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1 | ntroduction

Multiplication is an important part of real-time digital signal processing (DSP)
applications ranging from digital filtering to image processing. The multipliers used in
such applications require many different operand size. An efficient way to design

multipliers with different sizes is through the design of the parameterized cells.

A parameterized cell is agraphic, programmable cell that lets you create a customized

instance each time you place it by allowing the designer to specify certain parameters.

The parameter is a setting that can control the size, shape, or contents of the cell instance.

The big advantage in using parameterized cell is that you can speed up the time of chip

design by eliminating the need to create alot of chips with the same function but different

sizes. Also, parameterized cells can save disk space by creating alibrary of cellsfor

similar parts that are all used the same cells.(for examplein my design the regular

multiplier, complex multiplier and multiplier-accumulator are almost use the same cells).

However, parameterized design is not the only considerations; low power dissipation and

small chip area are also needed because of the dense packing of transistors in today’s DSP

chips.

The main objective of this thesis is to design a parameterized cell library by using cadence

CAD tool, call “parameterized cell (Pcell)”, to automatically generate a 16x16-bit



multiplier, a 12x12-bit complex number multiplier and a 12x12-bit complex number
multiplier-accumulator(MAC) for the second-generation digital backend receiver.
The three main considerations for the design are a high multiplication speed, low power

dissipation, and a small rectangular chip area.

All the designs are using SGS-THOMPSON MICROELECTRONICS’s HCMOS7
0.25um technology. All layout and logic testing are done with Cadence CAD tools with
Unicad design kit, and EPIC. All delay and power simulation are done with Meta

Software’s HSpice and PowerMill.

Chapter Two describes the design issues. First, it describes the architectures of the
multiplier, complex multiplier, and complex multiplier accumulator. Second, it discusses
the floor plan and layout. Third, it discusses the circuit design of the individual components
(leaf cells). The last, it discusses the area, propagation delay and power dissipation. The

last, it discusses the power reduction via the technology improvement.

Chapter Three describes the Pcell issues. First, it provides an overview of Pcell program.
Second, it discusses the advantages and disadvantages of abutment. Third it presents a

pcell design tutorial.

Chapter Four summarizes and concludes the report.



Multiplier Architecture and L eaf
Céell Circuit Design

2.1 Multiplier
2.1.1 Architecture

The multiplier has two stages, the first stage consists of booth encoders which drive par-
tial product generators whichin turn drive a carry-save addition array to produce two final
partial products. In the second stage, the two final products are added to form the final
product through a ripple-carry adder. The multiplication architecture is shown in Figure
2-1.

Y X
Register Register
[
Booth Encoder Bl Partial Product Generator

Carry Save Addition
Array
[

Register

Ripple Carry Adder

Product
Figure 2-1: Architecture of Multiplier

The booth decoding algorithm and carry-save addition array were chosen because of two

reasons which are further discussed in the next sections (2.1.1.1 and 2.1.1.2). First, the
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booth algorithm is easy to handle the 2’s complement number, and it requires half the
number of partial products. Second, carry save addition array with modified booth algo-
rithm results in a much more regular structure. These are more suitable for parameterized

design.

2.1.1.1 Modified Booth Encoding Algorithm

The booth encoding algorithm is a bit-pair encoding algorithm that generates partial prod-
ucts which are multiples of the multiplicand. The booth algorithm shifts and/or comple-
ments the multiplicand (X operand) based on the bit patterns of the multiplier (Y
operand). Essentially, three multiplier bits [Y(i+1), Y(i), and Y(i-1)] are encoded into

nine bits that are used to select multiples of the multiplicand{-2X, -X, 0, +X, +2X}. The
three multiplier bits consist of a new bit pair [Y(i+1), Y(i)] and the leftmost bit from the

previously encoded bit pair [Y(i-1)]. Refer to table 2-1 for the details of the booth algo-

rithm.
Table 2-1. partial product selection
Y (i+1) Y (i) Y (i-1) Encoded digit Operation
Multiplicand(X)
0 0 0 0 0* X
0 0 1 +1 +1* X
0 1 0 +1 +1* X
0 1 1 +2 +2* X
1 0 0 -2 -2* X
1 0 1 -1 -1* X
1 1 0 -1 -1* X
1 1 1 0 0* X

For an mxn-bit multiplication, the booth algorithm produces n/2 [(n+1)/2, if n is odd] par-
tial products, each has a length of (m+1) bits. This can half the number of partial products.
It reduce the number of adders by 50% which results in a higher speed, a lower power dis-

sipation, and a smaller area than a conventional multiplication array.



The general booth algorithm often uses sign extension which means that each partial
product hasits sign bit extended(repeated) to the leftmost M SB of the last partial product.
The disadvantage of sign extension isthat it increases the number of bits to add together.
This require extra adders which decrease speed, increase power dissipation and increase
area.

A modified version of the booth algorithm uses sign generation to eliminate sign exten-

sion. The sign extension isimplements as follows:

1) Complement the sign or (m+1)th bit of each partial product.

2) Add 1 to the left of the sign bit of each partia product.

3) Add 1 tothe sign bit of the first partial product.

The advantage of sign extension is that it doesn’t create an extra bit vector or partial prod-
uct. Because we can insert the ones into the cells with half adder. Therefore, no extra

adders are needed to implement the sign generation scheme.

The modified booth encoding algorithm results in (n/2) [(n+1)/2, if n is odd] adder rows
with each row consisting of m adders for a mXn-bit multiplication. This results in an

extremely regular and rectangular multiplication architecture.

2.1.1.2 Carry-Save Addition Array

An example of an 8x8 carry-save addition array is shown in Figure 2-2. The basic idea
behind the array is as follows:

1) Use only half adders in the first row (no partial product reduction).

2) Reduce the partial product from eight to seven with the second row.

3) Reduce the partial products from seven to six with the third row.

4)Continue this reduction process until there are only two final partial products.

Each reduction step (except the first non-reduction step) is perform by reducing the top
three partial products to two partial products with an adder row. The rest of the partial

products are left alone until the next reduction step.
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Figure 2-2: 8X8 Carry-Save Addition Array
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Carry-save addition array has the advantage of being very regular (see figure 2-3). How-
ever, itisnot very fast since it requires the maximum number of adder row (n-1) to gener-
ate thefinal two partial products for ninitial partial products. Since the booth algorithm

was chosen for the 12x12-bit multiplier, this means 6 initial partial products require 5

H@; e |
Rt
"R

I

Figure 2-3: Carry Save Core Array

2.1.1.3 Rectangular Versus Parallelogram Arrays

It is clear that a rectangular multiplier is always smaller than a parallelogram one. How-
ever, isit still the case when a rectangular multiplier isimbedded in a datapath with other
cells. This question exists due to the fact that the rectangular multiplier has LSB outputs
exiting the array from theright while the parallelogram has all outputs exiting from the bot-

tom.

In our receiver project, wordlength truncation will be done after multiplication. Assume t
he pitch of all cellsareidentical (before the multiplier, inthe multiplier, and after the mul-

tiplier), then a parallelogram array would always consume more area than a rectangul ar



array. The wasted area of the parallelogram array shown in Figure 2-4. For the rectangular
multiplier, asuitable block router will have to be used to route output signals from theright

of the array multiplier to the bottom.

Data Path Data Path
(m bits) ' ' (m ta;its) '
000000 000000
000000 000000
000000 000000
000000 000000
000000 000000
00000 000000
oducts(L SB)
progucts(LSB)
products (MSB) product(M SB)
(m-bits) (m-bits)
\/ \/
D

DataPath (k-bits) Data Path (k-bits)
Figure 2-4: Parallelogram Versus Rectangular Arrays. Area Usage

Another problem with the parallelogram array isthat it causes a shift in the datapath. The

MSB bit into the multiplier will not be the same position as the MSB bit out of the multi-

plier. This doesn’t happen in the rectangular multiplier. It is usually desirable in datapath
to align all MSB bits.

Because of the arguments presented above, all the parameterized cells developed in this

paper have been designed to generate rectangular multipliers and MAC.

2.1.2 Circuit Design



A parameterized cell for generating acarry save multiplier has been designed. Figure 2-5
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Figure 2-5: Schematic and the Layout of the 16x16b multiplier
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2.1.2.1 Cell Description

The following are the contents of the cells that are used in the carry save multiplier. Note
that routing isincluded in each cell so that by tiling these cell together, one get the entire

multiplier (see Figure 2-6).

spmpy5>-0 | reglx | reglx | reglx | reglx | reglx | reglx spmpy1-0

regly
regly btd-Of aya | ayc | ayc | ayc | ayc | ayc | ayf |reg3y-0|addery-0
regl
Y| bao
ayb | ayd | ayd | ayd | ayd | ayd | ayg |regdy-0|addery-0

regly
regly

btd-Of ayb | aye | ayd | ayd | ayd | ayd | ayg |reg3y-0|addery-0
regly
regly

btd-O ayb | aye | ayd | ayd | ayd | ayd | ayg |reg3y-0|addery-0
regly
spmpy4-0 ckd3 reg3x-0 | reg3x-0 | reg3x-0| reg3x-0| reg3x-0 pmpy2-0
spmpy3-0 adderxm-0 adderx-0 adderx-0

Figure 2-6: Cells of the 8x6 Multiplier

adderx-0, addery-0 --> one 2-bit adder.

adderxm-0 --> one full adder and two inverter.

arya, aryb, arye --> one partial product generator and one inverter.

aryc --> one partial product generator.

aryd --> one partial product generator and one full adder.

aryf, aryg --> one partial product generator, one full adder, and one 2- input nand gate.

btd-0 -->one booth encoder.
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reglx, regly, reg3x-0 --> one register.
reg3y-0 --> two registers.
ckd3 --> one clock line buffer.

spmpy[1-5]-0 --> wiring cells.

2.2.2.2 Circuits

The following are the circuits used in the carry save multiplier.

Full Adder
The full adder is used in the rows of the carry save addition array to add the partial prod-

ucts. It is the most important multiplier core leaf cell for two reasons. First, alarge per-
centage of the core propagation delay is due to full adders. Second, a large percentage of
the coreleaf cellsarefull adders. Therefore, the full adder chosen must have a high speed,
low power dissipation, and small area. Also, the full adder must have equal carry and sum
propagation delays since the propagation delay of a carry save addition depends on both
signals. If they are different, glitch will happen and waste the power.

A transmission gate full adder was used for three reasons. First, it hasequal carry and sum
propagation delays. Second, it has a higher speed than either a static CMOS full adder or
acarry-select full adder. Third, it has asmall area (few transistors).

A transmission gate full adder uses only transmission gates and static inverters. Its main
component isa multiplexer with A asthe select signal. The operation of a multiplexer cir-

cuit is described by the following logic equations:

Equation 2-1. y=[B.T A=0g

[B, if A=10

11



These equations are implemented by the transistor schematic shown in Figure 2-7. The
multiplexer essentially acts asa X OR circuit. If thevalue of A is0O, Y=1when B=1, If A
is1, Y=1when B=0.

B ¢

SIS
E

A >0

Figure 2-7: Transmission Gate Multiplexer

The operation of the full adder (which uses multiplexer to implement XOR) is described

by the following logic equations:

AorB,ifA OB=0(A,Bequa) [

Equation 2-2. Cout = Hoin, ifADB=1(A B unegua) O

D_Cin,ifAD B=0(A,Bequa)
[Cin,if AOB=1(A, Bunequa) U

Equation 2-3. Sout =
This equations are implemented by the logic schematic shown in Figure 2-8. The output

of the XOR gate acts as the select signal for the transmission gate multiplexer on the out-
put. Depending on the selection signal, the carry output (Cout) is either A or Cin the sum

output (Sout) is either Cin or its complement.

12
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v
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Figure 2-8: Schematic of Transmission Gate Full Adder

Booth Encoder

The booth encoder is used in the 3 to 9-bit modified booth encoding algorithm to encode
the multiplier (Y operand). It requiresthree multiplier bits[Y (i+1), Y (i), Y (i-1)] asits
input and generates nine select signals asits output to choose [+2X, +X, 0, -X, -2X].
These select signals drive the partia product generators in order to determine the opera-
tion on the multiplicand (X operand). The booth encoder must be buffered in order to
drive multiple partial product generators which are interconnected by long routing bus.

The logic schematic shown in Figure 2-9.
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Figure 2-9: Schematic of Booth Encoder

3 to 9-bit modified booth encoder has more transistor number but all the select signals
have the same propagation delay and it simplifies the logic and reduces the transistor
number of partial product generator. Also, because all the propagation delays are the
same, it can reduce the power which dissipated by the glitch. Another advantage of using

14



3 to 9-bit modified booth encoder isthat each select signals only has one transistor load in
each partial product generator, when you increase the wordlength of your multiplier, it

will not degrade the performance of the multiplier too much.

Partial Product Generators

The partial product generator only uses eleven transistors. It actually is a multiplexer
which controlled by the booth encoder selection signals. The output of the partial product
generators are multiples of the multiplicand (-2X, -X, 0, +X, +2X). The logic schematic
shown in Figure 2-10.

X[i+1] X[i] X[i+1] X[i]

select signals (9 bits)

Figure 2-10: Partial Product Generator

Ones Generators

The ones generator is used in the modified booth encoding algorithm to help generate
the two’s complement of the multiplicand (X operand). When the operation is -X or -2X,

we need to add one to the LSB.

The ones generator is controlled by two of the booth encoder selection signals(-2X and -

X). The operation of the ones generator is described by the following logic equation.

Equation 2-4. ONE = (-2X) NAND (-X)

15



The transistor schematic of ones generator is shown in Figure 2-11.

-

-2X

.

Figure 2-11: Ones Generator (NAND gate)

Ripple Carry Adder

The general structure of an n-bit ripple carry adder is shown in Figure 2-12. The A and B
input vectors represent the final two n-bit partial products generated by the multiplier
addition array. The carry out (Cout) propagation delay is due to the carry signal rippling
serially through the block (initiated by the Cininput). Therefore, afull adder with a fast
serial-carry delay is needed in the carry block.

A(n-2) B(n-2) A(D)B@L)  A() B()
A(n-1) B(n-1) AR B@B) A B()
* * C(n-3) C(3) * * C(1) * *
Cut - FA |l -—- «— FA |« FA |« GCip
vy vy vy
S(n-1) S(n-2) SGB)S(2) (1) (0)

Figure 2-12: n-Bit Ripple Carry Block (each block is atwo bit adder)
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The logic schematic of ripple carry block shown in Figure 2-13. The carry signal propa-
gates only through one transmission gate for each bit. However, due to the distributed RC
effect and low supply voltage (less than 1 volt), an inverter is needed to reduce the degra-
dation of the carry signal. Thus, each ripple carry block is a two-bit adder, the second

adder is a complementary carry path adder in order to save one inverter.

AO

— SoutO

Eﬁ -
v

-

BO DO

L QL)

CoutO
|
[0,
T | ]
AL
7 T -
o L >0 T =0 j%
|

‘4{>Q—>
Figure 2-13: Schematic of Ripple Carry Block
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2.2 Complex Multiplier
2.2.1 Architecture

The complex multiplication is based on the formula

(A+Bj)(C + Dj)= (AC-BD) + (AD+BC);

The complex multiplier has two stages, the first stage consist of four carry-save addition
arrays which generate two fina partial products for AC, BD, AD, and BC, and 4:2 com-
pressor which reduce the four partial products to two. In the second stage, it has two sets
of ripple carry adder to form the final product. The complex multiplier architecture is

shown in Figure 2-14.

Most of the hardware and delay savings from merging the partial products of the 4 carry-
save addition array isfrom removing the ripple carry adder at the second stage of the indi-
vidual multipliers. We can get the 2 final partia products of AD+BC and AC-BD from the
4:2 compressor, without calculating the product of AD, AC, and BC, and BD. Another
advantage is that the layout is more regular, since each bit needs a 4:2 compressor. Also
with the addition of observation pointsat theinputs of 4:2 compressors, each multiplier can
be tested individualy.

18



. Y y

¢ Register Register
Register k k
' Pr
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Carry Save Addition Carry Save Addition
B ¢ Array Array
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Booth Encoder
Carry Save Addition Carry Save Addition
Array Array
4-2 Compressor 4-2 Compressor
Register Register
Ripple Carry Adder Ripple Carry Adder
AC-BD AD +BC

Figure 2-14: Architecture of Complex Multiplier

2.2.2 Circuits Design
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A parameterized cell for generating a carry save multiplier has been designed. Figure 2-15

shows the schematic and the layout of the 12-bit by 12-bit complex multiplier.
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Figure 2-15: Schematic and Layout of the 12x 12 Complex Multiplier
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2.2.2.1 Cell Description

The following are the contents of the cellsthat are used in the complex multiplier.Same as
the integer multiplier, those cells at the four corners are always necessary. Because the
routing isincluded in each cell sothat by tiling these cellstogether, one getsthe entire com-

plex multiplier (see figure 2-16).

SpU|5 reglxreglxXregiXregIxregIXregIregIreglXregIXregIXreg1xreg X spurl
regly
btd 4X?2 |regdy|adder_y
regly
cpmcAZ cpmcC2 cpmeC2 cpmcC2 cpmcC2| cpmcC2 cpmcF2
regly addery
btd reg3y| adder_y
regly
regly
btd 4X?2 |regdy|adder_y
regly
cpmcB2 cpmceD2 cpmeDZ cpmeDZ cpmeDZ cpmeDZ cpmcG2 o
regly er
btd y reg3y|adder_y
regly
regly
btd 4X?2 |regdy|adder_y
regly
cpmcB2 cpmcE2| cpmeDZ cpmeDZ cpmeDZ cpmeDZ cpmcG2 i
regly er
btd y reg3y|adder_y
regly
4X2 | 4X2 | 4X2 | 4X2 | 4X2
sp4
spdr3 adderx |adderx |adderx |adderx |adderx
spdi2
de3 reg3Xreg3xreg3xreg3xreg3xreg3xreg3xreg3reg3xreg3Xreg3xreg3x
adderxm|  adderx adderx adderx

Figure 2-16: Cells of the 6X6 Complex Multiplier

addery --> two adders.
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adder_x --> four adders.

4x2adderx --> two 4:2 compressors.
4x2addery --> four 4:2 compressors.
adderxm --> four inverters.
cpmc[A-G]2 --> four ary[a-g]s.

btd --> one booth encoder.

reglx, regly, reg3x --> one register.
reg3y --> two registers.

ckd3 -- > clock line buffer.

spurl, spdl2, spdr3, spul5 --> wiring cells.

2.2.2.2 Circuit
4:2 Compr essor

Figure 2-17 isablock diagram of the 4:2 compressor. The truth table for the 4:2 compres-
sor isshown in Table 2-2. 4:2 compressor actually has five inputs and three outputs. It is
different from a 5:3 counter which takes in five inputs of the same weight and produces
three outputs of different weights. The sum output of the 4:2 has weight 1 while the carry
and Cout both have the same weight of 2. In addition, the Cout output must not be afunc-

tion of the Cin input, otherwise aripple carry could occur.
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Table 2-2. Truth Table For The 4:2 Compressor

n is number of inputs (from Inl, In2, In3, In4) which =1, Cin is the input carry from the
adjacent bit slice, Cout and carry both have weight 2, and sum has weight 1.

n Cin Cout Carry Sum
0 0 0 0 0
1 0 0 0 1
2 0 * * 0
3 0 1 0 1
4 0 1 1 0
0 1 0 0 1
1 1 0 1 0
2 1 * * 1
3 1 1 1 0
4 1 1 1 1

*Either Cout or Carry may be ONE for two or three inputs equal to 1 but not both.

Inl In2 In3 In4
I
A B
full adder
Cout Cin
-
' '
full adder

Cary ¥ Y Sum

Figure 2-17: 4:2 Compressor implemented with two full adders

In order to deal with subtraction (AC-BD), we need to inversethetwo final partial products
of BD and add two onesto the LSB. Instead of adding two inverters, we modified the 4:2
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compressor (seefigure 2-18). The advantage isthat we save numbers of inverters (2* (m+n-
1)), aso both real part number and imaginary part number have the same propagation

delay. The disadvantage is that makes the circuitsirregular.

Inl In2 In3 In4
| |
é v Y
full adder
Cout ‘ Cin
-
J i '
Q
full adder

Cary Y Y Sum

Figure 2-18: Modified4:2 compressor

2.3 Multiplier Accumulator

2.3.1 Architecture

To make MAC (Multiplier Accumulator) and multiplier common, both integer and com-
plex number MAC use the same architecture and same hardware of their multiplier. The
accumulation isimplement by using arow of 4:2 compressors with reset and another row

of registers to store the temporary value. The MAC architectureis shown in Figure 2-19.

24



CK 13 The first stage

of multiplier or
complex multiplier

vy v v

4.2 Compressor

v v

— ™ Register B
Y Y
CK2p Register C
Ripple Carry Adder

Circuit Figure 2-19: Architecture of Multiplier Accumulator

2.3.2 Circuit Design

Parameterized cell for generating a carry save multiplier has been designed. Figure 2-20
shows the schematic and the layout of the 12-bit by 12-bit complex MAC.
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Figure 2-20: Schematic and Layout of 12x12b complex MAC
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2.3.2.1. Céll Description

The following are the contents of the cells that are used in the complex MAC. Same asthe
multiplier design. Therouting isincluded in each cell so that by tiling these cellstogether,

one gets the entire complex multiplier (see Figure 2-20)

SpU| 5 reg1xreg1Xreg1qreg Iregixreglxdreg1dreglx spurl-mac
regly
" btd 4X2 reg2y| reg3y| adder_x
regly
" cpmcAZ cpmcCZ cpmeC2 cpmeC2 cpmeF2 add
regly ery | aC
btd Y e reg2y| reg3y | adder_x
regly
regly
" btd 4X2 reg2y| regdy| adder_x
regly
" cpmeB2 cpmeDZ cpmeDZ cpmeDZ cpmeG2 add
regly er accy
btd Y reg2y| reg3y | adder_x
regly
regly
pory btd 4X?2 reg2y| reg3y| adder_x
cpmeB2 cpmcE2 cpmeDZ cpmeDZ cpmeG2
regly addery | acCy
btd reg2y| reg3y | adder_x
regly
regly
" btd 4X?2 reg2y | reg3y| adder_x
regly
cpmeB2 cpmeE2| cpmeDZ cpmeDZ cpmeG2
regly addery | accy
btd reg2y | reg3y|adder_x
regly
AX2 | 4X2 | 4X2
. ckd3
Sp3-mac e 4
adderx |adderx |adderx
splr2-mac
acce | acce | acce acce | accx | accx accx accx
reg2xreg2Xreg2xreg2xreg2xreg2xreg2X{reg2xreg2xreg2xreg2xy eg2xreg 24reg2xreg 24reg2x
reg3xreg3xreg3xreg3eg3xreg3xreg3xreg3xreg3xreg3xreg3xreg3xreg3xreg3Xreg3xreg 3y
addery addery addery addery

Figure 2-21: Cells of 4x8 Complex Multiplier Accumulator
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regly, reglx, reg3x -> one register.

reg 2x, reg3y -> two registers.

reg2y -> four registers.

adder_x -> four adders.

addery, adderx-mac -> two adders.
4x2adderx -> two 4:2 compressors.
4x2addery -> four 4:2 compressors.

accx, accy -> two 4:2 compressors with reset.
acce -> one accumulator adder for sign extension.
btd -> one booth encoder.

ckd3_mac -> two clock line buffer.
cpmc[A2-G2] -> four ary[a-g]s.

spurl-mac, splr2-mac, sp3-mac, sp4, spul5 --> wiring cells.

2.3.2.2 Circuit Design

Two new circuitsare design for the MAC. Oneisthe 4:2 compressor with reset, another is

the accumulator adder for the sign extension.

4:2 Compressor with Reset

We need to reset the value store in the register B when MAC accumulates 15 times. The
4:2 compressor with reset is shown in Figure 2-18. Both Inl and In2 signals are from the
register B, and In3 and In4 are from the multiplier array. When the reset signal goes low
the value stored in register B will be dumped
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Inl In2 In3 In4

Y v Y Y
full adder
Cout Cin
T v
full adder

Cary VY Y Sum

Figure 2-22: A 4:2 Compressor with Reset

Accumulator Adder for the Sign Extension

For a12 bitsby 12 bitscomplex MAC, after it accumulates 15 times the output has 29 hits.
So we need extend the sign bit when we do the accumulation. The accumulator adder for
thesign extensionisshowninfigure 2-19. It has4 inputs and three outputs. Cinisthecarry

out from the adjacent 4:2 compressor and In1 and In2 are from the register B.
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Cin

Inl & In2
\i
full adder
Cout
-
Y \J
Carry Sum

Figure 2-23 Accumulator adder for sign extension

2.4 Perfor mance

The simulation of the multiplier propagation delay was done with HSpice and PathMill.

The power dissipation was done with PowerMill. (All netlists were extracted from the lay-

out).
Table 2-3. Area
X (um) Y (um) area (mm?)
16x16b Integer Multiplier 250.6 309.65 0.078
12x12b Complex Multiplier 383.35 4746 0.182
12x12b Complex MAC 505 538.4 0.272
Table 2-4. Power Consumption (1V, 25MHz)
16x16b Integer Multiplier \ 0.26 mW
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Table 2-4. Power Consumption (1V, 25MHz)

12x12b Complex Multiplier 0.623mw
12x12b Complex MAC 0.931mwW
Table 2-5. Propagation Delay
First Stage Second Stage
16x16b Integer Multiplier 16.5ns 23.5ns
12x12b Complex Multiplier 9.5ns 20.7ns
12x12b Complex MAC 13.3ns 27.0ns

2.5 Power Reduction via technology | mprovements

Initially, the 16x16b integer multiplier was designed with 0.6 um CM OS technology and
had a power consumption of 1.86 mW at 1.5 V. In shifting from 0.6 to 0.25 um technol ogy,

the reduction of power consumption can be estimated [6]. Thetotal capacitance reduced to

33% for the 0.25 um design. With thisresult the power can be estimated as 1.86mW x 0.33
= 0.6138 mW. Also the supply voltage drops from 1.5V to 1V. Therefore, the power con-

sumption can be calculated as 0.6138 mW x (1/1.5)% = 0.2728 mW. This estimated value

also conforms well with the actual measures power consumption (0.26 mW).
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3 Parameterized Cdlls

3.1. Pcell Fundamentals

Pcell (Parameterized Cell) isa CAD tool for parameterized design. The pcell we createis
called amaster which isacombination of the leaf cell layouts and the parameterswe assign
to those cells. After we assign the parametersto the leaf cells, we need to compile the mas-
ter. The compiler will trand ate the master to the form of a SKILL procedure and stored in
the database (SKILL is the command language of the cadence environment).The design

flow of pcell isshown in Figure 3-1

Create layout cells for your
simplest components.

v

Use the Pcell menu commands to
create and compile parameters for =&
your layout cells.

Y

Place instances of the pcells with
different parameter values.

No: Edit parameters

Instances
OK?

Yes

Save the master pcellsin alibrary
all designers can use.

Figure 3-1: Pcell Design Flow
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3.2 Design by abutment

In these designs, all the connections between the leaf cells are achieved by abutment. The
big advantage of abutment is that abutment can reduce parasitic effects and improves lay-
out density. However it has big advantage too. Figure 3-2 shown a hierarchical layout
containing two instances of two leaf cells A and B. The pins are shown as squares. Dueto
the abutting requirements between the pins on common boundary, the relative position of
these pinsin the two cells should be the same. Determining these pin positions is impor-
tant because it constrains the cell design. Once the hierarchy has been built, it is very
tedious to make any changes to one of the leaf cell which would require its size or the
position of one of the pins or ports to change. The change in the pin position in one of the
leaf cellswould cause arippling effect in other cells. Also, each cell must save space
between internal layouts and the bounding box to prevent design rule violations during
abutment.

Figure 3-2: Abutment Requirements

3.3 Tutorial : Creating a pcell for the complex multiplier
3.3.1 Sarting Pcell

1. Open the layout editor and create a new file.

2. To add the Pcell menu to the banner menu.

L, > Select Tools — Pcells

*To makeit easy to understand, the floor plan of a 12x12b complex multiplier is shownin

Figure 3-3.
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regly
4X2
spdr3 adderx

spdi2

de3reg3x ----------’

adderxm ajdery H S N B A ’

Figure 3-3: 12 hit x 12 bit Complex Multiplier Floor Plan

3.3.2 Placeleaf cdls

1. Start from the lower |eft corner, we place the leaf cells which are always necessary. In
the Library Browser, click on hgxmpy -> hgspdr3, hgsp4, hgckd3, adderxm. Notice
that pins are abutted properly.
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Spdr3

ckd3

adderxm

3.3.3 Repetition Commands

Repetition commands repests cells in the x direction, y direction, or both directions.
There are three useful repetition commands:

*Repeat in X, which defines cells to be repeated horizontally.

*Repeat in Y, which defines cells to be repeated vertically.

*Repeat in X and Y, which defines cells to be repeated both horizontally and vertically.

Now, we want the regly to be extendible depends on the parameter (multiplier operand).
1. Place theregly cell. The pcell window should look like following:

regly

spdr3

ckd3

adderxm

2. Preselect the regly cell then start the command.
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|:> select Pcell—» Repetition —m» Repeatin Y

The Repeat in Y dialog box should look similar to the following:

[#] Repeatin ¥

OK. | Cancel Help

Stepping Distance 15.95
Humber of Repetitions yhit+l
Dependent Stretch

Adjustment to Stretch i (fix(pcRepeat¥) - 1) * pcStept)

*if you did not preselect cells, the program prompts you to point to the cell you want

to repeat.

Sepping Distance is the centerline-to-centerline distance you want between repeated

cells. Type “15.95” in the Stepping Distance box. Because the height of regly cell is
15.95um. By default, repetition takes place in a positive direction (upward or to the
right). To repeat in a negative direction (downward or to the left), you must use a neg-
ative number for the stepping distance. If you didn’t specify any value, the default

value is zero.

Number of Repetitionsis the number of times you want the specified objects

repeated. You can use a number or an expression that is dependent on other parame-
ters of the pcell.

The name must begin with an alphabetical character and cannot exceed 32 characters.
Type (ybit*2) in the Number of Repetitions box. The input is a complex number so we

need multiply by two.
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Dependent Stretch isthe name of the previously defined stretch control line. By
default, stretching takes place before repetition. If you specify a dependent stretch
control line, stretch takes place after repetition. About stretch control line, we will dis-

cussit later.

Adjustment to stretch is the amount the program adjusts the reference dimension of
the stretch parameter. We usually do not have to change it. The default value is ((fix
(pcRepesatY-1)* pcStepy.

*fix() isa SKILL function, it runs the number down to the nearest integer.
*pcRepeatY isthe number of vertical repetitions.
*pcStepY isthe vertical stepping distance.

3. Place the btd cell. Repest step 2.
Type 31.9 into the Stepping Distance box. The height of btd cell is31.9 um.
Type yhit into the Number of Repetition box.

4. Place cpomcB2 cell. Repeat step2.
Type 63.8 into the Stepping Distance box. The height of comcB2 cell is 63.8 um.
Type ((ybit/2)-1) into the Number of Repetition box.

5. Place cpmcE2 cell. Repeat step 2.
Type 63.8 into the Stepping Distance box. The height of cpmcE2 cell is 63.8 um.

Type ((ybit/2)-2) into the Number of Repetition box.

6. Place cpomeD2 cédll then start the command
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cpmcB2 cpmcE2 cpmeD2

btd

regly

Spdr3

ckd3

adderxm

L, > Select Pcell -> Repetition -> Repest in X and Y

The Repeat in X and Y dialog box should look similar to the following:

(0] 8 Cancel

Help
= Stepping Distance 21 =2
Y Stepping Distance 53. 8
Humber of = Repetitions (>bit - E)
Humber of ¥ Repetitions (wbit . 2) - 2
Dependent > Stretch
Dependent % Stretch
Adjustment to X Stretch ((fizx{pcRepeatX) - 1) * pcStepXE)
Adjustment to ¥ Stretch [(fizx({pcRepeat¥) - 1) * pcStep¥)

Type 21.2 into the X Stepping Distance box. The width of cpmeD2 cell is21.2 um.
Type 63.8 into the Y Stepping Distance box. The height of cpmcD2 cell is63.8 um.
Type (xbit-2) into the Number of X Repetitions box.

Type ((ybit/2)-1) into the Number of Y Repetitions box.
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7. Place cpmcG2 cell.

cpmeB2 cpmcE2| cpmeDZ cpmceG2
btd

regly

Spdr3

ckd3

adderxm

Repeat step?.
Type 63.8 into the Stepping Distance box. The height of cpmcG2 cell is 63.8 um.
Type ((ybit/2)-1) into the Number of Repetition box.

8. Place 4X2addery cell. Repest step 2.

Type 63.8 into the Stepping Distance box. The height of 4X2addery cell is 63.8 um.
Type (ybit/4) into the Number of Repetition box.

9. Place reg3y cell. Repest step 2.
Type 31.9 into the Stepping Distance box. The height of reg3y cell is 31.9 um.
Type ybit into the Number of Repetition box.

10. Place adder_x cell. Repest step 2.
Type 31.9 into the Stepping Distance box. The height of adder_x cell is31.9 um.

Type yhit into the Number of Repetition box.

12. Place adderx cell, The pcell window should look like following now.
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4X2
cpmcB2 cpmcE2| cpmeDZ cpmeG2 ad
A
btd ad reg3y|adder_x
regly
4
spdr3
ckd3
adderxm|  adderx

13. Preselect the adderx cell then start the command.
L > Select Pcell -> Repetition -> Repeat in X...
Type 42.4 into the Stepping Distance box. The width of the adderx cell is 42.4um.
Type (xbit/2) into the Number of Repetition box.

14. Place reg3x cell. Repest step 13.
Type 10.6 into the Stepping Distance box. The width of the reg3x cell is 10.6um.
Type (xbit* 2) into the Number of Repetition box.

15. Place 4X2adderx cell. Repest step 13.
Type 21.2 into the Stepping Distance box. The width of the 4X2adderx cell is 21.2um.

Type (xbit-1) into the Number of Repetition box.

16. Place the second cpmcD2 cell. In order to distinguish this cpmcD2 from the previous

one. | call this cpmcD2 cell to second-cpmcD2, the previous one is first-cpmeD2.
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cpmeD?Z

4X2
cpmeB2 cpmcE2 cpmeDZ cpmeG2
addery
btd reg3y|adder_y
regly
4X2
4
Spdr3 adderx
ckd3 reg3x
adderxm|  adderx

The second-cpmcD2 is always on the top of cpmcE2 and it doesn’t need the repeti-

tion. We don't need assign parameter to it now.

17. Place cpmcC2 cell. It always on the top the second cpmcD2 cell.

Repeat step 13.
Type 21.2 into the Stepping Distance box. The width of the cpmcC2 cell is 21.2 um.

Type xbit-1 into the Number of Repetition box.
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cpmcC2,

cpmcD2

4X2
cpmcB2 cpmcE2| cpmeD2 cpmcG2
addery
btd reg3y|adder_y
regly
4X2
sp4
Spdr3 adderx
ckd3 |reg3x
adderxm| adderx

18. Place spdi2 cell. Thiscell is necessary and it always at the lower right corner.

19. Place cpmcA2 cell. This cell is aways on the left side of cpmcC2 cell.

20. Place reglx cell. Repeat step 13.

Type 10.6 into the Stepping Distance box. The width of the reglx cell is 10.6 um.

Type (xbit* 2) into the Number of Repetition box.

21. Place spul5 cell. This cell is always at the upper left corner.

22. Place spurl cell. This cell is aways at the upper right corner.
23. Place cpmcF2 cell.
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SPU5  fregiX spurl
cpmcAZ cpmcC2 cpmcF2
cpmcD2
4X2
cpmcB2Z cpmcE2| cpmeD2Z cpmceG2
addery
btd reg3y| adder_x
regly
4X2
sp4
dr3 adderx
* spdi2
ckd3 reg3x
adderxm addery

Now, we place al the cells we need for a complex multiplier.

3.3.4 Dependent Sretch Control Line

Stretch control lines determine where to begin the stretch and which direction to stretch.

Because the size of our leaf cells is already fixed, we don’t need to use stretch commands
to stretch our leaf cells. However, we need the stretch control line to stretch the space for
the extended leaf cells. Otherwise some leaf cells will overlap. For example, when the

first-cpomcD2 cell repeats in the X direction, then it will overlap those cells (cpmcG2,
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reg3y...) on itsright hand side. And the size of space is different for different repetition
parameters. Thus, we need set the stretch control line dependent on the repetition parame-
ters. When the repetition parameters are given, the numbers of repetition will control the
amount of stretch.

3.3.4.1 Making the Stretch Layer Valid

Before using a stretch control line, we must make the stretch layer valid.

Tomakethestretch layer valid
1. Inthe LSW (Layer and Selection Window), select Edit -> Set Valid Layers.

2. Inthe Set Valid Layersform, click the box to the right of stretch dg.

3. Click OK to close theform.

3.3.4.2 Sretch Commands
4. Select Pcell -> Stretch -> Stretch in X.

5. Draw avertical stretch line through the first-comcD2 cell.



The Stretch in X dialog box appears.

[@] Stretchin X

sSpulS  fregix ' spurl
1
1
cpmcAZ cpmeC2 : cpmcF2
1
1
1
D2 '
pme I > movetotheright
1
1
I
i 4X2
cpmeB2 cpmeE2| cpmeDZ cpmeG2
addery
btd [ reg3y|adder_x
regly [
I
ax2 |
4 I
r3 adderx |
% [ spdi2
ckd3 reg3x
adderxm| addery :
|
]

Minimum

0K Cancel

Stretch Direction

Yalue

right

0

Mame or Expression for Stretch

g

Stretch Horizontally Repeated Figures

Help
move_to_the right
Reference Dimension {Default) [192.5

Maximum Value 0

Name or Expression for Sretch isaparameter name or SKILL expression.
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Reference Dimension(Default) isthe default value for the stretch control line. When you
place a pcell, the system subtracts the reference dimension from the stretch value you

specify to determine the distance to stretch.
Sretch Direction isthe direction you want objects to stretch.

Stretch Horizontally Repeated Figures stretch cells marked for repetition in the X
direction. By default, cellsin repetition groups are not stretch (the button is not filled).
That iswhy the stretch control line can through the cpomeD2 cell. If the button is on. hori-
zontally repeated cells will stretch.

Minimum Value specifiesthe smallest value you can use to stretch this pcell. If you enter

avaue smaller than the minimum, the Pcell program uses the minimum value.
Maximum Value specifies the largest value you can enter when stretching this pcell.

6. Now, we need to modify the parameters of the first-comcD2 cell. To assign the first-

cpmcD2 cell’s repetition parameters to control the stretch control line.
|:> select Pcell -> Repetition -> Modify

Double click the first pcmcD2 cell. The Modify Repeat in X and Y dialog box appear.

> Stepping Distance 21. 2

W Stepping Distance 52. 82

HMumber of > Repetitions (zxbit — Zi

Humber of % Repetitions (whit ~ 23 - 2

Dependent X Stretch mowe_to_the right

Dependent ¥ Stretch

Adjustment to X Stretch (i fizx{pcRepesatX) - 1) * pcStepi)

Adjustment to ¥ Stretch Cifixi{pcRepeat¥) - 11 * poStep¥)

Type move_to_the _right in the Dependent X stretch box.
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7. Select Pcell -> Stretch -> Stretch in Y.

8. Draw ahorizontal stretch line through the comcE2 cells.
Type move_upward in the Dependent Y Stretch box.

spoul5 reglx

1 spurl
1
1
cpmcAZ cpmeC2 I cpmcF2
1
'g 1
= 1
2 |
5 cpmeD2 I
= j > movetotheright
4 !
! 4X2
cpmcB2 cpmcE2 cpmcDi cpmcG2
[ addery
btd reg3y| adder_x
regly !
4X2 !
sp4 '
|
dr3 adderx
S [ spdi2
ckd3 fegax
|
adderxm| addery I
I
]

9. Now, we want the repetition parameter of cpmcE2 cell to control the second stretch
control line.

L > select Pcell -> Repetition -> Modify

Double click the pcmcE2 cell. The Modify Repeat in'Y dialog box appear.
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[¢] Modify Repeat in ¥

Ok Cancel Help
Stepping Distance B3. 8
Humber of Repetitions ({yhit 7/ Z) - Z)
Dependent Stretch move_upward
Adjustment to Stretch { (fixipcRepeat¥) - 1) * pcStepT)

Type move_upward in the Dependent Y Stretch box.

3.3.5 Conditional Inclusion Commands

Conditional Inclusion commands set a parameter that includes or excludes objects

depending on the conditions you set. These commands can be used in conjunction with

stretch or repetition commands.

Now, the smallest complex multiplier that can be generated is a 4x2. Because no matter

what sizeit is, at least we have cpmcC2, cpmeD2 in the same column. We can use condi-

tional inclusion commands to exclude cpmcD2 when ybit is less than four. We don’t have
to worry about cpmcE2. Because the Repeat jpadameter of cpmcE2 is zero when ybit.

is four. When the parameter is zero, it means the cell doesn't exist.

1. Preselect the second cpmcD2 cells.(the one between cpmcC2 and cpmcE?2). Start the
command.

|:,> Select Pcell -> Conditional Inclusion -> Define.

The _Conditional Inclusion windoappears.

48



[¢] Conditional Inclusion

0K | Cancel Help

Mame or Expression (yhit > Z)

Dependent Stretch

Adjustment to Stretch 0

Nameor Expression isthe definition of the parameter or SKILL expression. When you
place an instance of the pcell, the Pcell program evaluates this expression to determine

whether to include the specified objects.

Dependent Stretch isthe name of a previously defined stretch control line. We can set

this stretch control line to be dependent on conditionally included cells.

Adjustment to Stretch is the amount the stretch control line stretches or compresses

when the conditional cells are not included. It can be a positive or negative value.
2. Typein (ybit > 2) in the Name or Expression box.

3. click OK.

Now, we have completed al the parameters.

3.3.6 Compileand Testing the Pcell

Create pcellsis often an iterative process. It is not easy to set al the parameters correctly

at thefirst time. However, we can easily go back and add parameters or make corrections.

3.3.6.1 Compiling the Pcell
1. Pcell -> Compile-> To Pcell.
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The Compile To Pcell form appears. The first time we compile a parameterized cell,
we need to classify it as transistor, contact, substrate contact, or none. These are the

classifications that Cadence virtuoso Compactor uses.

[®] Compile To Pcell

Ok Cancel Help

Function # transistor contact substrate Contact none

2. Select transistor, click ok.
We can see the following message in the CIW (Command I nterpreter Window).

Open Design Manager Technology File Utilities Translators UCB *Unicad *Design Kit Help | 1

Compiling Parameterized Cell ...
Compilation complete

mouze L: mouseSingleSelectPt M: mousePoplp () E: pcHIDefineParamCell()
1=

If the output in the CIW shows any errors, we go back to fix it then recompile the pcell

again.

3. Save the pcell. Select Design -> Save.

3.3.6.2 Testing the Pcell

1. Open anew file.

2. Open the Create Instance form, by pressing i in the new window.

The Create Instance form appears.
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Hide Cancel | Defaults Help

Library | horopy

Cell hg complesx multiplie Browse
Viewy layout

Hames IZ

Rows 1 Columns |1

radin x| 21307 Omiiae ¥ 283. 2 Mag 1

Rotate Sideways Upsidedown

whit 12
®bit 12

3. Inthe Create Instance form, enter hgxmpy in the Library box and

hg_complex_multiplier-master in the Cell box.

4. Press Tab to display the pcell parameters.
The parameters of complex multiplier are displayed at the bottom of the Create
Instance form. The values shown are the defaults.

5. Change ybit to 12.

6. Change xbit to 12.

7. Place the complex multiplier, click left mouse bottom in the new window.

8. Then click cancel in the Create Instance Form.
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9. Pressf in the new window to fit the 12x12 complex multiplier in the window.
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Now we change the parameter values after we have placed the complex multiplier

10. Select the complex multiplier, then press g.

The Edit Instance Properties windows appears.

0K Cancel Apply Hawmb | Provioss Help
# Attribute Compmolivity Parameter Property R EEHTE
Library hgapy
Cell hg complex multiplier-master
View layout
Ongin: x 293 ¥ 99075
Hame 11 Mag 1
Rotation RO

12. In the Edit Properties Form, click on the Parameter button.

52



[¢] Edit Instance Properties

OK Cancel Apply Bl Frovism Help
Attrbute Corpmoiivily 4 Parameter Froperty LR
zhit | -
vhit | o

13. Change xbit to 6.

14. Change ybit to 8.

15. Click OK.

The complex multiplier will change to 6X8 complex multiplier.
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16. If thereis no error, we have completed the pcell for the complex multiplier.
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3.4 Summary

In this chapter | used three most useful commands (Repetition Commands, Stretch Com-
mand, and Conditional Inclusion Commands). There are still more commands you can
learn from the Cadence menu.



4 Conclusions

Three pcells have been created for the pcell library. The first and the second are integer
number and complex number multiplier. They are capable of generating integer and com-
plex number multipliers of size 2x2 or larger. Both the multiplier and multiplicand vectors
can beincreased from 2 to any larger number inincrement of 2. Thethird pcell isacomplex
number multiplier accumulator. It is capable of generating integer and complex number
multipliers of size 4x2 or larger. Both the multiplier and multiplicand vectors can be
increased to any larger number inincrement of 2. In addition to these features, thiscomplex
MAC has parameterizable accumul ation times. This feature make this complex MAC can

be apply to more different projects.

There is till one thing left to be done. From the performance (section 2.4). we can see the
critical path has changed from the first stage to the second stage in 0.25 um technology.
Although, it meets our clock speed (25MHz or 40 ns clock period). We should still add
another parameter to include or exclude the carry look ahead cell in the second stage, to
reduce the delay of the ripple carry adder. This feature will make these pcells be applied to

more different projects.
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