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Abstract

Zero-suppressed binary Decision Diagrams (ZDDs) [21] provide an efficient way of solving problems expressed in terms of
set theory. This tutorial paper presents ZDDs for a reader with a background in Boolean algebra and Binary Decision
Diagrams [4], without any prior experience with ZDDs.

The case studies considered in the tutorial include the computation of the union of two sets, the generation of all primes of
a Boolean function, and the computation of the Irredundant Sum-of-Products of an incompletely specified Boolean function,
the latter being perhaps the most practical and useful ZDD operator. The tutorial contains the complete annotated source
code implementing a ZDD-based procedure in C with CUDD decision diagram package.

The appendix to the paper contains a list of 35+ ZDD procedures included in the decision diagram package CUDD
Release 2.3.1 [36] and 50+ additional ZDD procedures included  in the EXTRA library [30] available as a public-domain
extension of CUDD.
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1 Introduction

Fifteen years ago, Binary Decision Diagrams (BDDs) [4]
and their variations entered the scene of computer design.
Since that time they have been often used in research
software and industrial CAD tools. The role of BDDs is
two-fold. They are used as (1) a memory-efficient storage
and convenient processing media for Boolean or multi-
valued functions and (2) a representation facilitating the
analysis of data leading to new implicit algorithms, which
tend to be more efficient than the classical ones [9].

One of the reasons why decision diagrams, and in
particular BDDs, became useful for the CAD tool
developers, is that they provide canonical representation of
discrete objects. Canonical means that under certain
condition for every object there is only one representation
of this kind. This property is extremely important for
verification because in order to prove the identity of two
objects it is sufficient to build their canonical
representations and show that these representations are
identical. This property is also important it synthesis. For
example, canonical representations are useful as signatures
when storing objects in hash tables.

The experience of using BDDs in numerous applications
shows that they are not a panacea for all types of problems.
In some cases, due to the specific properties of the discrete
data arising in particular settings, the BDDs grow large
making processing inefficient or impossible. In particular,
this situation occurs when the applications work with sparse
sets represented by characteristic functions [5].

A set is sparse if the number of elements in it is much
smaller than the total number of elements that may appear
in the set. Cube covers are an example of sparse sets,
because a typical cube contains only a few literals, out of all
possible literals that may appear in the cube. The maximum
number of literals is reached when a cube is a minterm
containing each variable as either the negative or the
positive literal. In the case of minterms, the sparseness of
the set is ½, because each minterm contains exactly one half
of all possible literals that may appear in the cubes.

The problem of prohibitively large BDD size of the
sparse set representation can be remedied by introducing a
different brand of decision diagrams, called Zero-
suppressed binary Decision Diagrams (ZDDs) [21]. These
diagrams are similar to BDDs with one of the underlying
principles modified. The latter explains the improved
efficiency of ZDDs when handling sparse sets and a number
of other semantic differences between the two types of
diagrams.

While BDDs are better for the representation of functions,
ZDDs are better for the representation of covers.
Additionally, there are efficient procedures to perform
conversions between them. Taken together, BDDs and

ZDDs provide a powerful framework to solve problems in
logic synthesis, such as two-level sum-of-product (SOP)
minimization [8], three-level minimization, factorization
[27][35], and decomposition [18].

The use of ZDDs is not limited to logic synthesis. They
have been used, independently of BDDs, in a number of
applications, ranging from the graph-theory problems to
handling polynomials and regular expressions. (See Section
8 for what is intended to be a complete list of ZDD
applications published to date.)

This tutorial paper is designed to be an introduction to
ZDDs for a reader with background in Boolean algebra and
an understanding of basic principles of BDDs. The goal is
to present the three major types of applications:

• ZDDs for sets
• ZDDs for cube covers
• Mixed BDDs/ZDDs for functions and cube covers
To this end, we first discuss the basic principles and uses

of ZDDs. In particular, Section 3 focuses on the main
differences between BDDs and ZDDs when it comes to
representing Boolean functions, sets, and cube covers.

In Section 4, we classify and discuss the elementary ZDD
operators provided by the DD package.  After this
discussion, we explore the generic structure of the DD-
based recursive procedure. This is important for the
understanding of the material of the following sections.

Section 5 shows how ZDDs can be used to manipulate
sets. The set-union operator is considered as an illustrative
example. The complete source code of this operator in the
CUDD package is included in the paper and explained
assuming the reader’s familiarity with the C programming
language.

Section 6 introduces the basics of ZDDs for manipulation
of cube covers using the cover-product operator as an
illustrative example.

Section 7 contains two practically important examples of
mixed ZDD/BDD applications: generation of a ZDD
representing all primes of the completely specified Boolean
function given as a BDD, and computation of a ZDD
representing an Irredundant Sum-of-Products of the
incompletely specified Boolean function.

Section 8 provides the complete list of ZDD applications
published to date, followed by conclusions in Section 9.

Two complementary appendices contain annotated lists of
ZDD-based procedures implemented in the CUDD package
[36] and the EXTRA library [30], respectively.

Ideally, after completing the tutorial, the reader should be
able to write his or her own ZDD-based procedures using
the CUDD package.
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2 Definitions

A literal is a propositional variable or its negation, e.g.
a, b . A  product, or cube, is a Boolean product of literals,

e.g. cb . A cover is a set of products. The cardinality of the
cover is the number of cubes in the cover. A complement,
or a negative phase, of cover S is a cover T such that the
union of S and T is a tautology, that is, the Boolean
function constant-1.

Let f: Bn → B, B∈{0,1}, be a completely specified
Boolean function (CSF). Let F: Bn → {0,1,-} be an
incompletely specified Boolean function (ISF) represented
by two CSFs: the on-set, f1 = {x | F(x) = 1 } and the don’t-
care-set, fdc = {x | F(x) = - }.

A CSF can be represented by a set of cubes. This
representation is known as a two-level sum-of-product
representation (SOP). An SOP, or cover, is irredundant, if
no cubes can be removed without reducing the area of the
covered Boolean space and no two cubes can be combined
into one cube.

A function essentially depends on a variable if the
variable appears in an irredundant SOP or in a reduced
ordered BDD of the Boolean function. The variable set X,
on which f essentially depends, is called support of f.

A minterm is the smallest cube, in which every variable is
represented by either a negative or a positive literal.
A variable that is not represented by a negative or a positive
literal in the cube is said to have the don’t-care literal. Each
don’t-care literal can be seen as a sum of the positive literal
and the negative literal. This leads to splitting the cube into
two smaller cubes.  In general, if a cube has k don’t-care
literals, it is equal to the sum of 2k minterms, created by
splitting each don’t-care literal.

The area of the Boolean space covered by the cube
consists of all minterms created by splitting the don’t-care
literals of the cube. Two areas of the Boolean space overlap
if they have common minterms.

Two cubes are disjoint if the areas of the Boolean space
covered by the cubes do not overlap. Two covers are
disjoint if the areas covered by their cubes do not overlap.

Given a Boolean function f, the negative cofactor of f
with respect to (w.r.t.) variable x is the Boolean function
fx=0 = f( x = 0 ). Similarly, the positive cofactor is the
Boolean function fx=1 = f( x = 1 ).

The following terminology is accepted in the BDD
research [4]. The BDD represents the function as a rooted
directed acyclic graph. Each non-terminal node N is labeled
by a variable v and has edges directed towards two
successor (children) nodes, else(N) and then(N),
representing the cofactors of N w.r.t. v. Each terminal node
is labeled with 0 or 1. For a given assignment of the
variables, the value of the function is found by tracing a
path from the root to a terminal vertex following the
branches indicated by the values assigned to the variables.

The function value is given by the terminal vertex label. For
example, Fig. 1 (left) shows the BDD of the Boolean
function F = ab + cd. The edges are directed downwards.
The dashed edges (solid) edges correspond to v = 0 (v = 1).

In the following, we use the terms “procedure”,
“functions”, “routine” and “operator” interchangeably to
denote a fragment of functionality implemented with DDs.

3 Comparing BDDs and ZDDs

Both BDDs and ZDDs can be seen as decision trees,
simplified using two reduction rules that guarantee the
canonicity of the resulting representation. The second
reduction rule (merging of isomorphic subgraphs) holds for
both BDDs and ZDDs; however, they differ in the first
reduction rule (node elimination).

For BDDs, the node is removed from the decision tree if
both its edges point to the same node. For ZDDs, the node
is removed if its positive edge (then-edge) points to the
terminal node 0. This variation in the rule, as mentioned
before, explains the improved efficiency of ZDDs when
handling sparse sets and the semantic differences between
the two types of diagrams.

One way of understanding the principles of ZDDs is to
compare them with BDDs for simple illustrative functions
while keeping in mind their main difference.

3.1 Boolean functions

It can be shown that, in a BDD, all paths from the root to
terminal node 1 can be seen as cubes constituting a disjoint
cover of the function. A variable is present in the positive
(negative) polarity in the corresponding cube if the path
contains the 1-edge (0-edge) of a node labeled by this
variable; the variable is absent in the cube if the path does
not go through a node labeled by this variable.

In a ZDD for the same function, all paths from the root to
terminal 1 also represent a disjoint cover of the function.
(This cover is the same if the variable ordering is the same
in both diagrams.) A variable is present in the positive
polarity in the corresponding cube if the path goes through
the 1-edge of a node labeled with this variable. A variable
is present in the negative polarity in the cube if the path
goes through the 0-edge or if the path does not go through a
node labeled by this variable. A variable is absent in a
cube, if the path goes through a node labeled by this
variable and both edges of the node point to the same node.

Consider a BDD and a ZDD of the function F = ab + cd
shown in Fig. 1. Both diagrams can be used to trace the
disjoint cover of the function: {ab, cda , cdba }. As can be
seen from Fig. 1, the size of the ZDD, expressed as the
number of nodes in the diagram, is almost two times larger
than that of the BDD. This is because ZDDs are not as
efficient as BDDs when it comes to representing typical
Boolean functions.
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Figure 1. BDD and ZDD for F = ab + cd.

3.2 Sets of subsets

The classical BDDs represent completely specified
Boolean functions. In order to represent sets∗ (and sets of
subsets), the characteristic functions have been introduced
[5] in such a way that each set is put in one-to-one
correspondence with its characteristic function.

Informally, the characteristic function of a set of subsets
is a CSF that depends on as many input variables as there
are elements that can potentially appear in a subset. For
each subset in the set, one minterm is added to the on-set of
the characteristic function. In this minterm, variables appear
in positive (negative) polarities if they are present (absent)
in the set. In the extreme case of one subset (that is, if a set
of subsets contains only one subset), the characteristic
function has only one minterm in its on-set.

For example, given three elements (a,b,c), consider the set
of subsets { {a,b}, {a,c}, {c} }. If we associate each
element with a binary variable having the same name, the
characteristic function of the set of subsets is
F = cab + cba + cba . The first minterm corresponds to the
subset {a,b}, and so on.

Important for our discussion are the following
observations. The empty subset is represented by the
minterm F = cba , while the subset containing all elements
is represented by F = abc. The empty set is represented by
the characteristic function F = 0, while the set composed of
all possible subsets is represented by the characteristic
function F = 1. The latter is obvious if we observe that the
constant-0 function has no on-set minterms, while the
constant-1 function has 2^n on-set minterms, corresponding
to the complete Boolean space.

Notice that there is a difference between the empty set
and the set of subsets composed of the empty set only. The

                                                          
∗ In this paper, sets stand for unordered arrangements of elements from a
finite collection. In other words, when defining the uniquenes of a set,
only the presence of elements matters, not their order. Sets {a,b} and
{b,a} are considered identical, while sets {a,b,c} and {a,b} are different.
Sometimes it is convenient to assume that the elements are initially
ordered and appear in the sets only in this order. Assuming that a precedes
b in the order, both {a,b} and {b,a} will be represented by {a,b}.

former has the characteristic function equal to constant 0,
while the latter has the characteristic function F = cba .

Once the characteristic function is constructed, it can be
represented using a BDD or a ZDD. The two
representations of the set of subsets {{a,b}, {a,c}, {c}} are
given in Fig. 2.

Figure 2. The BDD and the ZDD for the set of subsets
{{a,b}, {a,c}, {c}}.

In both diagrams, there are three paths from the root node
(on top) to the terminal node 1, which correspond to the
subsets {a,b}, {a,c}, and {c}. The encoding of the variables
in the paths is discussed in section 3.1.

Notice that the size of the ZDD in Fig. 2 is smaller than
that of the BDD. It can be proved that the upper bound on
the size of the ZDD is the total number of elements
appearing in all subsets of a set. Meanwhile, the upper
bound on the size of the BDD is given by the number of
subsets multiplied by the number of all elements that can
appear in them. This observation shows that ZDDs should
be much more compact when representing sets of subsets.
The above theoretical upper bound on the ZDD size is
rarely reached; in practice ZDDs tend to be even more
compact.

3.3 Cube covers

Let us now consider the ZDD representation of cube
covers. First, it is necessary to introduce additional
variables, because BDDs and ZDDs depending on the
primary input variables represent only one type of disjoint
covers. To represent arbitrary covers, two variables are
used for each primary input: one of them stands for the
positive literal and another for the negative literal. These
variables are always kept adjacent in the variable order.
Similarly to the set of subsets, a cube cover is represented
by its characteristic function introduced as follows:

• The characteristic function depends on the 2*n
variables, where n is the number of primary inputs.

• For each cube of the cover, one minterms is added to
the on-set of the characteristic function.

• The minterm has those variables in the positive
polarity that correspond to literals present in the cube
and those variables in the negative polarity that
correspond to literals missing in the cube.

10

a

b

c

a

bb

c c

10

10

a

b

c

d

a

bb

c c

d d

10



5

For example, to represent arbitrary covers of the four-
variable function F = ab + cd, eight variables are used:
(a1, a0, b1, b0, c1, c0, d1, d0). These variables correspond to
the positive and negative literals of each input variable.

Consider the cover {ab, cd}. The characteristic functions

of this cover is: χ = 01010101 ddccbbaa + 01010101 ddccbbaa .

ZDD for the characteristic function is shown in Fig. 3.

Figure 3. ZDD for the cover {ab, cd}.

Unlike the BDD for function χ, which depends on all
eight variables, the ZDD depends on four variables only.
These are the variables that appear in the characteristic
function in the positive polarity and correspond to literals
actually present in the cover. All other variables are missing
in the ZDD, because according to the ZDD reduction rules
a variable missing on the path is interpreted as a variable
taking the value 0 in the minterm of the characteristic
function. This property makes ZDD ideal for representing
and manipulating large cube covers.

The terminal node 0 in a ZDD representing covers stands
for the empty cover. In this case, there are no assignments
for which the characteristic function evaluates to 1 and
therefore there are no cubes in the cover.

The terminal node 1 stands for the cover containing only
the tautology cube, that is the cube in which all the literals
are missing. Indeed, there is only one path for which the
characteristic function evaluates to 1, and this path does not
go through any nodes. According to the ZDD reduction
rules, it means that all the variables on the path are equal to
zero, which in turn means that all the literals are missing in
the cube.

The decomposition of a cover w.r.t. the primary input
variable is a triple of covers that contain cubes: (1) with the
variable as the positive literal, (2) with the variable as the
negative literal, (3) without the variable (or with the
variable as a don’t-care literal).

The inverse operation is the composition of the three
covers into one cover. The composition is performed using
a primary input variable that is not currently used in the
covers.

For example, consider the cover C = cab + dba + ac + d.
Decomposing C w.r.t. the primary input variable b yields:
C0 = ad, C1 = ca , C2 = ac + d. The reverse operation, the

composition of the covers C0, C1, and C2 w.r.t. b, which
does not appear in them, produces the initial cover C.

If the cover is represented by its ZDD, the decomposition
and composition operations are performed by functions of
the ZDD package. In the traversal procedures presented in
this paper, the functions are denoted DecomposeCover()
and ComposeCover().

DecomposeCover() takes the cover and the primary input
variable and returns three subcovers. ComposeCover()
takes three subcovers and the primary input variable and
returns the composed cover.

For a detailed analysis of ZDD in the representation of
cube covers, it is recommended for the reader to review
references [23][26][27] where some basic ZDD-based
recursive operators are introduced and explained.

4 Basic ZDD procedures

The basic functions dealing with ZDDs can be classified
as follows:

4.1 Procedures working with functions

These procedures are similar to those developed to
manipulate Boolean functions using BDDs.
• Procedures returning elementary functions:

o Constant-0 ZDD (constant zero function, F = 0)
o Universal ZDD (constant one function, F = 1)
o Single-variable ZDD (the function equal to the

elementary variable, F = v)
• Procedures performing boolean operations:

o If-Then-Else (ITE) operator. This function returns
the result of applying ITE to A, B, and C:

ITE( A, B, C ) = AB+ CA .
Notice that the complement of a ZDD cannot be

computed by complementing a pointer, as it is done using
BDDs with complement edges. Instead, we should apply the
ITE operator to the function and constants and compute the
complement as follows: F = ITE( F, 0, 1).

4.2 Procedures working with sets

• Procedures returning elementary sets:
o Constant-0 ZDD (the empty set, {})
o Constant-1 ZDD (the set of subsets consisting of

the empty set, {{}})
o Single-variable ZDD (the set of subsets with a

subset containing element v, {{v}})
• Procedures performing operations on the set of subsets

w.r.t. to a single element (variable):
o Subset0( S, v ) returns the set of subsets of S not

containing element v.
o Subset1( S, v ) returns the set of subsets of S

containing element v.
o Change( S, v ) returns the set of subsets derived

from S by adding element v to those subsets that
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did not contain it and removing element v from
those subsets that contain it.

• Procedures performing standard set operations for two
sets of subsets:
o Union( X, Y ) returns the set of subsets belonging

to X or Y.
o Intersection( X, Y ) returns the set of subsets

belonging to both X and Y.
o Difference( X, Y ) returns the set of subsets of X

not belonging to Y.
It is important to distinguish single-variable ZDDs as used

in the manipulation of functions and from those used in the
manipulation of sets. Fig. 4 shows the ZDDs for F = b,
assuming that there are three variables (a,b,c). In  the case
of functions, this ZDD represents the function F = b. In  the
case of sets, the ZDD represents the characteristic function
of the set containing a single element b. In this case,
the characteristic function is F  = cba .

Figure 4. ZDDs for elementary variable b used in functions
manipulation (left) and in set manipulation (right).

In addition to the above nine elementary operators
defined for sets, the two pairs of set product and weak-
division operators have been implemented using ZDDs.*

These two pairs of operators correspond to unate and binate
algebras [23][27].

Speaking informally, in unate algebra, every literal of a
cube is either positive polarity or missing, while in binate
algebra every literal may be non-complemented,
complemented, or missing.

Correspondingly, to manipulate sets in unate algebra
every literal is encoded with one ZDD variable, while to
manipulate sets in binate algebra, two literals are used, one
represents the variable in positive polarity, the other
presents it in negative polarity.†

In terms of the definitions introduced above, ZDDs used
to manipulate sets of subsets implement the unate algebra,
while ZDD used to manipulate the cube covers implement
the binate algebra.

                                                          
* The remainder can be considered as an operator related to each pair. In
practice, however, it is implemented by reducing it to the product and
weak-division as follows: X%Y = X – X*(X/Y).
† In terms of procedures implemented in the main distribution of the
CUDD package, unate product and division are Cudd_zddUnateProduct()
and Cudd_zddDivide(), while binate product and division are
Cudd_zddProduct() and Cudd_zddWeakDiv().

4.3 Generic structure of a recursive ZDD
procedure

In this subsection, we discuss the generic structure of a
recursive ZDD procedure. The presentation is also true for
recursive procedures written using other types of decision
diagrams, in particular, BDDs and ADDs [2]. Therefore, in
this subsection we use the term “DD” instead of “ZDD”.

Procedures written with DDs can be roughly divided into
two classes:
• Recursive procedures that rely on the DD structure to

perform computation.
• Non-recursive procedures that do not use the DD

structure but may call the recursive procedures.
The former type is also known as traversal procedures,

because, in the process of recursion, all nodes of the DD are
visited in the depth-first manner starting from the root. The
efficiency of traversal procedures comes from the fact that,
due to the caching of the intermediate results of
computation, each node in the tree of recursive calls is
visited only once.

If the traversal procedure takes only one DD as an
argument, the number of nodes in the tree is equal to the
number of nodes in the DD. If there are more arguments,
the number of nodes in the tree has the upper bound of the
product of the number of nodes in the argument DDs. This
upper bound is rarely reached in practice.

dd TraversalProcedure( dd A, dd B, ... )
{
   // (1) consider terminal cases
   if ( A = 0 )  return ...;
   if ( A = 1 )  return ...;
   ...

   // (2) perform a cache lookup
   R = CacheLookup( A, B, ... );
   if ( R exists )  return R;

   // (3) find the topmost variable in A, B, ...
   Var = TopMostVariable( A, B, ... );

   // (4) cofactor arguments w.r.t. Var
   A0 = Cofactor( A, Var’ );
   A1 = Cofactor( A, Var  );
   ...

   // (5) recursively solve subproblems
   R0 = TraversalProcedure( A0, B0, ... );
   R1 = TraversalProcedure( A1, B1, ... );
   ...

   // (6) derive the solution of the problem
   //     from those of the subproblems
   R  = GetResult( R0, R1, ... );

   // (7) cache the result
   CacheInsert( A, B, ..., R );

   // (8) return the result
   return R;
}

Figure 5. Structure of the recursive DD-based procedure.
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Fig. 5 shows the structure of a recursive traversal
procedure. Steps (2)-(5) and (7)-(8) are similar for the
majority of the recursive procedures. Steps (1) and (6) are
application-specific.

In particular, step (1) solves the problem in the extreme
case when the argument DDs are such that no further
recursive calls are necessary. Step (6) answers the question:
How to solve the problem if partial solutions of
subproblems are known? In some cases, this step requires a
lot of creativity to implement. Some of the algorithms
cannot be implemented recursively, because Step (6) cannot
be solved, or has not been solved so far. Here are two
examples of such hard problems:
• Complementation of the cover represented by a ZDD.

The simplest known solution requires two traversals:
create the BDD of the function represented by the
cover, complement the BDD (this is done in constant
time for BDDs with complement edges), and compute
the ZDD of the complemented cover.

• Computation of the set of dominated columns and rows
in the unate covering problem represented by BDDs.
So far, this problem has been solved either explicitly,
without DDs, or by applying formulas with quantifiers
to the BDDs of dominance relations [19].

5 Manipulation of sets

In this section, we apply the principles of traversal
procedures discussed above to a particular example of
computation of the union of two sets of subsets.

For example, given the two sets of subsets:
A = {{a,b}, {c}} and B = {{a,b}, {a,c}}, the union of A
and B is {{a,b}, {a,c}, {c}}.

set Union( set A, set B )
{
   // (1) consider terminal cases
   if ( A = {} ) return B;
   if ( B = {} ) return A;
   if ( A = B  ) return A;

   // (3) find the topmost variable in A and B
   var x  = TopVariable( A, B );

 // (4) cofactor arguments w.r.t. x
   set A0 = Subset0( A, x );
   set A1 = Subset1( A, x );
   set B0 = Subset0( B, x );
   set B1 = Subset1( B, x );

   // (5) recursively solve subproblems
   set R0 = Union( A0, B0 );
   set R1 = Union( A1, B1 );

   // (6) derive the solution of the problem
   //     from those of the subproblems
   set R  = CreateZdd( x, R1, R0 );

   // (8) return the result
   return R;
}

Figure 6. Pseudo-code of the union of two sets of subsets.

The pseudo-code of the set-union operator is shown in
Fig. 6, where steps (2) and (7) (the cache lookup and insert)
have been omitted for clarity. Notice how the steps (1) and
(6) are solved in the pseudo-code.

The terminal cases take place when at least one of the
arguments is an empty set  (in this case, the union is equal
to the other argument) or when both arguments are equal (in
this case, the union is any of the sets).

Procedures Subset0() and Subset1() compute the
cofactors of the initial sets, that is the sets that do not
contain the topmost element and the sets that contain the
topmost element.

The solution R of the problem can be derived from the
solution of the subproblems. To get the subsets with(out)
the topmost element, R0 and R1, we compute the union of
the argument subsets with(out) the topmost element. This is
done using two recursive calls to Union().

Next, we create the ZDD with the topmost element x and
the cofactors R0 and R1. This way we include into the
resulting set of subsets all the subsets with(out) the topmost
element if they appear with(out) the topmost element in one
of the argument sets of subsets, A or B.

5.1 A case stude of the CUDD source code

Now, consider the source code of the procedure
cuddZddUnion(), which implements the recursive step of
the set-union operator in the CUDD package (Fig. 7).
The code is taken from the file “cuddZddSetop.c” of the
CUDD Release 2.3.1. Here it is reproduced with minor
changes to improve its readability.

The procedure cuddZddUnion() is called with three
arguments: the pointer to the decision diagram manager
(zdd), and the ZDDs, P and Q. The local variables defined
in the function store the levels of the topmost nodes in P
and Q (p_top and q_top), the partial results (t and e), and
the final result (res). Variables t, e, and res stand for R0, R1
and R in Fig. 6.

Function statLine(), implemented as a macro, is called
with the pointer to the manager. It collects statistics about
the number of recursive calls. It does not influence the
functionality of cuddZddUnion().

The next three lines of the code implement the terminal
cases. The macro DD_ZERO(zdd) returns the constant-0
node of the DD manager that represents the ZDD of the
empty set.

Function cuddCacheLookup2Zdd() performs the cache
lookup for a recursive procedure with two DD arguments.
This function takes four arguments: the pointer to the
manager, the pointer to the calling function (used as a
signature to distinguish this cache entry from entries created
by other functions called with the same argument DDs), and
two arguments, P and Q. This function returns NULL if
there is no matching entry in the cache; otherwise, it returns
the pointer to the ZDD of the result.
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Each DD node F in the CUDD package is annotated with
the variable number (F->index). The terminal nodes have
the variable number equal to CUDD_CONST_INDEX.
Because reordering of variables may have taken place in the
manager, the variable number alone is not enough to find
the position of the given DD node in the variable order. To
find the position, the levels of nodes should be determined.

The next two if-statements in the source code determine
levels, p_top and q_top, of the topmost nodes in the
argument DDs, P and Q. The level is the same as the
variable index (CUDD_CONST_INDEX), if the DD node
represents the constant function; otherwise it is determined
using the mapping of variables into the corresponding
levels, which is stored in the array zdd->permZ.

Next, three cases are considered:
• P is higher in the variable order than Q
• Q is higher in the variable order than P
• P is on the same level as Q

We discuss only the last one, the other two being similar.
Macros cuddT() and cuddE() return the “then” and “else”

children (cofactors) of the given DD node. In ZDDs, these
cofactors correspond to the sets of subsets, in which the
topmost element is present (the “then” cofactor) or absent
(the “else” cofactor). The cofactors are used in the recursive
calls to cuddZddUnion(), which determine the two
components of the result: the set of subsets with the topmost
element (t) and without it (e).

All the DDs returned by the function calls are checked for
being NULL. If the returned pointer to the node is not
NULL, the node is referenced. If the returned pointer is
NULL, it means that during the call either (1) the operating
system has run out of memory when the CUDD package
tried to extend the node table, or (2) the dynamic variable
reordering has been triggered. In both cases, the recursive
traversal is interrupted and NULL is returned to the caller.
Notice also that the intermediate results of computation,
which have been referenced so far, are dereferenced by
calling Cudd_RecursiveDerefZdd().

A few remarks should be made regarding the referencing
conventions accepted in the CUDD package. A detailed
treatment is given in CUDD User Manual [36].

Decision diagrams are stored in the DD manager as a
shared directed acyclic graph of nodes. To mark the nodes
that are in use, they are reference-counted. The reference
counter of a DD node tells how many times this node
participates in the DDs currently present in the manager.
Therefore, each time a new DD node is created, its
reference counter is incremented by the call to cuddRef().

DdNode *
cuddZddUnion(
  DdManager * zdd,
  DdNode *    P,
  DdNode *    Q)
{
 int p_top, q_top;
 DdNode *t, *e, *res;

 statLine(zdd);

 if ( P == DD_ZERO(zdd) )   return ( Q );
 if ( Q == DD_ZERO(zdd) )   return ( P );
 if ( P == Q )              return ( P );

 /* check cache */
 res = cuddCacheLookup2Zdd(zdd,cuddZddUnion,P,Q );
 if ( res != NULL )  return ( res );

 if ( cuddIsConstant( P ) )
   p_top = P->index;
 else
   p_top = zdd->permZ[P->index];

 if ( cuddIsConstant( Q ) )
   q_top = Q->index;
 else
   q_top = zdd->permZ[Q->index];

 if ( p_top < q_top )
 {
   e = cuddZddUnion( zdd, cuddE( P ), Q );
   if ( e == NULL )  return ( NULL );
   cuddRef( e );
   res = cuddZddGetNode(zdd,P->index,cuddT(P),e);
   if ( res == NULL )
   {
     Cudd_RecursiveDerefZdd( zdd, e );
     return ( NULL );
   }
   cuddDeref( e );
 }
 else if ( p_top > q_top )
 {
   e = cuddZddUnion( zdd, P, cuddE( Q ) );
   if ( e == NULL ) return ( NULL );
   cuddRef( e );
   res = cuddZddGetNode(zdd,Q->index,cuddT(Q),e);
   if ( res == NULL )
   {
     Cudd_RecursiveDerefZdd( zdd, e );
     return ( NULL );
   }
   cuddDeref( e );
 }
 else
 {
    t = cuddZddUnion( zdd, cuddT(P), cuddT(Q) );
    if ( t == NULL )   return ( NULL );
    cuddRef( t );
    e = cuddZddUnion( zdd, cuddE(P), cuddE(Q) );
    if ( e == NULL )
    {
      Cudd_RecursiveDerefZdd( zdd, t );
      return ( NULL );
    }
    cuddRef( e );
    res = cuddZddGetNode( zdd, P->index, t, e );
    if ( res == NULL )
    {
      Cudd_RecursiveDerefZdd( zdd, t );
      Cudd_RecursiveDerefZdd( zdd, e );
      return ( NULL );
    }
    cuddDeref( t );
    cuddDeref( e );
 }
 cuddCacheInsert2( zdd,cuddZddUnion,P,Q,res );
 return ( res );
} /* end of cuddZddUnion */

Figure 7. CUDD source code implementing the union of
two sets represented as ZDD.
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Similarly, each time an old DD node is deleted, its
reference counter is decremented. If after decrementing the
reference counter becomes zero, the node is considered
“dead” and the reference counters of the successor nodes
are decremented in turn. This recursive decrementing of the
reference counters is performed by the call to
Cudd_RecursiveDerefZdd().

Functions in the CUDD package (with very few
exceptions mentioned in the user manual) return non-
referenced DD nodes. It is the responsibility of the caller
function to reference the returned node after checking it for
not being NULL.

This principle is used in the source code in Fig. 7 several
times. First of all, the returned nodes are referenced after
each function call, except for the last call to
cuddZddGetNode(). In this case, there is no need to
reference the node to be returned (res) because the function
should return the non-referenced node. Of course, it would
not be an error to reference it by cuddRef(res) and then
dereference it right before returning by cuddDeref(res). In
the CUDD source code, these two steps are skipped for the
sake of efficiency.

The last comment is about function cuddZddGetNode(). It
returns the new ZDD node of the manager (zdd) with the
given variable (P->index) and cofactors (t and e). Notice
the order of cofactors in the argument list: first the “then”
cofactor, next the “else” cofactor. After the call to
cuddZddGetNode(), the cofactor DDs (t and e) should be
dereferenced because cuddZddGetNode() references them
when it creates the new node (res). Because cofactor ZDDs
(t and e) are now part of the result ZDD (res), there is no
need for recursive dereferencing by the call to the function
Cudd_RecursiveDerefZdd(). The cofactor ZDDs can be
efficiently dereferenced using cuddDeref().

Notice that this implementation can be improved by
taking advantage of the communativeness of the set-union
operation. It means that the argument ZDDs (P and Q) can
be ordered to increase the cache hit-rate.

There are several ways to implement this improvement.
One of them is based on the assumption that the ordering of
arguments is given by the ordering of the pointers to the
argument DdNode-structures. In this case, it is enough to
replace each recursive call to cuddZddUnion( zdd, A, B )
by the lines

  if ( (unsigned)A < (unsigned)B )
    cuddZddUnion( zdd, A, B );
  else
    cuddZddUnion( zdd, B, A );

This improvement may lead to approximately 5% speedup
in the applications, which perform many calls to
Cudd_zddUnion(), the exported function of the package,
which calls the internal function cuddZddUnion().

6 Manipulation of cube covers

This section gives an illustrative example of a traversal
procedure working with cube covers represented by ZDDs.
Fig. 8 shows the pseudo-code of the function implementing
the product of two cube covers. As in the case with
Union(), the cache lookups are omitted.

cover Product( cover A, cover B )
{
   if ( A = {}  || B = {} ) return {};
   if ( A = {{}} ) return B;
   if ( B = {{}} ) return A;
   if ( A = B    ) return A;

   var x  = TopVariable( A, B );

   cover A0, A1, A2, B0, B1, B2;
   ( A0, A1, A2 ) = DecomposeCover( A, x );
   ( B0, B1, B2 ) = DecomposeCover( B, x );

   cover TA0B0 = Product( A0, B0 );
   cover TA0B2 = Product( A0, B2 );
   cover TA1B1 = Product( A1, B1 );
   cover TA1B2 = Product( A1, B2 );
   cover TA2B0 = Product( A2, B0 );
   cover TA2B1 = Product( A2, B1 );
   cover TA2B2 = Product( A2, B2 );

   cover R0 = Union( Union(TA0B0, TA0B2), TA2B0 );
   cover R1 = Union( Union(TA1B1, TA1B2), TA2B1 );
   cover R2 = TA2B2;
   cover R  = ComposeCover( x, R0, R1, R2 );
   return R;
}

Figure 8. Pseudo-code of the product of two covers.

Consider the terminal cases. If any of the covers contains
no cubes, the function represented by the cover is the
constant-0 function and the product is 0, so the empty cover
is returned. If any of the covers is the tautology cube, the
product is equal to the other cover. Finally, if the covers are
the same, the product is equal to any of them.

When the topmost variable x is determined, notice that
this is a primary input variable, not a ZDD variable. Each
primary input variable is represented by two ZDD
variables. This is taken into account by the function
TopVariable(), which is more complex than the function
with the same name used in the procedure Union(). Next,
both argument covers are cofactored into three subcovers
containing cubes with the given variable in the negative
polarity (A0 and B0), in the positive polarity (A1 and B1),
and without the given variable (A2 and B2).

The main part of computation of cover-product (step (6))
is based on the following equality:

A * B = ( x A0 + xA1 + A2)* ( x B0 + xB1 + B2)=
          = x ( A0*B2 + A2*B0 + A0*B0 ) +
           + x( A1*B2 + A2*B1 + A1*B1 ) + A2*B2.

This equality reduces the computation of the cover-
product to seven recursive calls to cover-product of the
cofactor DDs. Out of nine possible combinations (each of
the three subcovers of A with each of the three subcovers of
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B), there is no need to consider only two combinations,
A0*B1 and A1*B0, because the product of the negative and
the positive literals reduces these sets to zero.

Finally, after five two-argument set-union operations
which computes the three subcovers, R0, R1, and R2, the
resulting cover R is composed from them using the topmost
primary input variable.

Another implementation of this function is possible that
replaces two (out of seven) calls to Product() for two
additional calls to Union(). Because the implementation of
Union() is simpler, this implementation of Product() is
more efficient. The alternative implementation is explained
by the following equality:

A * B = ( x A0 + xA1 + A2)* ( x B0 + xB1 + B2)=
          =  x ( A0*B2 + B0*(A0+A2) ) +
           + x( A1*B2 + B1*(A1+A2) ) + A2*B2.

7 Mixed ZDD/BDD applications

In this section, we discuss two procedures, which play an
important role in the SOP minimization. These are (1) the
computation of all primes of the CSF and (2) the
computation of an irredundant SOP of the ISF. In  both
cases, the function arguments are represented as BDDs
while the return values are represented by ZDDs. Other
procedures may take ZDDs and return BDDs or have more
complex argument assignments.

7.1 Computation of the set of all primes

The recursive approach to the prime computation has
been proposed in [30] and implemented using BDDs/ZDDs
in [8]. The pseudo-code is shown in Fig. 9.

The terminal cases are simple. If the input function is
constant-0, the set of primes is empty. If the input function
is constant-1, the prime set composed of the tautology cube
is returned. Notice that the set of subsets that includes only
the empty subset, {{}}, represents the cube with no literals,
that is the tautology cube.

If it is not a terminal case, the topmost variable in the
BDD of F is determined and the function is decomposed
w.r.t. this variable. Next, the problem is solved in three
steps.

First, the set of primes (P2) belonging to the intersection
of cofactors is computed. These primes do not have the
topmost variable as the positive or the negative literal.

Second, the set of all primes of the negative cofactor of
the function (P0) is computed. These primes will have the
topmost variable in the negative polarity. Before the
topmost literal is added (when composing the result at the
end of the procedure), some of them may be identical to the
primes in P2. After adding the literal corresponding to the
topmost variable, some of the cubes in P2 will contain the
corresponding cubes in P0, because cubes in P0 get the
negative literal while the cubes in P2 do not get a literal

associated with this variable. Because the contained cubes
are, by definition, not primes, they should be removed. This
is done by the set-difference operator applied to P0 and P2.

cover Primes( func F )
{
   if ( F = 0 ) return {};
   if ( F = 1 ) return {{}};

   var x = TopVariable( F );

   func F0, F1;
   (F0, F1) = DecomposeBdd( F, x );

   cover P2 = Primes( F0 & F1 );
   cover P0 = Primes( F0 );
   P0 = P0 - P2;
   cover P1 = Primes( F1 );
   P1 = P1 - P2;

   cover P = ComposeCover( x, P0, P1, P2 );
   return P;
}

Figure 9. Pseudo-code of the prime set computation.

Similarly, in the third step we compute the set of all
primes with the positive literal (P1).

Finally, the resulting set of primes is composed from the
three subsets, P0, P1, and P2 and returned.

Again, the prime computation procedure can be improved
by detecting situations when the given function is unate in
its topmost variable. In this case, there is no need to make
one out of the three recursive calls to Primes() because the
primes of the unate function do not have the given variable
in any polarity of have it in only one polarity, either
negative or positive, depending on the type of unateness.

The mixed BDD/ZDD implementation of Primes() is very
efficient, as witnessed by the fact that it takes less than a
second to compute the primes of any function from the
Espresso PLA benchmark set (including the so-called hard
benchmarks) on a 500MHz Pentium computer with 128Mb
RAM. For this purpose, multi-output functions are
converted into single-output functions, as described in [5].

7.2 Computation of an irredundant SOP

The algorithm for recursive computation of ISOP has
been proposed in [30]. It has been implemented in [7][20].
The pseudo-code is given in Fig. 10. Symbols “+”, “&”,
and “-“ in the pseudo-code stand for the Boolean operations
OR, AND, and SHARP.

The procedure IrrSOP() to compute the irredundant sum-
of-products is called with two arguments representing an
ISF. The first argument F is the on-set, while the second
argument FD is the sum of the on-set and the don’t-care-set.
If the ISF is represented by the on-set and off-set, FD is
computed by complementing the off-set.

The following are the terminal cases. If the on-set F is
empty, the function can be implemented as a constant-0
function, so the empty cover is returned. If the union of the
on-set and dc-set, FD, covers the whole Boolean space,
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returned is the set composed of the empty subset standing
for the tautology cube.

Next, the topmost variable x and the cofactors of F and
FD w.r.t. the variable x are derived. To find the
decomposition of BDDs, the ordinary BDD cofactoring
w.r.t. the topmost variable is used. Notice that if one of the
functions, F or FD, does not depend on the topmost
variable, its cofactors w.r.t. the topmost variable are equal
to the function itself.

The ISOP is computed in three steps. The first step
consists of finding the ISOP cover of that part of the on-set
F, which cannot be covered by the cubes without the given
variable. To achieve this, we compute the ISOP of the part
of F0 that is outside FD1. This part can be covered only by
the cubes that contain the topmost variable in the negative
polarity. These cubes are assigned to R0.

Similarly, in the second step, we compute the ISOP of the
part of the on-set covered only by the cubes with the
topmost variable in the positive polarity. These cubes are
represented by R1.

In the third and final step, we compute the area in the
intersection of FD0 and FD1, which (1) belongs to F0 or F1
and (2) is not covered by the cubes in R0 and R1.
The pseudo-code employs the function Bdd(), which takes
the cover as a ZDD and returns the BDD of the area of the
Boolean space corresponding to the cover.

The CUDD package provides the implementation of the
ISOP procedure, in which two values are returned in each
call: the ZDD of the ISOP cover and the BDD of the area
covered by the cover. In this way, there is no need for the
call to Bdd(). The penalty for this solution is the necessity
to cache two values, the ZDD and the BDD, and the
repetition of the recursive call if at least one of the values is
lost in the cache (losing values in the cache happen when
two different computed results hash into the same cache
entry resulting in the loss of the earlier result).

The EXTRA library gives an alternative implementation
of this procedure, in which only one value is cached and
returned. This implementation is based on a specialized
operator, which takes two arguments, the BDD of the area
and the ZDD of the cover and returns the BDD of the area
that is not covered by the cover. This operator can
implement expressions of the type A – Bdd(B) in one
traversal, while in the pseudo-code of Fig. 10, expressions
of this kind are implemented by two traversals: Bdd() and
Boolean SHARP. Experimentation shows that this
implementation of ISOP cover is more efficient than the
one proposed in the CUDD package.

The ISOP computed by the above algorithm has some
remarkable propertied studied in [29]. The actual cover
depends on the ordering of variables in the DD manager. As
shown in [7][20], in many cases the quality of the ISOP
computed is close to the quality of the exact minimum
cover (typically, the number of cubes is within 15% from
the exact minimum).

cover IrrSOP( func F, func FD )
{
   if ( F  = 0 )  return {};
   if ( FD = 1 )  return {{}};

   var x = TopVariable( F, FD );

   func F0, F1, FD0, FD1;
   (F0, F1) = DecomposeBdd( F, x );
   (FD0,FD1)= DecomposeBdd( FD, x );

   func  G0 = F0 – FD1;
   cover R0 = IrrSOP( G0, FD0 );
   func  G1 = F1 – FD0;
   cover R1 = IrrSOP( G1, FD1 );

   func  H  = (F0 – Bdd(R0)) + (F1 – Bdd(R1));
   func  HD = FD0 & FD1;
   cover R2 = IrrSOP( H, HD );

   cover R  = ComposeCover( x, R0, R1, R2 );
   return R;
}

Figure 10. Pseudo-code of Irredundant SOP computation.

The main advantage of the above computation procedure
is its speed. For large benchmarks, good-quality covers
containing thousands of cubes can be derived in a fraction
of a second. Using ISOP instead of other heuristic
algorithms for the SOP computation may lead to several-
order-of-magnitude speedups in some applications, for
example [18].

8 A complete list of published ZDD
applications

ZDDs have been introduced by S. Minato [21] in 1993
and presented in [26][28]. Since that time several ZDD
packages have been implemented [14][16][24][36]. ZDDs
have been used to solve a number of problems arising in
different areas of computer science and engineering:
• To represent sets in various problems [23][34].
• To represent cubes and essential primes in two-level

SOP minimization [8] and factorization of cube covers
[22][27][35].

• To solve unate covering problem arising in multi-layer
planar routing [10].

• To find dichotomy-based constraint encoding [11][13].
• To solve graph optimization problems [12].
• To represent and manipulate regular expressions under

length constraint [17].
• To represent and manipulate polynomials with integer

coefficients [25].
• In exclusive SOP minimization [32][33][37].
• In symbolic traversal of FSMs and Petri Nets [38][41].
• In Davis-Putman resolution procedure [6].
• In pass-transistor logic synthesis [3].
• Finding all disjoint-support decompositions of

completely specified logic functions [29].
• Unate decomposition of boolean functions [18].
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9 Conclusions

This tutorial introduces the reader into the beautiful world
of Zero-Suppressed Binary Decision Diagrams and shows
by way of example how to use them for solving a number of
computationally hard problems that are important for
practical applications.
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11 Appendix A:

ZDD procedures in CUDD (Release 2.3.1)

This section lists the ZDD procedures implemented in the
package, as described in the CUDD user manual.

ZDD construction

Cudd_ReadZero: Returns a contant-0 ZDD node
representing the empty set.

Cudd_ReadOne: Returns a contant-1 ZDD node
representing the set composed of the empty subset only.

Cudd_ReadZddOne: Returns the ZDD of the constant-1
function assuming that this function depends on the given
number of variables.

Cudd_zddIthVar: Returns the ZDD of the function equal to
the elementary variable if this variable exists in the DD
manager, or creates a new ZDD variable.

Cudd_zddIte: Computes the ITE of three functions
represented by ZDDs.

Cudd_zddChange: Substitutes a variable by its complement
in a ZDD.

Porting

Cudd_zddPortFromBdd: Converts a BDD into a ZDD.

Cudd_zddPortToBdd: Converts a ZDD into a BDD.

Cudd_zddVarsFromBddVars: Creates one or more ZDD
variables for each BDD variable.

Cofactoring

Cudd_zddSubset0 (Cudd_zddSubset1): Computes the
negative (positive) cofactor of a ZDD w.r.t. a variable.

Set operators

Cudd_zddUnion: The union of two sets.

Cudd_zddIntersect: The intersection of two sets.

Cudd_zddDiff: The difference of two sets.

Cudd_zddDiffConst: Inclusion test for sets (P implies Q).

Cudd_zddUnateProduct: The product of two unate covers.
Unate covers use one ZDD variable for each BDD
variable.

Cudd_zddDivide: The quotient of two unate covers.

Cover manipulation

Cudd_zddProduct: The product of two binate covers. The
binate covers use two ZDD variables for each BDD
variable.

Cudd_zddWeakDiv: The quotient of two binate covers.

Cudd_zddComplement: The complement of a cover.

Cudd_zddIsop: An irredundant sum of products (ISOP) in
ZDD form BDDs for the on-set and the on+dc-set.

Cudd_BddFromZddCover: Returns the BDD of the
function representated by a cover.

Counting functions

Cudd_zddDagSize: Counts nodes in a ZDD.

Cudd_zddCount: Returns the number of paths in a ZDD.

Cudd_zddCountMinterm (Cudd_zddCountDouble): Count
the number of minterms of a ZDD.

Reordering

Cudd_zddReduceHeap: The main dynamic reordering
routine for ZDDs.

Cudd_zddShuffleHeap: Reorders ZDD variables according
to given permutation.

Cudd_zddSymmProfile: Prints statistics on symmetric ZDD
variables.

Realignment of Variables

Cudd_zddRealignEnable: Enables realignment of the ZDD
variable order to the BDD variable order after the BDDs
and ADDs have been reordered.

Cudd_zddRealignDisable: Disables realignment of ZDD
order to BDD order.

Cudd_zddRealignmentEnabled: Returns 1 if the
realignment of ZDD order to BDD order is enabled.

Printing and visualization

Cudd_zddDumpDot: Writes a file representing the
argument ZDDs in a format suitable for the graph drawing
program DOT [1].

Cudd_zddPrintCover: Prints an SOP representation of a
ZDD.
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Cudd_zddPrintDebug: Prints a DD and its statistics to the
standard output.

Cudd_zddPrintSubtable: Prints the ZDD table for
debugging purposes.

12 Appendix B:

ZDD Procedures in the EXTRA library
(Release 1.2)

The ZDD operators belonging to the library are grouped
according to their purpose. Unless stated otherwise, all the
operators are implemented in the bottom-up reorder-
independent fashion, meaning that the operation restarts if
the dynamic variable reordering has taken place.

ZDD construction

Cudd_zddCombination: Creates a ZDD of one
combination.

Cudd_zddUniverse: Builds a ZDD for all possible
combinations of variables from the given set.

Cudd_zddTuples: Builds a ZDD representing the set of all
tuples of the given cardinality composed of variables from
the given set.

Cudd_zddRandomSet: Builds the random set of k
combinations, each of which may contain up to n
elements with the average density d.

Cudd_zddConvertBddCubeIntoZddCube: Takes a BDD of
the variable product and returns a ZDD cube composed of
the same variables.

Set operators

Cudd_zddMaximal: Computes the maximal of the set of
subsets defined as follows:

max( S ) = { s ∈ S∀s′ ∈ S, s ⊆ s′⇒ s = s′ }.

Cudd_zddMinimal: Computes the minimal of the set of
subsets defined as follows:

min( S ) = { s ∈ S∀s′ ∈ S, s ⊇ s′⇒ s = s′ }.

Cudd_zddMaxUnion (Cudd_zddMinUnion): Computes the
maximal (minimal) of the union of sets X and Y in one
bottom-up traversal.

Cudd_zddDotProduct: Computes the set of subsets created
by taking pair-wise unions of subsets from X and Y:

DotProduct( X, Y ) = { x ∪ y | x ∈ X, y ∈ Y }.

Cudd_zddMaxDotProduct: Computes the maximal of the
set of subsets creates by taking pair-wise unions of
subsets from X and Y:
MaxDotProduct( X, Y ) = max({ x ∪ y | x ∈ X, y ∈ Y }).

Cudd_zddSubSet: Computes the set of subsets in X that are
contained in at least one subset of Y:

SubSet( X, Y ) = { x ∈ X | ∃y ∈Y, x ⊆ y }.

Cudd_zddSupSet: Computes the set of subsets in X that
contain at least one subset of Y:

SupSet( X, Y ) = { x ∈ X | ∃y ∈Y, x ⊇ y }.

Cudd_zddNotSubSet: Computes the set of subsets in X that
are contained in at least one subset of Y:

NotSubSet( X, Y ) = { x ∈ X | ∀y ∈Y, x /⊆ y }.

Cudd_zddNotSupSet: Computes the set of subsets in X that
are contained in at least one subset of Y:

NotSupSet( X, Y ) = { x ∈ X | ∀y ∈Y, x /⊇ y }.

Cudd_zddMaxNotSupSet: Computes the maximal of the set
of subsets in X that do not contain any subset of Y in one
bottom-up traversal.

Cudd_zddEmptyBelongs: Returns 1 if the given ZDD
contains the empty combination, and 0 otherwise.

Cudd_zddExistAbstract: Removes from a ZDD the
occurrences of variables belonging to the given set.

Cudd_zddChangeVars: Changes the values of the variables
belonging to the given set in all combination of the ZDD.

Cudd_zddCommonCube: Computes all the variables that
appear in all combinations of a ZDD.

Cudd_zddCofactor0 (Cudd_zddCofactor1): Computes all
combinations that contain (do not contain) the variables
belonging to the given set.

Cudd_zddMaximum (Cudd_zddMinimum): Returns a ZDD
representing all combinations of the set S containing the
maximum (minimum) number of elements.

Cudd_zddSinglesToComb: Takes a ZDD of singleton
combinations (combinations including exactly one
element) and returns a ZDD containing one combination
composed of all elements.

Cover manipulation

Cudd_zddPrimes: Given the BDD of the function F,
computes a ZDD representing the set of all prime
implicants of F.

Cudd_zddProductAlt: An alternative implementation of the
product of two covers.

Cudd_zddPrimeProduct: Computes the product of two
covers from which the contained cubes are removed “on
the fly”.

Cudd_zddResolve: Computes all resolvents of the set of
clauses S w.r.t. the set of variables Vars.

Cudd_zddCompatible: Computes all the cubes from the
given set that overlap with the given cube.

Cudd_zddDisjointCover: Computes the ZDD of the cover
represented by disjoint variable paths in the given BDD.

Cudd_zddSelectOneCube: Returns a randomly selected
cube from the given cover.
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Cudd_zddCheckUnateness: Returns 1 if the given cover is
(positive or negative) unate in all its variables.

Cudd_zddUnionExor: Computes the union of two covers,
while removing the cubes contained in both covers.

Cudd_zddSupercubes: Given two sets of cubes, computes
the set of their pair-wise supercubes.

Cudd_zddSelectDist1Cubes: Selects cubes from the given
set that have at least one distance-1 cube in another set.

Cudd_zddEssential: Computes the essential cubes.

cuddDecomposeCover: Find the cofactors of the cover
w.r.t. the top variable, without creating new DD nodes.

cuddComposeCover: Composes the cover from the three
subcovers using the given variable.

Cover/area manipulation

Cudd_zddCoveredByArea: Returns the cubes from the
given cover, completely contained in the given area of the
Boolean space.

Cudd_zddOverlappingWithArea: Returns the cubes from
the given cover, overlapping with the given area do the
Boolean space.

Cudd_zddNotCoveredByCover: Returns the cubes
belonging to the given cover, that are not completely
covered by another cover.

Cudd_zddNotContainedCubesOverArea: Computes the
cubes that do not overlap with the cubes from the other
set over the given area.

Cudd_zddConvertToBdd: An alternative implementation of
the procedure Cudd_MakeBddFromZddCover from the
CUDD package.

Cudd_zddConvertToBddAndAdd: Computes the Boolean
OR of the given area and the area covered by the cover in
one traversal.

Cudd_zddConvertEsopToBdd: Computes the BDD of the
exclusive sum-of-products represented by a ZDD.

Cudd_zddSingleCoveredArea: Computes the area of the
Boolean space covered by only one cube from the cover.

Cudd_zddGetMostCoveredArea: Computes the area
covered by the maximum number of cubes in a ZDD.

Irredundant SOP computation

Cudd_zddIsopCover: A wrapper around Cudd_zddIsop
from the CUDD package. This function returns only the
ZDD of the cover and does not return its BDD.

Cudd_zddIsopCoverAlt: An alternative implementation of
the ISOP computation. This function may be more
efficient than Cudd_zddIsop and Cudd_zddIsopCover.

Cudd_zddIsopCoverRandom: Computes an ISOP cover
assuming the random permutation of variables.

Cudd_zddIsopCoverAllVars: Tries all possible
permutations of variables in every subcover and returns

the ISOP with the smallest number of cubes (potentially
very slow for more than 10 variables).

Cudd_zddIsopCoverUnateVars: Detects unate variables
and performs decomposition w.r.t. these variables first
(this function is slower but gives smaller covers compared
to Cudd_zddIsop and Cudd_zddIsopCover.)

Graph input/output

Cudd_zddGraphRead: Reads the file with the non-directed
graph in DIMACS formats and creates its representation
as a ZDD.

Cudd_zddGraphWrite: Writes the non-directed graph
represented as a ZDD into a file in DIMACS ASCII
format.

Cudd_zddGraphDumpDot: Writes a file representing the
graph in a format suitable for the graph-drawing program
DOT [1].

Graph operators

Cudd_zddCliques: Finds the set of all cliques of the graph
represented as a ZDD.

Cudd_zddMaxCliques: Finds the set of all maximal cliques
of the graph represented as a ZDD in one bottom-up
traversal.

Cudd_zddIncremCliques: Given a ZDD of the graph and a
ZDD of all cliques of size k, computes the set of all
cliques of size k+1. (Notice that the graph representation
is the set of all cliques of the size two.)

Cudd_zddGraphColoring: Given a ZDD of the graph, finds
a heuristic coloring of the graph (not finished)

Cudd_zddRandomGraph: Generates a ZDD representing a
random graph with n nodes and density d (not finished)

Set covering

Cudd_zddSolveUCP: Solves the set-covering problem
specified as follows: Each element is encoded using a
separate ZDD variable. The only argument S is the set of
subsets that covers all elements. The set of elements is
determined as the support of S (not finished).

Cudd_zddSolveCC: Solves the cyclic core specified by the
pair of ZDDs representing the set of rows and the set of
columns, using a fast greedy heuristic method.

Reordering

Cudd_zddPermute: Given a ZDD and the permutation of
variables, creates a ZDD with permuted variables.

Counting functions

Cudd_zddLitCount: Counts how many times each element
occurs in the combinations of the set.
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Other functions

Cudd_zddSupport: Returns a ZDD representing a set of
variables, on which the given DD depends.

Cudd_zddVerifyCover: Takes the cover and the function
interval represented by two BDDs. Returns 1 if the cover
belongs to the interval.
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