed codes residing in loops. How-
ever, the scope of dynamic compilation of the traditional techniques
is limited to basic blocks. Operating with such a fine granular-
ity brings many disadvantages. First of all, the overhead associated
with executing a translation cannot be amortized over large number
of instructions. One example of such overhead is the cost of indi-
rect function call for translation invocation. Another example is the
cost of executing prologue and epilogue. Second, with a small code
size, the instruction level parallelism inherent in the host processor
cannot be readily exploited. Therefore it is desirable to extend the
compilation region beyond the scope of basic blocks.



ALGORITHM 1. Trace-based Dynamic Compiled Simulation.

interp: 1
while( true ){ 2

interpret instruction at PC; 3
if( it is a taken branch ){ 4

translation = cacheLookup( NPC ); 5
if( translation != null ) { 6

update PC, NPC; goto execute; 7
} 8

if( it is a backward branch ){ 9
counter( NPC ) ++; 10
if( counter( NPC )> threshold ){ 11

update PC, NPC; goto compile; 12
} } } 13

update PC, NPC; 14
} 15

compile: 16
start a new trace translation; 17
while( true ){ 18

interpret instruction at PC; 19
emit simulation code in translation; 20
if( it is a taken branch ){ 21

translation = cacheLookup( NPC ); 22
if( translation != null ) { 23

emit code updating PC, NPC; 24
update PC, NPC; goto execute; 25
} 26

if( it is a backward branch ){ 27
counter( NPC ) ++; 28
if( counter( NPC )> threshold ){ 29

emit code updating PC, NPC; 30
update PC, NPC; goto compile; 31
} 32

else{ 33
emit code updating PC, NPC; 34
update PC, NPC; goto interpret; 35
} } } 36

update PC, NPC; 37
} 38

execute: 39
while( translation ){ 40

invoke native code in translation; 41
translation = cacheLookup( PC ); 42
} 43

counter( PC ) ++; 44
if( counter( PC )> threshold ) 45

goto compile; 46
else 47

goto interp; 48

In recent studies of dynamic compilation [24], the concept of
hot tracehas been demonstrated for improving the performance of
dynamically compiled programs dramatically. Trace is defined to
be a sequence of frequently executed instructions. A trace could
include branches, therefore span beyond the scope of basic blocks,
however, does not span across loops. While the concept of trace has
been proposed much earlier, the authors of [24] proposed a way to
detect trace dynamically.

We adapted the techniques in [24] so that it works for the purpose
of simulation. The key to identify trace is actually very simple:
First, all branch taken targetsare detected by looking at the target
address of branch instructions. Second, the detection of the so-
calledbackward branchescan be achieved by comparing the values
of the branching target and the PC. Therefore branching to a target
with an address value smaller than the current PC is identified as a
backward branch. Third, a counter is maintained for every potential
start of trace, which can either be a branch taken target, or the NPC
of the backward branch. This way, any executed loop header will be
considered as potential start of trace, and any branching to another
loop in a trace will be forced as one exit of a trace. Whenever such a
trace candidate is encountered in interpretation, the corresponding

counter is incremented. When the counter value reaches certain
threshold, dynamic compiler will be invoked to compile the trace
into native code. Interested readers are referred to [24] for detail.

With these simple techniques, we can substantiate the generic al-
gorithm described in Section 3 to perform selected dynamic com-
piled simulation at the trace level. The algorithm is organized as a
state machine, whereinterp, compileandexecuteare labeled states.
State transition follows thegotostatements in the algorithm.

It is important to note that not all techniques reported in [24] can
be used for the purpose of simulation. Our dynamic compiler has
to strictly adhere to the requirement of simulation, which means
no compiler optimization such as out-of-order scheduling should
be performed. Instead, the target machine states need to be faith-
fully maintained. As another example, the design of our transla-
tion cache and its replacement policy are also significantly different
from that of [24]. The memory requirement of cache in [24] is un-
acceptably high for the purpose of simulation. The target machine
instructions can be translated into equivalent host machine instruc-
tions of almost equal size in the case of [24], however in our case,
a ten fold increase of host machine instructions is not uncommon.
We choose to use a 4-way set associative cache for this purpose
and use a least recently used replacement policy. In contrast, [24]’s
cache replacement policy occurs at a much coarse grained level,
meaning recompilation occur at a large scale. Since the cost of our
translation is much higher, we cannot afford to adopt this policy.

5. REGISTER ALLOCATION
To simulate a typical target instruction, the value of its two operands

need to be retrieved from the simulated machine states maintained
in the simulator memory, and after certain computation specific to
the opcode of the instruction, the computed result needs to be com-
mitted to its destination, meaning the simulator needs to write the
result into the simulated machine states. Thus, at least three sepa-
rated memory accesses are needed to simulate an instruction. This
is an expensive process and the purpose of register allocation is to
reduce this cost by mapping the simulated target machine registers
directly to host machine registers.

Note that our register allocation is under different constraints
from the register allocation in compilers, and therefore is a com-
pletely different problem. For hybrid simulators, a specific require-
ment is to maintain the consistency between the interpretation en-
gine, which keeps target machine states in memory, and the exe-
cution engine, which keeps target machine states in host machine
registers. In addition, it is very likely that the host machine does not
have enough registers to hold all target machine states to be sim-
ulated. The register allocator therefore has to build an abstraction
between the compilation engine and the VCODE module so that
the described complications can be hidden.

A natural scope of register allocation is the trace described in
Section 4. As the execution engine enters the trace, the prologue
of a target instruction will be executed to copy the value stored in
simulated machine state to a host machine register determined by
the register allocator at compile time (when the compilation en-
gine is executed). Subsequent references to the corresponding tar-
get machine register can then be directly routed to the allocated
host machine register. As the execution engine leaves the trace, the
epilogue will be executed so that all machine states maintained in
host machine registers will be committed back to the simulated ma-
chine states. The coherence between the interpretation engine and
execution engine can therefore be maintained.

We have just described an ideal case when every target machine
registers used in the trace are allocated with a host machine reg-
ister and such mapping holds for the entire life time of the trace.



This does not happen in reality since host machine registers are not
always available. To solve this problem, we reserve a fewscratch
registersin the host machine, such that whenever allocation fails,
the scratch registers are used. The restriction of scratch registers is
that their mapping to target machine registers are temporary. There-
fore, immediate synchronization with the simulated target machine
states is needed.

Algorithm 2 and Algorithm 3 show two APIs supplied by the reg-
ister allocator to the compilation engine to facilitate the dynamic
code generation when operands and destinations of the target in-
struction need to be accessed. As can be seen from these two simi-
lar algorithm, the register allocator first tries to find if the requested
target register has already been allocated by consulting the mapping
ireg mapping. If it has not been allocated, the VCODE register al-
locator is called to allocate a host machine register and the mapping
ireg mappingis updated accordingly. If VCODE allocator fails, the
specified scratch register is accessed.

ALGORITHM 2. Target register read access.

ra getreg( int regindex, int scratchindex ){ 49
if( ireg mapping[regindex] != -1 ) 50

return ireg mapping[regindex]; 51
vreg = invoke vcode register allocator; 52
if( successful ){ 53
ireg mapping[regindex] = vreg; 54
emit code to load simulated register to vreg; 55
} 56

else{ 57
emit code to load simulated register to scratch[scratchindex]; 58
return scratch[scratchindex]; 59
} 60
} 61

ALGORITHM 3. Target register write access.

ra putreg( int vreg, int regindex ){ 62
if( ireg mapping[regindex] != -1 ) 63
emit code to copy vreg to iregmapping[regindex]; 64

ireg mapping[regindex] = invoke vcode register allocator; 65
if( successful ) 66
emit code to copy vreg to iregmapping[regindex]; 67

else 68
emit code to copy vreg to simulated register; 69
} 70

With the abstraction built by the register allocator, the compiler
engine is not too much from the one without the register allocator.
On the other hand, performance can be improved. This is especially
true when the granularity of the trace is large. The advantage will
be less obvious if the target region is much smaller, for example, at
the basic block level.

6. EXPERIMENTAL RESULT
To evaluate the proposed techniques, we report results of four

different simulation configurations under a common simulator frame-
work. The first configuration is a pure interpreted simulator. In fact,
we directly usedsim-safefrom the SimpleScalar tool suite. The
second configuration is a pure dynamic compiled simulator with
the same strategy as [27, 6]. The scope of dynamic compilation is
basic blocks. The third configuration is the use of hybrid simula-
tion, where the scope of dynamic compilation is trace (Section 4).
The fourth configuration is the use of hybrid simulation in addition
to register allocation (Section 5).

Performance Comparison

0

1000000

2000000
3000000

4000000

5000000

6000000
7000000

8000000

9000000

18
1.
m

cf

18
3.
equ

ak
e

18
8.
am

m
p

16
4.
gzi

p

17
9.
art

in
s
tr

n
/s

interpreted

compiled

hybrid

hybrid + RA

Figure 3: Simulation speed comparison.

interpreted compiled hybrid hybrid+RA
Benchmark (sim-safe) (basic block) (trace) (trace)

MIPS MIPS speedup MIPS speedup MIPS speedup

181.mcf 1.37 3.32 2.42 6.29 4.59 6.95 5.07
183.equake 1.35 2.86 2.12 6.56 4.86 8.13 6.02
188.ammp 1.31 1.32 1.01 5.33 4.07 5.97 4.56
164.gzip 1.45 3.80 2.62 7.18 4.95 8.29 5.72
179.art 1.23 4.26 3.46 5.73 4.66 6.21 5.05
average 2.33 4.63 5.28

Table 1: Simulation speed.

We report results on benchmarks from SPCE2000, including two
integer benchmarks (181.mcf and 164.gzip) and three floating point
benchmarks (183.equake, 188.ammp and 179.art). Our results are
collected on a 750MHz SunBlade 1000 workstation.

The simulation speeds for different benchmarks under different
configurations are reported in Table 1 in terms of millions of sim-
ulated instruction per second (MIPS) as well as speed up against
sim-safe. It is interesting to observe that pure dynamic compi-
lation achieves an average speedup of 2.33, and under one occa-
sion (188.ammp) it is almost at the same speed interpretation. This
rather modest gain is mostly due to the unprofitable translations of
infrequently executed instructions. In contrast, the hybrid simu-
lation using trace-based compilation achieves an average speedup
of 4.63, and about 2 times faster than purely compiled simulation.
When adding register allocation, the speedup of 5.28 is achieved in
hybrid simulation. This result is visualized in Figure 3.

In order to precisely study the effects of proposed techniques, we
made an effort to ensure the comparison is made fairly. It is impor-
tant to note that compiled instruction set is routinely reported with
hundred time speedup [5, 6, 4]. These results are reported based
on binary translation technology which does not keep track of spe-
cial machine states such as conditional code. In addition, memory
simulation is not performed. Therefore, it is typical to simulate one
target instruction with only a few host machine instructions. The
decoding overhead eliminated by compilation therefore occupies
a significant portion of total simulation time. On the other hand,
the majority of our emitted instructions are actually code that keep
tracks of such registers. Therefore, on average 20 VCODE instruc-
tions need to be emitted for each target instruction. The speedup
is therefore significantly smaller but we believe this is a more real-
istic figure in embedded systems verification, since many machine
features are of interest.

While it is clear that our proposed method is faster than purely
dynamic compiled simulation, it is still not clear how it exactly



Statistics compiled hybrid hybrid+RA
#translation 190850 194 195
avg. region size 4.7 53.0 51.0
avg. translation size 122.7 994.8 423.9
#cache accesses 60518844 18204469 18415286
cache miss rate 0.32% 0.02% 0.02%
#instrn interpreted 0 40514 41842
#instrn compiled/executed 419091513 419050999 419049671

Table 2: Various statistics - 181.mcf.

compares with cached compiled simulation in terms of speed. While
desirable, such conclusion is difficult to draw since a comprehen-
sive results are not reported in [8, 9], and report for a different
processor (ARM7). On the other hand, our speedup seems to fall
in the same order of magnitude as [8, 9].

It is instructive to compare various statistics we collect for bench-
mark181.mcfin Table 2, which can shed more insight in the pro-
posed techniques. It can be observed that the average target region
size for trace based method is about 50 target instructions, whereas
for basic block based method is about 5 target instructions, a factor
of about 10. As a result, the average size of the translation of trace
based method is also about 10 times more host machine instruc-
tions. It clearly showed the much coarser granularity of trace-based
approach. The translation cache miss rate if trace-based approach
is also significantly lower for the same cache configuration. It is in-
teresting to note for our hybrid approach, many instructions never
get compiled and are always interpreted.

7. CONCLUSION
In this paper, we argue the importance of instruction set simula-

tors in general in the context of embedded systems-on-chip, as well
as the importantance of simultaneously achieving fast simulation
speed and flexibility.

We introduce a new path of achieving the goal different from
recently proposed cached compiled simulators. Inspired by recent
advances in dynamic compilers, we introduce the strategy of hy-
brid simulation that combines the flexibility of instruction set sim-
ulation and the speed of dynamic compilation. With our study, we
conclude that this strategy does achieve the goal. In addition, the
proposed technique of trace-based dynamic compilation can lead
to a similar performance gain in simulation to that experienced in
compilers. In addition, our trace-wide register allocation scheme is
effective.

8. REFERENCES
[1] J. Rowson, “Hardware/software co-simulation,” inProceeding of the

Design Automation Conference (DAC), 1994.
[2] SimpleSclar LLC, http://www.simplescalar.com .
[3] V. Zivojnvic, S. Tjiang, and H. Meyr, “Compiled simulation of

programmable DSP architectures,” inProceedings of the 1995 IEEE
Workshop on VLSI Signal Processing, Sakai, Japan, 1995.

[4] J. Zhu and D.D. Gajski, “A retargetable, ultra-fast instruction set
simulator,” inProceedings of the Design Automation and Test
Conference in Europe (DATE), Munich, Germany, March 1999.

[5] R. F. Cmelik and D. Keppel, “Shade: A fast instruction-set simulator
for execution profiling,” inProceedings of the 1994 ACM
SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, May 1994.

[6] E. Witchel and M. Rosenblum, “Embra: Fast and flexible machine
simulation,” inProceedings of the 1994 ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems,
May 1996.

[7] E. Schnarr and J. Larus, “Fast out-of-order processor simulation
using memorization,” inProceeding of the International Conference

on Architectural Support for Programming Lanuages and Operating
Systems (ASPLOS), San Jose, California, October 1998.

[8] A. Nohl, G. Braun, O. Schilebusch, R. Leupers, H. Meyr, and
A. Hoffmann, “A universal technique for fast and flexible
instruction-set architecture simulation,” inProceeding of the Design
Automation Conference (DAC), June 2002.

[9] M. Reshadi, P. Mishra, and Nikil Dutt, “Instruction set compiled
simulation: A technique for fast and flexible instruction set
simulation,” inProceeding of the Design Automation Conference
(DAC), Anaheim, CA, June 2003.

[10] S. Sutarwala, P. Paulin, and Y. Kumar, “Insulin: An instruction set
simulation environment,” inProceedings of CHDL-93, Ottawa,
Canada, 1993.

[11] W. Geurts, D. Lanneer, G. Goossens, and et al., “Design of dsp
systems with CHESS/CHECKERS,” inHandouts of the 2nd Int.
Workshop on Code Generation for Embedded Processors,
Leuvan/Belgium, 1996.

[12] M. Hartoog, J. Rowson, P. Reddy, and et al., “Generation of software
tools from processor descriptions for hardware/software codesign,”
in Proceeding of the Design Automation Conference (DAC), 1997.

[13] A. Fauth, “Beyond tool-specific machine descriptions,” inCode
Generation for Embedded Processors. 1997, Kluwer Academic
Publishers.

[14] G. Hadjiyiannis, S. Hanono, and S. Devadas, “Isdl: an instruction set
description language for retargetability,” inProceeding of the Design
Automation Conference (DAC), Anaheim, CA, June 1997.

[15] M. Hartoog, J. A. Rowson, P. D. Reddy, S. Desai, D. D. Dunlop,
E. A. Harcourt, and N. Khulla, “Generation of software tools from
processor descriptions for hardware/software codesign,” in
Proceeding of the Design Automation Conference (DAC), Anaheim,
CA, June 1997.

[16] W. S. Mong and J. Zhu, “A retargetable micro-architecture
simulator,” inProceeding of the Design Automation Conference
(DAC), Anaheim, June 2003.

[17] K. Andrews and D. Sand, “Migrating a CISC computer family onto
RISC via object translation,” inProceeding of the International
Conference on Architectural Support for Programming Lanuages and
Operating Systems (ASPLOS), P. Marwedel, Ed., October 1992.

[18] R.L. Site et al., “Binary translation,”Communication of the ACM,
Feberary 1993.

[19] C. Cifuentes, “Partial automation of integrated reverse engineering
environment of binary code,” inProceedings Third Working
Conference on Reverse Engineering. November 1996, pp. 50–56,
IEEE-CS Press.

[20] W. F. Kao and I. J. Huang, “Instruction retargeting based on the state
pair notation,” inAsia Pacific Conference on Hardware Description
Languages, 1997, pp. 114–120.

[21] A. Ghernoff et al., “A profile-directed binary translator,”IEEE Micro,
pp. 56–64, March/April 1998.

[22] V.C. Screedhar, M. Burke, and J.D. Choi, “A framework for
interprocedural optimization in the presence of dynamic class
loading,” inProceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), June
2000.

[23] B. Grant, M. Philipose, M. Mock, C. Chambers, and S.J. Eggers, “An
evaluation of staged run-time optimizations in dyc,” inProceedings
of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), May 1999.

[24] V. Bala, E. Duesterwald, and S. Banerjia, “Dynamo: A transparent
dynamic optimization system,” inProceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), June 2000.

[25] D. R. Engler, “VCODE: A portable, very fast dynamic code
generation system,” inProceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), Philadelphia, PA, May 1996.

[26] S. Chamberlain,libbfd: the Binary File Descriptor Library, Free
Software Foundation, April 1991.

[27] Robert F. Cmelik and D. Keppel, “Shade: A fast instruction-set
simulator for execution profiling,” Tech. Rep. SMLI 93-12, UWCSE
93-06-06, University of Washington, 1993.


