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Abstract

This tutorial paper discusses the known representations
based on Binary Decision Diagrams (BDDs) for various
types of discrete objects: incompletely specified functions,
sets, finite state machines, binary and multi-valued
relations, etc. While presenting the known material, the
emphasis is on those aspects of implicit representations that
are important to achieve speed-up in computation.

The new material includes implicit representations for
dichotomies, partitions, set systems, and information
measures. The last type of objects, information measures,
constitute a promising approach to problem solving in a
number of areas, including decomposition of discrete
functions and finite state machines.

Multi-valued relations (MVRs) are presented as the
most general representation for all the considered classes
on discrete objects. Two complementary ways of
representing MVRs are proposed: binary-encoded multi-
valued decision diagrams (BEMDDs) and labeled rough
partitions (LRPs). The sizes of BEMDDs and LRPs are
compared using a set of multi-valued benchmarks.

1 Introduction

A wide range of scientific disciplines broadly grouped
under the title “computer science and engineering” deal
with various discrete objects: boolean functions, relations,
combinatorial sets, partitions, finite state machines, etc.
As the complexity of problems involving discrete data
grows, the role of representations increases. It becomes
more important than ever to have reduced storage size as
well as faster and more diverse manipulation.

The last ten years are marked by the growing
recognition of Binary Decision Diagrams (BDDs) as the
representation of choice for discrete objects.

A short historical note might be applicable here.
Research in decision diagrams was started in the 50's with
the work of C.Y.Lee [1] and continued in the 70’s by
S.B.Ackers [2]. Building on their results, R.E.Bryant
discovered efficient algorithms to perform operations on
boolean functions represented by reduced decision

diagrams [3]. The new algorithms operate directly on the
graph structure of the operands and have worst case
complexity proportional to the number of nodes in the
representation graphs.

This discovery caused a virtual revolution in fields
requiring massive processing of discrete information for
two reasons. First, the graph-based representation gave rise
to a more robust implementation of the known algorithms
using BDDs as the main storage and computation engine.
Second, a new generation of algorithms appeared,
exploiting the graph structure to direct and speed-up
computation. For instance, in one of the recently created
approaches, the structure of BDDs is analyzed to determine
good candidate components for bi-decomposition of
boolean functions [4].

BDD-based algorithms are also known as symbolic or
implicit algorithms. They are called “symbolic” because
they represent relationships between various types of
objects by introducing additional boolean variables that are
later treated as parameters, labels, or symbols. BDD-based
algorithms are called “implicit” to differentiate them from
the earlier run of algorithms called “explicit”. The
difference between these two types of algorithms is
described as follows:

“We say that a representation is explicit if the objects it
represents are listed one by one internally. Objects are
manipulated explicitly, if they are processed one after
another. An implicit representation means a shared
representation of the objects, such that the size of the
representation is not linearly proportional to the number of
objects in it. In an implicit representation many objects are
processed simultaneously in one step” [5, p.37].

This tutorial assumes that the reader is familiar with the
basic principles of boolean algebra and logic synthesis. The
goal is to systematically introduce implicit representations
for commonly used types of discrete objects, outline a
range of potential applications, and give a list of references
for further reading.

Section 1 covers the basic definitions used in the
tutorial. Each of the following sections discusses different
types of discrete objects in detail.
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1 Basic Definitions

Reduced Ordered Binary Decision Diagrams
(for simplicity called BDDs in the sequel) provide graph-
based representations for completely specified boolean
functions. The BDD for a non-constant boolean function is
a directed acyclic graph. The root node of the BDD is
located on top of the graph. Two terminal nodes labeled by
constants 0 and 1 are located at the bottom. Other nodes
(if they are present in the graph) constitute the set of
intermediary nodes. Each non-terminal node of the diagram
is labeled by a variable of the given function.

The diagrams are called “binary” because they represent
functions over variables taking one of two values, 0 or 1.
The diagrams are called “decision diagrams” because
evaluation of a boolean function represented by the BDD
consists in tracing the path from the root node to one of the
terminal nodes. In each node belonging to the path, the
decision is made to follow the branch labeled by 0 or 1
depending on the variable value. The 0-branch of a node is
called low edge. The 1-branch is called high edge.

Fig. 1 shows a BDD for function F = ac + b. Here bold
lines correspond to high edges and dashed lines to low
edges.

a

b b

c

0 1
Fig. 1. The BDD for F = ac + b.

BDDs are called “ordered” because on any path
variables appear in one particular order and no repetitions
of variables on the path are allowed. For example, the BDD
in Fig. 1 assumes variable order (a,b,c). The diagrams for
other variable orders would look different and possibly
have a different number of nodes.

The diagrams are called “reduced” because two
reduction rules are applied when they are created:

(1) If several nodes are labeled by the same variable
and have identical successors, only one of them is
allowed to remain in the graph

(2) If both edges of a node have the same successor,
the node is removed from the graph.

Assuming a fixed variable order and the above
reduction rules, the resulting diagrams are canonical, that

is, identical functions have identical diagrams and, vice
versa, different functions have different diagrams.

The reader is referred to the following publications that
provide an in-depth introduction into decision diagrams and
proofs of the canonicity property [6,7].

In addition to the standard operations on boolean
functions (AND, OR, EXOR, SHARP, etc.), BDD-based
applications often use quantification over a variable and a
subset of variables. Existential (universal, unique)
quantification over variable xi is the sum (product,
exclusive sum) of cofactors of the given function with
respect to xi. This can be written as

)x,...,x,x(Fx k21i∃ = F(…xi-1,0,xi+1…) + F(…xi-1,1,xi+1…)

)x,...,x,x(Fx k21i∀ = F(…xi-1,0,xi+1…) & F(…xi-1,1,xi+1…)

)x,...,x,x(Fx! k21i = F(…xi-1,0,xi+1…) ⊕  F(…xi-1,1,xi+1…)
A function after existential quantification has the

following interpretation: it is true for the given assignment
of variables if there exists a value of xi (0 or 1) such that the
original function is true for this value and the values from
the given assignment. Similar interpretation can be given
for other types of quantification.

Quantification over a set of variables is defined as the
series of quantifications over each variable in the set. It can
be proved that, for each type of quantification, the result
does not depend on the order of variables being quantified.

The meaning of quantification can be illustrated using
the Karnaugh map, in which the column variables are being
quantified and the rows variables are all other variables. For
such a map, the result of quantification is the function,
whose map contains the same number of rows as the initial
map but only one column (because the quantified variables
no longer belong to the support of F).

The contents of this column depend on the type of
quantification performed. In the case of existential
quantification, the column is the sum of all the columns of
the original Karnaugh map. Analogous observations hold
for other types of quantification. Fig. 2 gives an example of
existential and universal quantification of F= ca +cd+abd
with respect to the variable subset {a,b}.

ab F ∃ abF ∀ abF
cd 00 01 11 10 cd cd
00 0 0 0 0 00 0 00 0
01 0 0 1 0 01 1 01 0
11 1 1 1 1 11 1 11 1
10 1 1 0 0 10 1 10 0

Fig. 2. Example of existential and universal quantification
Existential quantification is also called smoothing

because it can be done by crossing out quantified variables
from the sum-of-products expression. In the above example
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for the function F, removing literals a , a, and b leads to
)d,c,b,a(Fab∃ = c+d, which is in agreement with Fig. 2.

2 Boolean Functions

As stated in the previous section, classical BDDs
provide a flexible representation for completely specified
boolean functions. Meanwhile, practical problems are often
expressed using incompletely specified functions. One of
the first attempts to represent incompletely specified
functions was based on introducing a terminal node DC [8].
In such a modified diagram, the path corresponding to the
assignment of variables, for which the function is a don’t
care, leads from the root to the new terminal node.

However, this approach did not become popular.
Currently, there is a tendency to represent all types of
discrete objects in terms of completely specified boolean
functions, for which classical BDDs provide efficient
storage and robust manipulation.

An incompletely specified boolean function can be
represented by two completely specified functions. Some
applications use the representation of ON-set and DC-set as
BDDs. Other applications (including irredundant cover
computation, two-level minimization and input support
manipulation) rely on representation of function F as an
interval: F1(x)≤F(x)≤F12(x), there F1(x) is the ON-set and
F12(x) is the sum of ON-set and DC-set.

Recently it was observed that decomposition algorithms
are significantly simplified if an incompletely specified
boolean function is expressed as a relation and represented
using the characteristic function (introduced in Section 3).
This approach constitutes a particular case of representation
of multi-valued relations discussed in Section 9 and is
mentioned here only for completeness of treatment of
incompletely specified functions.

Given a boolean function F(x) with OFF-set F0(x),
ON-set F1(x), and DC-set F2(x), F(x) can be represented
using a completely specified function, R(x,v), over the set
of input variables x and additional variable v as follows:

R(x,v) = v & F0(x) + v & F1(x) + F2(x)

3 Sets

A set is a non-ordered collection of elements of any
kind. A set is perhaps the most fundamental mathematical
abstraction and can be seen as a generic concept to build
various representations of discrete objects. Therefore, it is
important to represent sets compactly and perform set
operations efficiently.

The key contribution to creating such a representation
was made in 1977, when it was observed that an encoded
set can be represented using the characteristic function [9].
From the mathematical point of view, the characteristic
function of a logarithmically encoded set (an encoding that

uses the shortest length code) is a completely specified
boolean function, whose ON-set minterms stand in one-to-
one correspondence with the elements of the given set.

The following is a more systematic definition of the
characteristic function. Function F: Bn→B, B={0,1},
defines a subset of minterms of Bn, on which it is 1. Given
a binary encoding of a set of elements, the characteristic
function of the set is a boolean function, which is 1 for
minterms that are used to encode the elements of the set
and 0 for other minterms.

The only requirement for an encoding of elements is
that boolean cubes representing different codes do not
overlap. Expressed differently, it is equivalent to saying
that the product of terms corresponding to two different
codes is always zero.

For example, given a set of four elements
S = {s1,s2,s3,s4} and the encoding s1=00, s2=01, s3=10,
s4=11, the subset S1={s1,s3,s4} can be represented by the
characteristic function depending on variables x1 and x2:

χS1(x1,x2)= 12xx + 12xx + 12xx = 1x + 2x
Characteristic functions represent sets efficiently

because BDDs can be used to store and manipulate large
completely specified functions. Set operations are reduced
to operations on characteristic functions as follows:

Empty set: χ∅ = 0
Union of sets: χS ∪  T= χS + χT

Intersection of sets: χS ∩ T= χS & χT

Difference of sets: χS - T= χS & (χT )′
Subset relation (S ⊂  T): χS - T = χS & (χT)′ = 0
This representation turned out to be crucial for the

success of numerous algorithms dealing with sets of FSM
states, covers (sets of cubes) of boolean functions, sets of
blocks of a partition or a set system, etc.

4 Sets of Subsets

To represent sets of subsets of elements of the given set,
it is possible to repeatedly apply the technique introduced
above for single sets. The set elements as well as sets
themselves are logarithmically encoded. The resulting
characteristic function depends on two groups of variables.

For example, given a set of four elements
S = {s1,s2,s3,s4} and encoding s1=00, s2=01, s3=10, s4=11,
the problem is to find the characteristic function of the set
of three subsets: S1={s1,s3,s4}, S2={s2}, S3={s3,s4}.

Suppose the encoding of subsets is S1=(00), S1=(01),
and S1=(10). Variables (x2,x1) are used to represent set
elements and variables (y2,y1) are used to represent subsets
themselves. Assuming an encoding of the least significant
bit by the first variable, the following subset characteristic
functions are derived:
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χS1= 1x + 2x
χS2= 12xx
χS3= 12xx + 12xx = 2x
The characteristic function of the set of subsets is
χ{S1,S2,S3} = 12yy ( 1x + 2x ) + 12yy 12xx + 12yy 2x
Figs. 3 and 4 show the Karnaugh map and the BDD for

this function.
y2y1

x2x1 00 01 11 10
00 1 0 0 0
01 0 1 0 0
11 1 0 0 1
10 1 0 0 1

Fig. 3. The Karnaugh map for the given set of subsets

y2

y1 y1

x2x2

x1

0 1

x2

x1

 Fig. 4. The BDD for the given set of subsets
Positional encoding leads to another possibility to

represent sets of subsets. In positional encoding, each
element of the set is encoded using a separate variable. In
the above example, assuming that variables (z1,z2,z3,z4) are
used to encode the elements {s1,s2,s3,s4}, the following
characteristic functions of the three subsets are derived:

χS1= 4321 zzzz

χS2= 4321 zzzz

χS3= 4321 zzzz
If a positional encoding is used, each subset is represented
by one minterm of variables (z1,z2,z3,z4). The resulting
characteristic function of the set of subsets is the sum of
these minterms:

χ{S1,S2,S3} = 4321 zzzz + 4321 zzzz + 4321 zzzz
Characteristic functions with positional encoding of

elements are used in many problems involving

manipulation of sets of sets, provided that the number of
elements is not large (typically no more than 50 elements).

5 Cubes (Terms)

In this section, it is shown how BDDs can be used to
efficiently implement operations on sets of boolean cubes
(terms), i.e. arbitrary products of complemented and non-
complemented boolean variables. This approach has been
proposed in [10] to handle sets of primes and essential primes
of incompletely specified boolean functions.

The performance of procedures using implicit cube
representation is practically independent of the number of
cubes in the set. It explains why this representation has played
a central role in creating efficient procedures for irredundant
cover computation [11] and two-level sum-of-products
minimization [12], which outperformed the widely known
explicit SOP minimizer ESPRESSO [13] by orders of
magnitude on large examples.

Suppose Pn is the set of all cubes that can be constructed
using variables (x1,x2,...,xn). The set Pn has 3n elements, so at
least   log2(3n)  Boolean variables are needed to represent any
element and any subset of Pn. However, using this optimal
encoding, there is no direct link between an element of Pn and
its representation. In order to establish a direct link, it has been
suggested to use 2*n variables, called signature (polarity)
variables and denoted (s1,s2,..,sn) and (p1,p2,..,pn).

A mapping from the set of {0,1}n × {0,1}n into the set Pn is
defined in the following way: a signature variable is zero if and
only if (iff) a variable is not included in the cube; a polarity
variable is 0 if the variable has a negative polarity in the cube
and 1 if the variable has a positive polarity. For example,
couple {[1101], [10-1]} denotes the cube x1 2x x4.

In general, the couple (s, p) of {0,1}n×{0,1}n denotes a
unique product of Pn

 standing for a unique subset of the
domain {0,1}n encoded using variables (x1,x2,...,xn). The
characteristic function connecting the variables s, p, and x is

χT(s, p, x) = ))p(x(s kkk

n

1k
∏
=

⇔⇒

The predicate ÷ expresses the property that cubes t and t′
represented by couples c = (s, p) and c′= (s′, p′) are identical,
which is true iff they consist of the same literals.

t ÷ t′ = )))p(p(s&)s((s k

n

1k
kkkk ′⇔⇒′⇔∏

=

The predicate ≥ expresses the property that cube t
represented by the couple c = (s, p) contains cube t′
represented by the couple (s′, p′), which is the case iff all
literals of t′ also occur in t:
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t ≥≥≥≥ t′ = )))p(p&s((s k

n

1k
kkk ′⇔′⇒∏

=

The variable ordering that minimizes the BDDs of these
predicates and the computational cost of the cube handling
procedures is given in [10]:

s1  <  s1′ < p1 < p1′ <... < sn <  sn′ < pn < pn′ .
Here is an example of the use of the above representation

to derive the characteristic function of the set of all cubes
belonging to the ON-set of completely specified function F(x).

Proposition 1. The characteristic function of the set of all
products that are cubes of F can be computed as follows:

χC(s,p) = F(x))x)p,(s,x(&x))p,(s,x( ⇒χχ ∀∃ .

The proof of this proposition follows from definitions of
the characteristic function and the set of products.

Proposition 2. To get the set of all primes of the given
function, the covered cubes should be eliminated from the
above cube set represented by its characteristic function. It can
be achieved by the following transformation:
χ′P(s,p)= p)](s,)p,s(&)p,s(([ps ≥′′′′χ′′∀ p))(s,)p,s( ÷′′⇒

The proof follows from definitions of the prime of the
given function and predicates ≥ and ÷÷÷÷.

6 Finite State Machines and Finite Automata

First, relevant definitions are given from [14].
A deterministic finite automaton (DFA) is a quintuple

A = (K, Σ, δ, q0, F), where K is a finite set of states, Σ an
alphabet, δ the transition function, δ: K×Σ → K, q0 ∈  K the
initial state, and F ⊆  K the set of final states.

A non-deterministic finite automaton (NFA) is a
quintuple A = (K, Σ, δ, q0, F), where the transition relation
δ is a mapping δ: K × Σ* → 2K, and Σ* is the set of strings
obtained by concatenating zero or more strings from Σ.

A string is accepted by A if it drives A into one of its
final states. The language accepted by A, L(A), is the set of
strings, which A accepts.

A finite state machine (FSM) is a six-tuple
M = (I, O, Q, δ, λ, q0) where I is a finite input alphabet,
O a finite output alphabet, Q a finite set of states, δ the
transition function, λ the output function, and q0 the initial
state.

A machine is of Moore type if λ does not depend on the
inputs, and Mealy type otherwise. An FSM can be
represented by a state transition graph (STG). A machine,
in which transitions under all input symbols from every
state are defined as a completely specified machine. In a
completely specified machine, both δ and λ are completely
specified functions. Otherwise, a machine is incompletely
specified.

When BDDs are used to represent FAs and FSMs, their
symbolic inputs, outputs (for FSMs), and current states are
encoded using binary codes. The encoding may be
arbitrary, except that codes should be disjoint. In practice,
the size of BDDs is reduced if an adjacent (Grey) code is
used for as many pairs of adjacent states (states connected
by a transition) as possible.

Once the encoding is selected, the transition behavior
and output behavior (for FSMs) can be specified as binary
relations.

Thus, the transition behavior of the state machine with
symbolic input I and two states, S0 and S1, is a binary
relation T(i,x,y) over variables i, x, and y encoding the
input, the current state, and the next state. The truth table
and the BDD of T(i,x,y) are shown in Figs. 5 and 6.

I CS NS i x y T
a S0 S0 1 0 0 1
b S0 S1 0 0 1 1
a S1 S1 1 1 1 1
b S1 S0 0 1 0 1

other codes 0
Fig. 5. Example of an FSM.

i

x x

y

0 1

y

Fig. 6. BDD for the transition relation of FSM in Fig. 5.
The implicit representation carries complete

information about the transition behavior of the FSM given
by the state transition graph. For example, the transition
under input b (encoded by 0) from state S0 (encoded by 0)
to state S1 (encoded by 1) corresponds to the assignment of
BDD variables to 001. Notice, for example, that the path
corresponding to the assignment of variables i = 0, x = 0,
and y = 1, leads from the root to the terminal node 1.

If an FSM is initially specified by an STG, the transition
relation is computed by adding (OR-ing) the cubes
corresponding to individual transitions. Each of these cubes
is the product of smaller cubes, depending on variables that
are encoding inputs, current states, and next states. In the
above example, the transition relation is the sum of four
cubes encoding transitions in Fig. 6:

T(i,x,y) = yxi  + yxi + ixy + yxi = i ⊕  x ⊕  y
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If the FSM is initially specified by the sequential net
list, it is possible to first extract the STG and next derive
the transition relation from the STG, as described above.
However, the STG received at the intermediary stage of this
process may be too large. A more efficient approach is
possible. First, the next state functions, δk(i, x), depending
on the input variables i and current state variables x, are
derived by traversing the net list. The transition relation is
computed using the formula

T(i,x,y) = ] x)(i,y [ kk

n

1k
δ∏

=

⇔

where the product is the boolean AND operator and ⇔
stands for the boolean equivalence operator (a⇔b is
defined as ba +ab). The transition function in the above
example is

δ(i,x) = xi + ix .
Hence, the expression for T(i,x,y) is computed as follows:

T(i,x,y) = y )x,i(δ + y δ(i,x) = y ( xi + xi )+ y( xi + ix) =

= yxi  + yxi + ixy + yxi
The reverse transformation also can be performed.

Given the transition relation, the next-state functions are
derived using the formula:

δk(i,x) = y)]x,(i,[T 1yky =∃

where the expression in square parentheses is the positive
cofactor of the transition relation with respect to the next
state variable yk.

In a similar way, it is possible to derive the output
relation, O(i,x,o), from the set of output functions, λk(i,x),
and vise versa.

A wide range of practical applications, in particular
those dealing with verification and sequential equivalence
checking, rely on implicit state enumeration, or reachability
analysis, for finite-state machines [15,16]. During
reachability analysis, the states of the FSM are visited in
the breadth-first manner starting from the set of initial
states. The computation of the reachable states can be
performed efficiently even for very large FSMs due to the
well-developed methodology of handing transition relations
using BDDs in the way described above.

The set of FSM states reachable in one transition from
the given set is computed as an image of the given set with
respect to the transition relation as follows:

R(y) = S(x)]&y)x,[T(i,iy∃∃

All the state sets in this procedure are presented as their
characteristic functions using BDDs. This computation
(known also as the image computation) is iterated until no
new states can be reached. The set of reachable states is
created as the union of the initial state set and state sets
received during successive iterations.

The reachable state information can be used in a
number of ways, for example, to simplify the transition and
output relations by restricting them to those states that are
reachable from the initial ones. Assuming that AR(x) is the
characteristic function of the reachable states, the simplified
transition relation is computed as follows:

TS(i,x,y) = T(i,x,y) & AR(x) & AR(y).
Besides reachability analysis, a wide range of practical

problems dealing with state machines can be solved using
the representation of FSMs in terms of the transition
relation and the output relation. For example, the state
machine given by the transition relation is input-
completely-specified iff

o)]x,[O(i, & y)]x,[T(i, oxyx ∃∀∃∀  ≡ 1.
Other problems that can be solved include but are not
limited to FSM state minimization [17,18,19,20,21],
determinization, simplifying the networks of state machines
[x, 22], , FSM decomposition, sequential ATPG [23], etc.

7 Partitions, Dichotomies, Set Systems

7.1. Partitions
The following definitions are taken from [24].
Partition π on a set of elements S is a collection of

disjoint subsets of S, whose set union is S, i.e.
π = { Ba } : Ba ∩ Bb = ∅ , ∀ a ≠ b; ∪ Ba = S.

The subsets of π are called blocks of π. The block
containing s is designated by Bπ(s). If two elements s and t
belong to the same block, Bπ(s)= Bπ(t), it is written s ≡ t(π).

The following two operations on partitions are used to
define the ordered set of all partitions called the lattice,
which plays a prominent role in practical applications,
in particular, those dealing with the decomposition of finite
state machines.

The product of partitions π1 and π2 on S is the partition
π1 ⋅ π2 on S such that s ≡ t(π1 ⋅ π2) iff s ≡ t(π1) and s ≡ t(π2).

The sum of partitions π1 and π2 on S is the partition
π1 + π2 such that s ≡ t(π1 + π2) iff there is a sequence in S,
s = s0, s1,…, sn, such that sn = t and either si ≡ si+1(π1) or
si ≡ ti+1(π2), 0 ≤ i ≤ n-1.

A relation between sets S and T is a subset R of S × T:
R = { (s,t) | t = R(s), s∈ S, t∈ T }
A relation R on S × S is
reflexive if ∀ s∈ S, s = R(s),
symmetric if t = R(s) implies s = R(t),
transitive if t = R(s) and u = R(t) implies u = R(s).
A relation on S × S is called an equivalence relation if it

satisfies all three of the above properties: it is reflexive,
symmetric, and transitive.
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If R is an equivalence relation on S × S, and s is an
element of S, then the set BR(s) = { t | t∈ S, t = R(s) } is an
equivalence class defined by s.

The following property is used to create an implicit
representation of partitions:

Property. If R is an equivalence relation on S, the set of
equivalence classes defines a partition π on S, and,
conversely, a partition π on S defines an equivalence
relation R on S whose equivalence classes are blocks of π.
Thus if R defines π, then t = R(s) iff s ≡ t(π).

To create an implicit representation of partitions, the
elements of S are encoded using arbitrary disjoint codes.
For many practical purposes, it is better to use the
logarithmic encoding when the number of encoding
variables is minimum,  log2|S| .

Given the binary encoding of elements, a partition can
be seen as a binary relation R. A pair of codes representing
elements s and t are related through R iff they belong to the
same partition block. For the codes that are not used in the
encoding, the relation is defined as zero.

For example, given a set of three elements S = {s1,s2,s3}
and the encoding s1 = (01), s2 = (10), s3 = (11), the problem
is to build the binary relation representing the partition
π = { {s1,s3}, {s2} }. The relation connects the following
pairs of elements: for the first block (s1,s1), (s3,s3), (s1,s3),
(s3,s1), for the second block (s2,s2), and does not connect
any other elements. Therefore, the value of function F in
Fig. 7 is zero for all other pairs of symbols si and sj.

E1 E2 C1 C2 F
s1 s1 01 01 1 00 01 11 10
s1 s3 10 11 1 00 0 0 0 0
s3 s1 11 10 1 01 0 1 0 0
s3 s3 11 11 1 11 0 0 1 1
s2 s2 10 10 1 10 0 0 1 1

other pairs 0
Fig. 7. Relation and its characteristic function

Function F can be represented as a completely specified
function over two couples of variables that encode elements
of E1 and E2. This completely specified function can be
represented using BDD.

Operations of partitions are reduced to operations on
their characteristic function represented using BDDs similar
to how operations on sets are preformed by handling their
characteristic functions. To find the product of partitions,
the product of characteristic functions is computed. To find
the sum of partitions, the sum of their characteristic
functions is found followed by the computation of the
transitive closure.

For example, the product of two partitions
π1={ {s0}, {s1,s2,s3} } and π1={ {s0,s1},{s2,s3} } on the set
of four elements S = {s0,s1,s2,s3} with straight binary

encoding can be computed as the product of their
characteristic function Ψπ1 and Ψπ2, shown in Fig. 8

     Ψπ1      Ψπ2     Ψπ1⋅π2
00 01 11 10 00 01 11 10 00 01 11 10

00 1 0 0 0 00 1 1 0 0 00 1 0 0 0
01 0 1 1 1 01 1 1 0 0 01 0 1 0 0
11 0 1 1 1 11 0 0 1 1 11 0 0 1 1
10 0 1 1 1 10 0 0 1 1 10 0 0 1 1

Fig. 8. Example of computing the product of partitions.

7.2. Dichotomies
Dichotomy is a two-block partition of elements, whose

blocks do not necessarily contain all the elements of the set.
As such a dichotomy is very similar to a partition and can
be represented in the same way.

7.3. Set Systems
Next, a generalization of partitions is considered. This

discrete object plays an important role in decomposition of
boolean functions and state machines [24].

A collection of subsets ϕ = { Ba } of S is called a
set system (blanket) iff:

1) the union of all subsets is S (∪ Ba = S)
2) none of the subsets is completely contained in

another subset (Ba ⊆  Bb implies a = b)
Operations on set systems are introduced using the

MAX-operator that takes {Si}, a set of subsets of the set S.
The result of applying the MAX-operator is the set of
subsets that are not contained in any subsets of {Si}:

MAX{Si}={ B ⊆  S | B ∈ {Si} and
Sk ⊆  B, Sk ∈ {Si}, implies Sk = B  }

The product and sum of set systems are the following:
ϕ1⋅ϕ2 = MAX{ B1∩B2 | B1 ∈ϕ 1 and B2 ∈ϕ 2 }

ϕ1+ϕ2 = MAX{ ϕ1∪ϕ 2 }
The characteristic function, F, of a set system is defined

similarly to that of a partition. Given a binary encoding of
the set elements, a pair of codes representing elements s
and t constitute a minterm of F iff they belong to the same
block of the set system.

Operations on set systems are reduced to operations on
their characteristic functions. The peculiar property of this
representation is that the product and the sum operations on
sets systems are reduced to boolean operations on their
characteristic functions, and are even simpler than that for
partitions! The product and sum of partitions are computed
as the boolean product and sum of their characteristic
functions, without the need to compute transitive closure,
which, computationally, is a relatively expansive operation.

Another advantage of this representation of set systems
is that, by introducing additional labeling variables, it
allows us to create characteristic functions of set system
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pairs, sets of set systems and sets of set system pairs. These
functions can store thousands of objects of the above kind
and perform operations on them implicitly.

For example, using the above representation it is
possible to create a BDD-based algorithm that derives all
partitions satisfying substitution property [24]. Next, a
formula with quantifiers can be used to find pairs of these
partitions that lead to parallel FSM decomposition, etc.

8  Information Measures

According to [24], it is possible to “approximate the
vague concept of information by the precise concept of a
partition, i.e. information ≈ partition”. However, it was not
until recently that the precise concept of information
relationships and measures have been introduced as an
“analysis apparatus for efficient information system
synthesis” [25].

Information measures draw upon the concept of
elementary (atomic) information, that is, information
necessary to distinguish between two elements, si and sj, of
the set S. Information contained in a partition or set system
can be represented by the information set, which is defined
as relation I on S × S:

I = { {si, sj} | si is distinguished from sj }
The following definition of the information set is given

in [25]: “IS (information set) contains the pairs of symbols
that are not contained in any single block of a
corresponding SS (set system)”. Given the characteristic
function of the set of elements, A(x), and the characteristic
function of the set system (partition), Ψϕ(x, y), the
characteristic function of the information set, ΨIS(x, y)  can
be derived as follows:

ΨIS(x, y) = [Ψϕ(x, y)]′ & A(x) & A(y)
As before, the ON-set minterms of ΨIS(x, y) are codes x

and y of elements si and sj that are distinguishable using the
information represented in the given set system.

If information sets are represented as shown above,
various operations of information measure theory can be
efficiently implemented using elementary boolean
operations on BDD of the characteristic functions. For
example, common information is computed as a product of
characteristic functions; extra information is computed as a
set difference of characteristic functions, etc.

Information similarity measure and information
increase measure can be computed as ½ of the number of
minterms in the characteristic functions of the common
information and extra information. In some applications,
there is a need to compute a number of information
measures (for example, to evaluate the informational
contribution of each variable). A group evaluation of
information measures can be efficiently implemented in
such a way that each node of the shared ROBDD

representation of the set of characteristic functions is visited
at the most once.

9 Multi-Valued Relations

The above consideration of various discrete objects
leads us to consider the most general and complex type of
discrete objects, multi-valued relations (MVRs). Other
types of discrete objects can be seen as particular cases of a
multi-valued relation over a finite set of variables over
finite domains.

For example, the characteristic function of a set of
subsets is an MVR over two multi-valued variables, one of
them having as many values as there are subsets, another as
many values as there are elements in the subset. Given a
positionally encoded set of elements, the MVR takes the
form of a relation over as many binary variables as there
are elements in the initial set. This relation is true for those
assignments of the variables, which stand for the subsets.

As another example, consider the general case of a
finite state machine before encoding. The transition relation
of this state machine can be seen as a relation over three
multi-valued variables: input, current state, and next state
variables. After encoding, this machine becomes a relation
over sets of binary variables encoding the multi-valued
variables, which, again, is a particular case of an MVR.

The above discussion leads to the conclusion that it is
important to have a good representation for MVRs. In this
paper, we advocate the use of binary-encoded multi-valued
decision diagrams (BEMDDs) as the representation of
choice for MVRs. The motivation is that BEMDDs are
efficient for large functions and lead to improved
manipulation procedures [26], as compared to other known
representations of MVRs: multi-valued cubes and cube
partitions [27], edge-valued BDDs [28], classical BDDs
[29], and classical MDDs [30].

In our approach, multi-valued variables are encoded
using the smallest possible sets of binary variables. Thus, a
k-valued variable requires at least  log2(k)  binary variables
to uniquely encode all its values. (Here the vertical bars
stand for the closest larger integer.)

For example, a 5-valued variable A can be encoded
using the set of three binary variables {a1,a2,a3}. In the
simplest case, the set of all possible values of variable A
{0,1,2,3,4} is encoded using the set of binary cubes:

{ 123 aaa , 123 aaa , 123 aaa , 123 aaa , 123 aaa }

If k is not an integer power of two, this binary encoding
results in 2|log2(k)| - k spare minterms. It is possible to leave
them unused and account for them in the decomposition
routines. In this case, it is necessary to remember that the
domain of binary variables encoding input variables is
limited only to those vertices that provide codes for the
values of multi-valued variables. This, however, increases
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the BEMDD size and makes traversal routines more
complicated.

From the practical point of view, it is better to distribute
the unused minterms between the values of the function.
For example, consider the two encodings of ten values
using four binary variables shown in Fig. 9. Minterms of
these tables stand for the values given in each cell.

00 01 11 10 00 01 11 10
00 0 4 8 8 00 0 2 7 4
01 1 5 9 9 01 0 2 8 4
11 3 7 10 10 11 1 3 9 6
10 2 6 10 10 10 1 3 10 5

Fig. 9. Two different ways to encode ten values using four
binary variables

Currently, as the default encoding of values we use the
encoding shown on the left of Fig. 9 and continue to
experiment with other encodings.

Because outputs of MVRs are typically multi-valued,
the outputs are represented using an encoding scheme
similar to the inputs. Variables used for this purpose are
called output-value-encoding variables (or simply, value
variables). Traversal algorithms typically require ordering
of the value variables below other variables in the BEMDD.

When the input and output multi-valued variables are
encoded, the BEMDD representing an MVR can be
constructed as a binary relation. This relation connects
encoded input values with the corresponding encoded
output values. For example, shown in Fig. 10 is a
three-valued-output MVR over binary variable A and
ternary variable B. Using the above approach, this function
is represented as a binary relation over five binary variables
(three variables for inputs and two variables for the output).

B\A 0 1
0 - 2
1 1 -
2 1,2 0,1

Fig. 10. The truth table for MVR F(A,B)
Suppose binary variable a encodes multi-valued

variable A, variables b1 and b2 encode B, while variables v1
and v2 encode output values of F(A,B). The variable with
the lower index corresponds to the less significant bit in the
following encoding (0,1,2) = (00,01,1-). The characteristic
function of the MVR F(A,B) can be expressed using
variables (a,b1,b2,v1,v2) as follows:

R(a,b1,b2,v1,v2) = 12bba + 1212 vvbba + )( 2122 vvvba +  +

+ 212 vbba + 12bba  + 22vab .

Each of the six terms is obtained directly by encoding a
cell of the map in Fig. 10. For example, cube 12bba  stands

for the cell corresponding to A{0}B{0}, cube 1212 vvbba
stands for A{0}B{1}, etc. The Karnaugh map and the
BEMDD for R(a,b1,b2,v1,v2) are shown in Figs. 11 and 12.

v2v1 \ ab2b1 000 001 011 010 110 111 101 100
00 1 0 0 0 1 1 1 0
01 1 1 1 1 1 1 1 0
11 1 0 1 1 0 0 1 1
10 1 0 1 1 0 0 1 1

Fig. 11. The Karnaugh map for MVR F(A,B)

a

0 1

b2 b2

b1 b1

v2

v1

v2 v2 v2

Fig. 12. The BEMDD for MVR F(A,B)

10 Labeled Rough Partitions

Recently, Labeled Rough Partitions (LRPs) have been
introduced as a new representation of MVRs [31,32]. This
representation is similar to BEMDDs in that it relies on
encoding and characteristic functions. It is different from
BEMDD representation in that the cube table specifying the
MVR is read and encoded vertically, column-by-column,
rather than horizontally, line-by-line.

Given the cube table specifying an MVR, the LRP is the
set of subsets of rows corresponding to particular values of
input and output variables. The idea of LRPs is best
understood from an example. Fig. 13 shows the cube table
for the MVR used as an illustration in the previous section.
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A B F A0 A1 A2 B0 B1 B2 F0 F1 F2

s1 0 1 1 s1 + + +
s2 0 2 1,2 s2 + + + +
s3 1 0 2 s3 + + +
s4 1 2 0,1 s4 + + + +

Fig. 13. The cube table and LRP for MVR F(A,B)
Input cubes corresponding to don’t-cares (A{0}B{1} and

A{1}B{1}) are not included in the table. To the left of the
table there is a column of symbols representing table rows.

An LRP for relation F can be constructed as follows.
For each value A, B, and F, create a set of symbols
corresponding to the rows that contain these symbols.
These sets are marked using “+” in the table given to the
right of the cube table for F(x). Next, symbols {s1,s2,s3,s4},
multi-valued constants {0,1,2} and input/output variables
of the relation {A,B,F} are encoded using three sets of
binary variables (x2,x1), (y2,y1), and (z2,z1). (Notice that
LRPs do not differentiate between inputs and outputs of the
relation.)

The BDD-based representation of the LRP is the
characteristic function over the encoding variables, which is
true for those assignments of variables (x1,x2,y1,y2,z1,z2)
that correspond to symbols belonging to particular values of
given variables. Assuming the encoding of symbols
(s1,s2,s3,s4) = (00,01,10,11), of ternary values (0,1,2) =
(00,01,1-), and of input variable A=(00), the contribution of
this variable to the characteristic function of the LRP is

χLRP
A

 = 12zz [ 12yy 2x + 12yy 2x ]
Similarly, it is possible to compute the contributions of

the input variable B and the output variable F.
Table 1 gives the comparison of the node size and

computation time for BEMDDs and LRPs for the set of
POLO benchmarks [33]. The measurements were made on
Pentium 266MHz computer with 64Mb of RAM.

The dash in the table means that we could not build the
BEMDD for the largest benchmark “Letter”, because of the
excessive BDD size. The LRP for this benchmark has a
lower node count and can be easily computed.

The experimental results show that LRPs can be used as
an alternative representation for multi-valued functions.
The efficient manipulation algorithms for LRPs that can be
used for decomposition are presented in [32].
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Benchmark In# Val#Term#BEMDDT1, c LRP T2, c
Audiology 69 154 200 2437 0.88 1123 0.50

Balance 4 20 625 85 0.05 408 0.28
Breastc 9 90 699 3490 0.33 2116 0.44

Bridges1 9 29 108 304 0.05 370 0.43
Bridges2 10 32 108 354 0.06 400 0.05

Car 6 21 1728 52 0.33 552 0.66
Chess1 6 40 28056 6367 6.10 17939 17.19
Chess2 36 73 3196 4210 4.12 6498 5.27
Cloud 6 48 108 451 0.01 422 0.05

Employ2 7 29 18000 51 3.41 1980 10.60
Flag 28 133 194 4887 0.44 1499 0.28

Flare1 10 33 969 298 0.28 704 0.44
Letter 16 256 20000 - 300.082743 37.62

Monks1tr 6 17 124 118 0.05 239 0.05
Monks2tr 6 17 169 138 0.06 317 0.05
Monks3tr 6 17 122 119 0.06 242 0.05

Mushroom 22 117 8124 894 6.32 16861 12.85
Nursery 8 27 12960 63 3.24 1049 7.58

Post-oper 8 23 90 161 0.06 260 0.06
Programm 12 42 20000 16330 8.56 51708 23.68
Sensory 11 36 576 1111 0.22 696 0.33
Sleep 9 83 62 697 0.06 429 0.06

Tic-tac-toe 9 27 958 536 0.27 1453 0.49
Trains 32 105 10 235 0.06 173 0.06
Zoo 16 39 101 216 0.06 300 0.11
alet 18 180 1410 18968 2.20 6332 1.65
c3a 14 46 10 160 0.01 94 0.01
c3b 14 48 10 197 0.01 95 0.01
c6a 13 61 10 247 0.01 112 0.05
c6b 13 66 10 239 0.01 115 0.06
d4 14 55 20 402 0.01 169 0.06
d6 13 87 20 552 0.06 215 0.06
d8 32 166 20 1271 0.05 350 0.05

Average 12.6 60.2 3600 1989 0.98 3491 0.50
Table 1. Experimental results using POLO benchmarks.

Explanation of notations used in the table:
In# – the number of inputs
Val# – the sum total of the input values
Term# – the number of cubes in the input file
BEMDD – the number of nodes in the BEMDD after
variable reordering by sifting algorithm
T1 – the time needed to build the BEMDD
LRP – the number of nodes in the LRP after variable
reordering by sifting algorithm
T2 – the time needed to build the LRP
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