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Introduction

The fast progress towards ever smaller feature sizes renders many designs prac

obsolete in a short period of time.   Thus technology’s rapid pace increases the importance

attractiveness of design reuse, but having to re-design the circuits each time the process cha

expensive. While the main challenge in the past was creating a chip with a single functiona

and an acceptable performance, the emphasis is shifting towards entire systems on one chip

will be based on reusable cores.    With this trend, the challenges and requirements of toda

designer have changed too. A method, therefore, that will quickly and efficiently provide the

designer with these blocks in the latest technology, without sacrificing performance and requ

large amounts of time and effort is highly desirable.

The goal of this project was to create such a methodology and to provide a too

which the designer can use to convert existing designs for use in the latest technology.   O
1
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method is based on a program written in Cadence’s Skill code, which performs a series of 

and expand operations on the existing layout. These operations create a new layout that co

to the new target design rules.

To demonstrate the operation of our program, and to study its advantages and

falls, we used an ARM8 microprocessor designed in a 0.6 micron technology and translated

0.25 technology.    This scaled down ARM8 will act as a core processor in the Berkeley Ple

project [1]. The ARM8 is a low-power 32-bit RISC microprocessor fully implemented in stat

CMOS.   It consists of a 5-stage pipelined Core and a branch predicting Prefetch Unit. The

Prefetch Unit together with a double-bandwidth memory interface act to reduce the power 

sumption and the overall CPI. Since the memory interface’s bandwidth is greater than the b

width requirement of the Core, the Prefetch Unit takes advantage of that by buffering the

instructions in a prefetch buffer. Branch prediction is then used to remove some instruction

before they are presented to the core. Thus, fewer instructions are passed to the core for p

ing.   Pipelining of the instructions and the data ensure a continuous operation of the proce

and the memory system.

The following chapters will describe in detail our scaling process, chapter 2 will

present the details of our program and the steps needed to complete the scaling process. Ch

will provide the results obtained from our experiment and we will end this work with our con

sions in chapter 4.
2
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Scaling Methodology

In an effort to provide the designer with the capability to reuse existing blocks an

allow the main effort to be concentrated on the task of system design we present our meth

design scaling.   This simple method makes it possible to scale down existing designs in a 

and almost error free fashion for use in newer technologies. As with any other engineering 

we are faced with a number of trade-offs.    The main trade-off facing us was that of simplic

versus performance as measured mainly by the final design area as well as by the number

acceptable violations which must be handled manually.

After a discussion that explains how we determined our scaling factor we will lo

more closely at the scaling method itself.    Section 2.2.1 will explain the layout scaling pro

while section 2.2.2 will do the same for the schematic. The final sections will describe the pro
3
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of moving the design to the new technology and the verification steps needed to ensure tha

design is functional.

2.1  Determining the scaling factor

Had the different technologies adhered to the lambda design rules or some oth

form of linear scalable rules, our task of scaling the design would have been extremely sim

This would have consisted of a simple program that linearly shrinks every geometry in the lay

Since this is not the case, and different rules scale differently between technologies, we ne

determine a maximum scaling factor. This scaling factor will determine how much we can sh

the design and still comply with all the new design rules. Table 2.1 below shows how, for ce

design rules, violations begin to occur as we start scaling down from 0.6 microns towards 0

Table 2.1: Design Rule Violations For Different Scaling Factors.
(Violations are denoted by an asterisk and a shaded box)

Rule Name
Scaling To:

0.25 0.3 0.35 0.4 0.45 0.5

Active Spacing * *

Poly-Active Spacing * * *

N+/P+ Implant Spacing * * * * *

Contact Width *

Contact Spacing * *

Contact-Active Spacing *

Via1 Width * * *

Via1 Spacing * * *

Via2 Width * * *

Via2 Spacing * * *
4
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As seen from the table, scaling down to 0.5 microns results in no design violati

Therefore, this can be achieved by a straight forward linear scaling of all the shapes by a fac

1.2 (= ). However, attempting to scale beyond 0.5 microns results in the introduction of de

rule violations with an increasing number as we scale to smaller and smaller sizes.   This s

does not mean that 0.5 microns is the limit for scaling between these two technologies. A c

study of the design rules shows that by performing some selective expand and shrink oper

on certain layers, we can safely scale the entire design to 0.35 microns and still comply wit

design rules. For example, it is possible to overcome the poly to active spacing violation by

ther shrinking the poly traces. This is shown in figure 2.1. The initial step scaled the 0.6 mic

wide poly to 0.35 microns. Since the minimum poly width is 0.25 microns, we can further sh

the poly line thus increasing the spacing to the active layer.

Figure 2.1: Poly-Active Spacing.(a)    x < minimum spacing (b)
After resizing poly, x now satisfies minimum spacing requirements

Using similar techniques the remaining violations shown for the 0.35 micron ca

can be resolved. This however is not the case if we scale down to 0.3 microns. In addition t

0.6
0.5
-------

0.35 0.25

 x
  x

(a) (b)
5
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larger number of violations that need to be addressed, no quick and easy technique for res

them was found.

An important factor that can not be overlooked is the minimum design grid whic

defines the smallest dimension that can be used.  Thus a minimum grid of 0.1, for example

not accept dimensions that are not multiples of 0.1 such as 0.05 and the like. This limits the f

by which we can scale down the design.   In our case, the minimum design grid allows sca

0.4, 0.35 or even 0.3 microns. However, scaling to 0.375 or 0.325 is practically impossible ev

the design rules allow it. Such scaling will require shifting and expanding geometries and la

in order to align them onto the grid. This process is involved and computationally complex a

need to check for new violations that can be introduced as a result of such movements. We

must ensure that the minimum design grid is not violated for each of the scaled down geome

Thus, there are cases where certain layers with certain dimensions need to be expanded or

somewhat to accommodate the minimum design grid.
6
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Figure 2.2: The Scaling Process

2.2  The scaling process

The scaling process created in this project is illustrated above in figure 2.2.

Although the main objective is to scale down and convert the physical layout to the new tec

ogy, the schematic can not be ignored as it is needed for the verification stage. We therefore

Layout Shrink

DRC

Move to New
Technology

LVS

    Ok?

Repair
Violations
Manually

Schematic Shrink

DRC

Clean?

LVS

Netlist

Verify

Repair
Violations
Manually

F

T

F

T
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down and convert both representations to the new technology as described in the following

tions.

2.2.1  Layout scaling

By far the most challenging and time consuming part of this work was scaling t

layout. The starting point was to study and compare the two technologies and determine th

scaling factor possible. This was described in section 2.1 above.   The rest of the process i

described in figure 2.3 and consists entirely of a program, written in Cadence’s SKILL code.

program accesses the database, where the original layout resides, and through a series of

and expand operations transforms the existing geometries to their new dimensions.

2.2.1.1  Constant Geometrical Shrink

The constant geometrical shrink consists of the following steps:

1.  Merge all overlapping shapes from same layer.

2.  Shrink all rectangles.

3.  Shrink all polygons.

4.  Shrink all labels.

5.  Report any other shape encountered.
8
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Figure 2.3: Layout Scaling Process

A merge of all overlapping shapes step is repeated several times throughout th

gram.    As the name implies, this function merges all the different, overlapping shapes of o

layer into one polygon.   This is done to avoid a situation where adjacent shapes are scale

expanded differently by the program causing them to become separated or create other vio

This program is made to work with rectangles and polygons only. Any other sh

(such as arcs, donuts, ellipses, etc.) are reported in the log file but are left untouched.

Constant Geometrical Shrink

      Via Sizing and Spacing

     Select Layer Adjustment

Selective Shrink To Minimum Size

Transistor Resizing and Cleanup

Any
Instances
Left ?

Descend through

START

T

RETURN

F

mergeShapes()
convertPathToPoly()
shrinkShapes()
shrinkPinNames()
shrinkLabels()
findOtherShapes()

{expandVia()
mergeViaVert()
mergeViaHoriz()
splitShape() }

shrinkSelect()

shrinkToMin() resizeXtr()
shrinkContactArea()
expandToMin()
activeFix()
notchFix()
adjustPin()
adjustPolyEdge()
removeSelectOverlaps()

{
{

}

the hierarchy
9
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2.2.1.2  Via Sizing and Spacing

The constant scaling performed in the step above created via sizing and spacin

lations.   Direct scaling to 0.35 results in vias that are smaller than the required minimum s

Since less metal overlap of vias is required in the 0.25 technology, this issue is resolved by

expanding the vias to their correct size.

Figure 2.4: Via Scaling.(a) Original 0.6 micron via (b) After lin-
early scaling to 0.35 and (c) after expanding the via to it’s correct

size

This expansion, however, creates a spacing violation where vias are clustered

together. To overcome the spacing problem, figure 2.5 shows how the vias are merged ver

into one long rectangle, then properly spaced individual vias are formed. This process is th

repeated horizontally.   As the figure shows, some of the vias are discarded since the addit

spacing between them pushes one column and one row too far out thus violating the minim

overlap requirements.

(a) (b) (c)
10
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Figure 2.5: Via Array Spacing.(a) Original via array with the vias
spaced too close to each other (b) Vias merged vertically (c) vias

spaced vertically (d) Vias merged horizontally (e) Final horizontal
spacing

2.2.1.3  Select Layer Adjustment

Table 2.1 shows how we begin to encounter select layer violations at 0.45 micro

The violation is a result of the relative increase in the spacing requirements in the new techno

However, we observe that at 0.35 microns the active overlap by the select layer is more tha

minimum required. This enables us to move all the select layers inwards to create the adeq

spacing and thus scale beyond 0.5 microns.

(a) (b) (c)

(d) (e)
11
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Figure 2.6: Select Layer Adjustment.(a) Before the adjustment, x
< minimum spacing (b) The adjustment removes the spacing viola-

tion

2.2.1.4  Selective shrink to Minimum Size

The design we have at this point is a complete 0.35 micron equivalent layout. S

our target technology is 0.25 microns, we can further selectively shrink different layers and

transistors to their absolute minimums. Although the overall area of the layout will remain

unchanged, we expect some reduction in the device and interconnect capacitance leading to

overall performance.

In this step certain poly and metal traces are reduced to their new minimum siz

This is done only for those traces that where minimum size in the original 0.6 micron layou

The program always assures that the minimum design grid is not violated. In the case of rou

errors it snaps all points and coordinates to the nearest design grid. This is true for all the s

steps. It also ensures that no geometry is scaled in such a way that will place it off the grid.

case was observed when the metal layers were further scaled to their 0.25 micron minimum

xx

(a) (b)
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Due to the way this scaling is done (see figure 2.7), a minimum size metal trace can be pla

halfway between the design grids on both sides. The program therefore increases the widt

these lines and places them on the grid. Note however, that this expansion can not create 

tions since it is not expanded past its original size.

Figure 2.7: Grid Adjustment.(a) Sample metal trace scaled to 0.35
(b) Further scaling of the trace to it’s minimum size (c) The result-
ing grid violation caused by the further scaling and the widening to

the nearest grid point

A final step in this stage of the process was to repair any violations around con

and vias. As figure 2.8 shows, the process of minimizing the widths of certain traces can res

changes around the vias and the contacts with less than the required minimum size overla

remaining.

Minimum Design
Grid

Trace is widened to
comply with the
minimum design
grid

(a) (b)

(c)
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Figure 2.8: Via and Contact Repair(a) Before shrinking the line to
minimum size (b) after the line shrink operation the metal no longer

overlaps the contact as required (c) fixing the overlap violation

2.2.1.5  Transistor Resizing

The resizing done on the poly lines in the previous step has changed the length

the minimum sized transistors.   The width of all these transistors should therefore be adjus

accordingly in order to keep the design unchanged. This is done by identifying all the trans

and establishing their orientation. Once that is determined, the active is chopped and the wi

length ratio is restored.

Figure 2.9: Adjusting Minimum Sized transistors.(a) Transistors
scaled to 0.35 microns (b) Poly width reduced to minimum size (c)

Width adjusted appropriately

(a) (b) (c)

W1

L1

W1

L2

W2

L2

(a) (b) (c)
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The remaining, non-minimum sized transistors are treated in a similar way.    F

the length is adjusted by trimming the poly layer. Next, the underlying active layer that determ

the transistor’s width is chopped as was done for the minimum sized devices.

Figure 2.10: Non-Minimum Sized transistor Adjustment.(a)
Original transistor (b) Length adjustment (c) Width adjustment

2.2.1.6  Cleanup

Although the bulk of the scaling is now complete, few fixes and adjustments are

necessary before we can continue down the design hierarchy.   The first step in this stage 

cleanup all the contacts and the vias and remove the unnecessary overlaps. The many shr

expand actions performed on the different layers resulted in many notched figures. The pro

therefore goes through each cell and fixes any notches by either filling them in or trimming t

Furthermore, the pin layers were left untouched throughout the entire process whereas the

lying drawing layers were altered. We therefore adjust the pin layers to correspond with the

underlying drawing layer in this stage. Since the pin information is not saved when the des

W1

L1 L2

W1

L2

W2

 (a) (b) (c)
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transferred to the new technology, we save all this information in a text file and later restore

directly to the new design.

2.2.1.7  Recursive descend through the hierarchy

Since the advantages of keeping the design hierarchical far outweigh the disad

tages it introduces, the program was written to preserve the design’s hierarchy.   Scaling a 

tened design is less involved and simpler to perform. However, doing so proves to be

computationally inefficient, time consuming, and may result in a design that is at best difficu

modify or fix at a later stage. Many cells are repeatedly used in a large design, such as this

processor, particularly in a datapath.   This repetition can not be recognized in a flattened d

resulting in the same cell being scaled each and every time it appears.   Moreover, since n

cess is perfect and error free, it is highly desirable to facilitate easy repair and modification

Such fixes need only be applied once to the basic cell in a hierarchical design whereas it m

prove to be impossible to perform in the flattened case. This will be clearly demonstrated w

we discuss the verification process and the results obtained in the following sections and c

Using a recursive algorithm, the steps described in the subsections above are

repeated for each cell in the design. As each cell is processed, the program checks for any

instances it may contain and proceeds to descend into them and scale them.

One of the difficulties brought about by the hierarchical nature of the design is vi

tions across the hierarchy or across instances. Since each instance is scaled individually, i

respective placement in the overall design is not considered. This may create situations whe
16
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adjacent cells, or cells nested within each other, produce spacing or other design rule violat

This problem is addressed for the case of adjacent cells and cells that are nested up to one

deep. This is accomplished by making a copy of each layer from the child cell in the parent

Next, patches are created in the parent cell where violations occur. For example, if a small

appears on the boundary of two cells, the patch will be a small rectangle that fills in that no

Once all the patches are created the copied layers are discarded.  Since these patches are

likely small rectangles the design should not be checked in the hierarchical mode.  In a hie

cal mode these rectangles may stand out as violations themselves since they do not alway

the minimum design rules.

2.2.2  Schematic scaling

The schematic scaling process is shown in figure 2.11 below. This process is m

simpler than the layout scaling one due to obvious reasons. Whereas the layout is a physic

design which places constraints on the connection between the devices no such limitation ex

the schematic. Our only concern is the device dimensions which are represented as prope

each transistor in the design.

The program traverses the design hierarchy modifying the length and width of 

transistor it encounters. These dimensions are scaled by a constant factor of 2.4  (= ).   

the two technologies are separate and come with their own device libraries it is important to

ence the new devices. This is the stage labeled as “point to new master” in figure 2.11 below

instances that are transistors, I/O pins, vdd, gnd and any parametrized cells (termed “list A”

figure) are replaced with the equivalent instance from the new libraries.

0.6
0.25
----------
17
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Figure 2.11: Schematic Scaling Process.(List A refers to all tran-
sistors, I/O pins, VDD , Gnd, and any parametrized instance)

2.2.3  Moving To The New Technology

Although both the layout and the schematic have been scaled to the new dimens

the layout still requires a few more adjustments before its scaling is complete.   As we desc

in the previous section, the schematic was altered to point to the new devices that correspo

the new technology. This was not done yet for the layout.   We therefore stream out the lay

an intermediate GDSII stream format and then stream it back into a Cadence database usi

new technology layer numbers. As a final step we restore all pin information. A separate pro

START

Open Design

Any

Instances?

Is

Instance

a transistor?
Scale Width and Length

Is

Instance

from List A?
Point to New Master

Descend Into It

RETURN
F

T

T

F

T

F
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looks for the pin information that was saved during the scaling process in text files. These pin

restored and the scaling process is complete.

2.2.4  Design Verification and Testing

The verification and testing process is carried out as it is for any other design fo

which a layout and a schematic exist.   For the layout, a DRC (Design Rule Check) is run a

violations are corrected. To maintain program simplicity no attempt was made to guarantee

error free scaling.   Although the program produces a correct layout under most circumstan

certain cases may introduce rule violations.   These violations are easier to correct manual

avoiding program complexity.    Further justification for this approach is given in the followin

chapter where the results obtained and the DRC violations encountered are explained.

A final check before we go on to netlist our design is an LVS (Layout Versus Sc

matic) check. Once that is complete and a netlist is produced we proceed to verify the circu

operation using a circuit simulation tool.

2.3  Scaling Example

This section will demonstrate through examples some of the problems that wer

mentioned earlier in this chapter.  These scenarios are generated by disabling some of the

tions in the program. In this way we can see the actual errors and how they are corrected.

2.3.1  Poly Active Spacing
19



ance
Figure 2.12(a) shows a layout section where a poly line runs at a minimum dist

to the active layer.

Figure 2.12: Scaling of the Poly-Active Spacing

0.3

0.6

0.175

0.35

0.225

0.25

(a) (b)

(c)
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Part b of the same figure shows what happens if we disable the shrinking of the

to the minimum 0.25 micron size. In this case the 0.175 micron spacing to the active layer 

adequate to satisfy the new design rules. Part c shows how the spacing increases to 0.225 m

once the poly line is further scaled to 0.25 microns. The poly to active spacing now meets t

design rule minimums.

3.3.2  Via sizing

Section 2.2.1.2 described how the vias must be selectively expanded to their c

size. As figure 2.13 shows, the original 0.6 x 0.6 via is scaled to 0.35 x 0.35. Since the new

must have dimensions of 0.4 x 0.4, it is selectively expanded. This is possible since the new

design rules require less metal overlap around the vias.

Figure 2.13: Via Scaling and Expanding.(a) the original 0.6
micron x 0.6 micron via scaled to (b) 0.35 x 0.35 microns

(a) (b)
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Figure 2.13 (contd.): Scaling and Expanding the Vias.(c) After
the expansion, the via size is now 0.4 x 0.4 microns

2.3.3  Via Array Spacing

The increase in the relative size of the vias creates a situation where tight via a

are spaced too close and need to be modified.   The way this is resolved was described in 

above and figure 2.14 below shows an array of vias before and after the scaling is complet

part (a) shows the original array consists of 8 columns and 9 rows of vias. Part (b) shows how

row and one column are removed to facilitate for the increased spacing between the vias.

(c)
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Figure 2.14: Via Array modification.(a) the original array with 9
rows and 8 columns (b) the new array with one row and one column

removed and the spacing increased.

2.3.4  Select Layer Adjustment

Figure 2.15 shows how the select layer is brought closer to the active layer to a

for enough spacing between the N and the P selects. Part (a) is from the original design sh

the 0.6 micron overlap of the active by the select layer. After the original scaling, the new ove

is reduced to 0.35 microns. This is shown in (b). Since the minimum overlap allowed is 0.2

microns, the select layer is shrunk inwards resulting in the minimum overlap as shown in p

(a) (b)
23



Figure 2.15: Reducing the Select Layer Overlap.(a) the original
design with 0.6 microns overlap (b) after the linear scaling the

overlap is reduced to 0.35 microns and then (c) further reduced to
0.25 microns.

2.3.5  Transistor resizing

(a) (b)

(c)
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Figure 2.16 below shows how the transistors are resized to their new width and

length. Since the poly was further reduced from 0.35 to 0.25 microns, the active layer is ch

to reduce the width correspondingly.

Figure 2.16: Transistor Resizing.

2.3.6  Cleanup

The cleanup process involved filling in notches and removing excess “material”.

ure 2.17 shows how the transistor resizing process leaves the active layer somewhat notch

irregular.   Figure 2.16 (b) shows the final transistors after the cleanup process.

W1

L1

W2

L2

(a) (b)
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Figure 2.17: Notch Removal
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Analysis and Results

Aside from functionality and performance, power and area are two of the most

important measures of a successful design. Great efforts are made in minimizing these two p

eters. The design area has a direct influence on the overall power consumption. Larger area

more transistors and longer distances which translate directly into power. More power, in re

may limit the size of the chip as the consumption and the resulting heat may prove to be in

ble.

This chapter attempts to explore the impact of the scaling on the overall area, p

dissipation, and performance. After a brief description of the area savings achieved, sectio

will look more closely at the power which can be determined from the circuit capacitance an

supply voltage. We will also look at the performance and how it compares to the original des
27
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performance.   The final sections will discuss and provide some statistics from the verificat

process.

3.1  Area

One of the biggest advantages brought about by smaller feature sizes is the dec

in the overall area the design occupies.   This savings in real estate makes it possible to re

more complex circuits on the same die, a trend that is gaining importance as we are movin

towards System On a Chip.

Figure 3.1: Design Area

Figure 3.1 shows how the area scales as the square of the design dimensions.

figure shows, the ARM scaling to 0.35 microns has produced a three fold decrease in its area
28
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it been possible to scale it all the way down to 0.25 microns we would have realized a five f

area savings.

3.2  Power

As our current ARM design is a scaled down version of the original 0.6 micron o

our ability to introduce power saving measures is practically non-existent. Of course, nothin

stops us from making changes if these are deemed necessary, however our approach is th

complete automation with minimum or no need for redesign. One key advantage in this cas

that the original ARM was designed with low power operation in mind, employing specially

designed low power cell libraries and many power saving techniques [3]. We therefore expe

scaled down version to be equivalently power efficient. A main source of possible difference i

physical characteristics of the new technology. The sections that follow will look at how the

capacitance (a main contributor to power consumption) of the devices themselves as well a

scaling of the interconnect between the two technologies.

The main source of power dissipation in digital circuits is dynamic switching pow

which is given by the formula:

WhereCL is the load capacitance,VDD the supply voltage, andf the switching frequency.     As

this equation suggests, a savings in power occurs if any of these terms are reduced. Howev

performance requires a high operating frequency, which although is not the same as the swi

frequency it directly affects it. At the circuit level, techniques to reduce glitching, turn off cert

P CL VDD
2× f×=
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blocks that are not in use, or to eliminate the clock (asynchronous and self-timed) can and 

sometimes used in an attempt to reduce the switching frequency and the power consumpti

to it. Substantial effort is dedicated to reducing the parasitic capacitance, both device and i

connect, and to operating at ever lower supply voltages.

 3.2.1  Capacitance

Circuit capacitance can be broken down into two types, device and interconnec

Small, local circuits, are typically dominated by device capacitance. As the chip size increase

distance a signal travels also increases and interconnect capacitance can begin to dominate

scaling process had two affects on the circuit capacitance. On the one hand all the devices a

distances were scaled and became smaller and shorter. On the other hand, we are now de

with a different technology having different physical characteristics. These characteristics c

the device capacitance to scale differently from the interconnect capacitance, making our t

comparing and analyzing the results somewhat more complex.

A careful study of the capacitance scaling is, therefore, necessary if we want to

dict the performance and the power dissipation of the new design. We hence compare the in

or decrease in capacitance between the original design and the new one as we perform the

process. We look at the two types of capacitance, namely device and interconnect, first sepa

and then together with the actual data obtained from simulations. We distinguish between t

ferent metal layers when we look at the interconnect capacitance as their physical propertie
30
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Figure 3.2 attempts to explain the behavior of the device capacitance (gate cap

tance) as the design is scaled down from the original 0.6 microns. The figure includes the e

of both the scaling as well as the new physical properties of the 0.25 micron technology. As

ing a minimum width transistor, the data is derived as follows and is presented in table 3.1 b

Table 3.1: Gate Capacitance Ratio for Different Gate Lengths

As the plot shows, we should experience a relative improvement in the transistor’s gate cap

tance as we move below approximately 0.45 microns. This is seen by a capacitive ratio sm

than one.

Gate Length [µm] CRATIO

0.25 0.33

0.30 0.47

0.35 0.64

0.40 0.84

0.45 1.06

0.50 1.31

0.55 1.58

0.60 1.88

CG W L× COX× L 1.5L×
εOX

TOX
----------×= =

CRATIO

CGnew

CGold
----------------

Lnew
2

TOXold×

Lold
2

TOXnew×
-----------------------------------

Lnew
2

94×

0.6
2

50×
------------------------= = =
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Figure 3.2: Gate Capacitance Ratio (assuming 0.25 micron pro-
cess technology)

Figure 3.3 tries to show the same information for the case of interconnect domin

capacitance. It is the ratio of the new interconnect capacitance (at different lengths) to the ol

at a 0.6 micron length. The figure distinguishes between the different metal layers for reaso

mentioned earlier. Table 3.2 on the next page shows the interconnect capacitance per unit

for the three metal layers in the two technologies.  The numbers indicate that the interconn

capacitance has worsened in the new technology.  However, as the length of the interconn

decreases so does its capacitance.  The curve in figure 3.3 is normalized for the different le
32
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Figure 3.3: Interconnect Capacitance Ratio

We clearly see that whereas a significant improvement is realized in the metal 1 interconne

capacitance when moving to the 0.25 micron technology, signals travelling along metal 2 or m

3 lines now face a larger capacitive load.

Table 3.2: Interconnect Capacitance per Unit Length (area and
fringing capacitance for single line)

Layer

Capacitance per Length [fF/mm]

0.6 micron
technology

0.25 micron
technology

Metal 1 72.3 93.7

Metal 2 28.1 74.7

Metal 3 24.6 65.9
33
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Figure 3.4 plots the actual capacitive ratio as was measured from our simulatio

These results were obtained by performing our scaling process multiple times on only one 

each time to a different dimension.    We chose the a8Fwd block and looked at 8 different n

throughout the design. We did not use the entire ARM design for this study since scaling it m

ple times is a non-trivial, time consuming task. This however means that the results thus obt

are not a true representation of the scaling process. In particular, the effect of the long bus

which are major contributors to the interconnect capacitance, is left out. Furthermore, it was

cult to distinguish between device dominated and interconnect dominated nodes within the

block. We, therefore, make no such distinction in our measured results and present only on

curve.   This curve is the average capacitance as measured over several nodes in the desi

Figure 3.4: Measured Capacitance Ratio
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3.3  Delay

To determine the speed at which we can operate the new ARM we study the ci

delay. As was done for the circuit capacitance, we distinguish between two types of delay. O

delay based on device loading only while the other is interconnect dominated delay.   As fig

3.5 shows, since device capacitance improves significantly due to scaling and the new techn

transistor delays are expected to reflect that improvement. This is shown by the bottom cur

labeled “Gate” in the figure. Similarly, it was noted that interconnect capacitance tends to wo

particularly for metal2 and metal3 layers. We therefore see that interconnect based delay imp

slower than the gate delay as shown by the top curve of figure 3.5 which is the metal3 based

connect delay.

The calculated data was obtained by comparing the propagation delay of a trans

in each of the two technologies.  In one case we used a gate capacitance as the load while

another we used an interconnect capacitance.

tP
VDD L× TOX×

2 W× εOX µP××
------------------------------------------- 1

2.5 VDD VTN–〈 〉2×
-------------------------------------------------- 1

VDD VTP–〈 〉2
-----------------------------------+〈 〉 CL××=

Speedup
tPold

tPnew
-------------

VDDold

VDDnew
--------------------

TOXold

TOXnew
-------------------

1

2.5 VDDold VTNold–〈 〉2×
---------------------------------------------------------------- 1

VDDold VTPold–〈 〉2
--------------------------------------------------+〈 〉

1

2.5 VDDnew VTNnew–〈 〉2×
------------------------------------------------------------------- 1

VDDnew VTPnew–〈 〉2
-----------------------------------------------------+〈 〉

------------------------------------------------------------------------------------------------------------------------------------
CLold

CLnew
---------------×××= =

Speedup 3.277
CLold

CLnew
---------------×=
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To measure the actual delay, we use the same block we scaled to the different d

sions in order to examine the capacitance scaling. We choose a certain path and use Hspi

determine the delay.   The results are shown by the curve labeled “Measured” in figure 3.5.

expected, the actual delay lies somewhere between the pure interconnect delay curve and t

delay curve since the layout consists of both. We, however, expect the actual ARM delay to

somewhat longer (worse performance) than that depicted in the plot. This is due to the fact

the information for this plot was gathered by looking at only one block and not the entire AR

Therefore, the plot does not take into account all those delays caused by the global interconn

the ARM.

Figure 3.5: Circuit Delay
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3.4  Supply Voltage

From the previous analysis and the results obtained we see that the new ARM sh

operate about twice as fast as the original one. These results assume a 1V target supply v

In this section we examine the effect of VDD on performance. Figure 3.6 shows the speed up

obtained as we vary the supply voltage from 1V to 2.5V.   A significant improvement in perf

mance can be obtained just by increasing VDD slightly above 1V.

Figure 3.6: Effects of Vdd on Delay
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3.5  Verification

The verification process consisted of two main parts. First we had to ensure tha

design contained no design rule violations and that it agreed with the new schematic. The 

step consisted of a study to ensure that no race conditions existed.

3.5.1  DRC and LVS

To ensure that the final design was correct both physically and logically, we first

DRC and corrected all the errors manually. Appendix B contains a comprehensive table sh

all the different violations reported and the number of fixes needed to eliminate them.   Alth

some blocks contained a large number of violations most of them stemmed from few or on

block. Due to the hierarchical nature of the design, a fix in the lower level block which was 

cated many times was enough to remove most if not all the violations.

To verify that the design was logically correct we ran an LVS test. The very few

cases where the transistor was not scaled correctly we fixed manually. All other connectivit

information was not changed during the scaling process.

3.5.2  Clock Skew

Race conditions are a direct outcome of skew.   The complex clock network, sp

ing across the entire chip, is susceptible to skew problems. To ensure that skew was within a

able limits we followed the testing method performed for the 0.6 micron ARM design. This
38
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process consisted of examining race conditions within local blocks as well as the design as

whole.   Table 3.3 shows the entire skew picture.

Table 3.3: Clock Skew [pS]

To examine the interconnect delay, the length and width of the clock line with all

branches was measured and using a pi 3 model (see figure 3.7) a spice netlist was created

enabled us to obtain an approximate figure for the clock delay to each block of the ARM des

Figure 3.7: A Pi-3 Model

Vdd Process
Global
Clock
RC

Local
Clock
RC

Clock
Driver

Local
Enable

RC

Total
Skew

Max.
Allow.
Skew

2.5V Fast

14 2.72

65.2

0.11

82.03 290

Typ 74.7 91.53 381

Slow 86.0 102.83 477

1V Fast 138.5 155.33 1030

Typ 197.3 214.13 1621

Slow 269.1 285.93 2398
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We were also able to use the model to test how the delay changes when we va

ferent parameters such as line width and metal layer. The conclusion we reached was that

delay can be significantly reduced by using a wider metal 5 global clock line. Figure 3.8 sh

the delay for different width of metal 5 clock line. Although the delay will continue to decrease

we widen the clock line beyond 3 microns, we chose that value for the width of the clock lin

since it safely satisfies all the delay and skew requirements.

Figure 3.8: Clock Line Delay

Once it was determined that the design is physically as well as logically correct

that no race conditions can occur we generated a netlist and ran simulations to verify the de
40
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functionality. We used the same test vectors that were used to verify the 0.6 micron ARM w

changing them slightly to match our desired speed of operation.
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Conclusions

This work demonstrated the possibility for automatic methods for design scalin

Such methods can be used to quickly translate designs to new technologies and provide th

basic blocks to the system designer.   The short amount of time needed to convert a design

this method and to verify its functionality is one of its greatest advantages. Improving the co

efficiency by using better algorithms and ensuring a better compliance with the design rule

further add to its advantage.

This approach however, is not without shortcomings. The disadvantage of scalin

0.35 microns (in our example) rather than to the absolute 0.25 micron minimums is clear. N

only do we pay a penalty in terms of increased area (only three fold reduction versus five fol

a 0.25 micron design) but, as discussed earlier, this increase brings about a higher power c

sumption and a decrease in performance.   Another apparent disadvantage is the fact that 

design is limited to the same number of layers as the original one since the program canno
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trarily change layers.   Newer technologies tend to increase the number of available metal 

which can help decrease the design area and improve performance. This is especially true

those large, interconnect dominated designs but has little or no effect on the lower level blo

and standard library cells.   We therefore observe that performance critical, interconnect do

nated, designs may not enjoy the same benefits from this method as other designs do.   O

tion to this problem may be to use this method only as an initial step in the scaling process.

the scaling is complete the designer can identify the different critical paths and modify thos

improve the performance.

A good use for this method can be the scaling of standard cell libraries. Since t

cells do not exhibit the same complexity as a large design such as the ARM8, it may be poss

scale them further down beyond 0.3 microns without increasing the program’s complexity. S

dard cells seldom use more than one layer of metal hence there is no disadvantage in not ut

the additional metal layers.

Since technologies change quickly, this method of scaling is only as good as the

with which it can be adapted to newer technologies.   Although an attempt was made to ke

program parametrized with respect to the design rules some parts need to be modified to a

that goal.    The objective was to write a program that accepts two sets of design rules and

the design appropriately.

Based on the two design rules we worked with and the comparisons we made,

not difficult to come up with a set of “layout rules” which will facilitate the scaling process. Na
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rally, such rules will call for stricter spacing and sizing to create more flexibility for future au

matic scaling.  Table 2.1 on page 4 can be the starting point for a modified set of design ru

Table 4.1 below shows the steps that if taken when laying out a design in the old technolog

eliminate all violations and allow scaling down to 0.25 microns. If we create a design using t

rules and then proceed to scale it to 0.25 microns, all the spacings shown in the table will b

exactly minimum size. Although in many instances it is possible to accomodate these “new”

in a 0.6 micron design without penalty, more often than not the designer will be forced to incr

the spacing between the layers and thus the overall layout size. It is impossible to predict h

large this increase will be since such a prediction depends on the layout itself and on the re

number of new adjustments.  In a worst case scenario where all spacings must be increase

area will increase by a factor equal to the square of the “new” rule over the old.

Table 4.1: New Design Rules.Adapting these rules when creating
a 0.6 micron layout will allow for a scaling to 0.25 microns.

Rule Name Modified 0.6 micron rule

Active Spacing Minimum Spacing = 1.2 microns

Poly-Active Spacing Minimum Spacing = 0.48 microns

N+/P+ Implant Spacing Minimum Spacing = 1.2 microns

Contact Width Minimum Active Overlap = 0.54 microns

Contact Spacing Minimum Spacing = 1.2 microns

Contact-Active Spacing Minimum Spacing = 0.72 microns

Via1 Width Resolved by selective expand

Via1 Spacing Minimum Spacing = 1.44 microns

Via2 Width Resolved by selective expand

Via2 Spacing Minimum Spacing = 1.44 microns
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However, since the relation between any two sets of design rules is hardly the 

this approach is not really practical. This would not be the case if all technologies adhered

lambda design rules. Such a situation will eliminate any complexity associated with scaling a

scaling become a simple linear shrink.

It is somewhat difficult to compare the results we obtained in this work to a poss

redesign of the ARM8 at 0.25 microns without actually redesigning it. A new design will clea

have an advantage when it comes to area. It is also likely that a new design will perform fa

since all the interconnects are shorter and the parasitics are smaller. The most pronounced

ence, however, is design time. Here, the scaled down version has no competition.
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Program Listing

Since the program’s source code is too long to be listed in this report, only the 

routine is presented below.   The interested reader can access the entire code via the worl

web at the following address: http://infopad.eecs.berkeley.edu/~orowhani/report

The other programs that scale the schematic and extract and save pin information can also

accessed at that location.

A.1  Program Structure

The program has two main modes of operation. These are controlled by a on/o

overwrite button on the main menu when the program is called. When the overwrite option 

selected, the program will scale each and every cell it encounters regardless of the fact that

have already been scaled. Deselecting this feature is more efficient and will scale each cel

once. This feature was included to allow repeated scaling of the same design if a change w

made. However, as was explained above, for complex designs it will result in slower executio
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it becomes necessary to repeat the scaling for the same design, deleting the previous run 

ning the program with this mode not selected is recommended.

The code that shrinks the schematic will only work for mos devices (nmos, pmos, nmos4 a

pmos4 transistors) If other devices are used in a schematic the code should be modified ac

ingly.

A.2  Main Routine

defun( shrink ()

; Set default form values
    if( (! boundp( ’libnamedef) ) then
        libnamedef = "" )
    if( (! boundp( ’cellnamedef) ) then
        cellnamedef = "" )
    if( (! boundp( ’destlibnamedef) ) then
        destlibnamedef = "" )
    if( (! boundp( ’descellnamedef) ) then
        descellnamedef = "" )
    if( (! boundp( ’overwritedef) ) then
        overwritedef = "" )

; Define fields for form
    libname = hiCreateStringField(
            ?name ’libnamep
            ?prompt "Source Library Name"
            ?defValue libnamedef )
    cellname = hiCreateStringField(
            ?name ’cellnamep
            ?prompt "Cell Name"
            ?defValue cellnamedef )
    destlibname = hiCreateStringField(
            ?name ’destlibnamep
            ?prompt "Destination Library Name"
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            ?defValue destlibnamedef )
    descellname = hiCreateStringField(
            ?name ’descellnamep
            ?prompt "Destination Cell Name"
            ?defValue descellnamedef )
    overwrite = hiCreateToggleField(
            ?name ’overwritep
            ?prompt "Overwrite Existing Files?"
;           ?defValue list(overwritedef)
            ?choices list( list(’ov "")) )

; Create and Display Form
    hiCreateAppForm(
             ?name ’shrinkForm
             ?formTitle "Shrink Layout"
             ?callback "shrinkCode( libname->value destlibname->value cellname->value
                                       descellname->value overwrite->value )"
             ?fields list( libname cellname destlibname descellname overwrite ) )
    status = hiDisplayForm( shrinkForm )

; Set defalut values for next call
    libnamedef = libname->value
    cellnamedef = cellname->value
    destlibnamedef = destlibname->value
    descellnamedef = descellname->value
    overwritedef = overwrite->value

    t
)

;;------------------------------------------------------------------------

defun( shrinkCode ( libname destlibname cellname descellname overwrite )
  prog( ( libId factor trans act_factor libTable )

        overwrite = car(overwrite)

        if( libname == destlibname && cellname == descellname then
            printf("ERROR: Can’t overwrite the original cell.  Please check your input.\n")
        else
            libId = dmOpenLib( destlibname )
            if( !libId then
                libId = dmCreateLib( destlibname "." )
                tcLoadTechFile( libId "/tools/cadence/tech/cmos14tb.tf")
                tcSaveTech( libId )
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)

            else
                if( !tcGetLayerNum( "poly" libId ) then
                    tcLoadTechFile( libId "/tools/cadence/tech/cmos14tb.tf")
                    tcSaveTech( libId )
                )
            )

            SCALE_LOG = outfile( "./SCALE_LOG.TXT" )
            PIN_ERROR = outfile( "./PIN_ERROR.TXT" )
            SCALE_ERROR = outfile( "./SCALE_ERROR.TXT" )
            libTable = makeTable("libraryTable" nil)

            ; First, set the transformation list
            factor = 0.35/0.6
            trans=list( 0:0 "R0" factor)
            ;; Active shrink factor (for resizing transistor widths)
            act_factor = (old_poly_width*factor)/poly_width

            shrinkCodeRecurs( libname destlibname cellname descellname overwrite nil nil nil 
            dmCloseLib( libId )
            close( PIN_ERROR )
            close( SCALE_LOG )
            close( SCALE_ERROR )
            printf("Program completed, please check:\n
                SCALE_ERROR.TXT for any error messages.\n
                SCALE_LOG.TXT   for output log.\n
                PIN_ERROR.TXT   for pin errors.\n" )
        )
  )
)

;;------------------------------------------------------------------------
;;
;; shrinkCode:  This is the main routine called when the menu is filled in
;;              and executed.
;;
;;------------------------------------------------------------------------

defun( shrinkCodeRecurs ( libname2 destlibname2 cellname2 descellname2
                              overwrite2  parentDb parentXY parentOrient )
    prog( ( instanceList retval origDb destDb numfound done delta
            newXY newbBox object windowID libID libName filename closeWin )

   printf("Shrinking cell from %2.2f to %2.2f\n" 0.6 0.35)
   fprintf( SCALE_LOG "Shrinking cell from %2.2f to %2.2f\n" 0.6 0.35)
   printf("Cellname:  %s Source library:  %s  To:\n" cellname2 libname2)
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e2 )
   fprintf( SCALE_LOG "Cellname:  %s Source library:  %s  To:\n" cellname2 libname2)
   printf("Cellname:  %s Destination library:  %s\n" descellname2 destlibname2 )
   fprintf( SCALE_LOG "Cellname:  %s Destination library:  %s\n" descellname2 destlibnam

        origDb = dbOpenCellView( libname2 cellname2 "layout")
        if( (!origDb) then
            printf("ERROR: Could not open cell '%s' in library '%s'!\n"
                                      cellname2 libname2 )
            fprintf( SCALE_ERROR "ERROR: Could not open cell '%s' in library '%s'!\n"
                                        cellname2 libname2 )
            fprintf( SCALE_LOG "ERROR: Could not open cell '%s' in library '%s'!\n"
                                        cellname2 libname2 )
            ;return(nil)
            )

        retval = dbCopyCellView( origDb destlibname2 descellname2 "layout" "" nil t)
        if( (!retval) then
            printf("ERROR: Could not copy cell '%s' to library '%s'!\n"
                                      cellname2 destlibname2)
            fprintf( SCALE_ERROR "ERROR: Could not open cell '%s' in library '%s'!\n"
                                        cellname2 destlibname2)
            fprintf( SCALE_LOG "ERROR: Could not open cell '%s' in library '%s'!\n"
                                        cellname2 destlibname2)
            ;return(nil)
            )

        destDb = dbOpenCellView( destlibname2 descellname2 "layout" nil "a")
        if( (!destDb) then
            printf("ERROR: Could not open cell '%s' in library '%s'!\n"
                                      descellname2 destlibname2 )
            fprintf( SCALE_ERROR "ERROR: Could not open cell '%s' in library '%s'!\n"
                                      descellname2 destlibname2 )
            fprintf( SCALE_LOG "ERROR: Could not open cell '%s' in library '%s'!\n"
                                      descellname2 destlibname2 )
            ;return(nil)
            )

        closeWin = nil
        if( !libTable[destlibname2] then
            ;; Open a window for the new layout then iconify it so it is
            ;; out of view until the shrinking is done, then close it.
            windowID = hiCreateWindow(’default "graphics" "layout")
            geOpen( ?window windowID ?lib destlibname2 ?cell descellname2
                ?view "layout" ?version "0.0" ?mode "a")
            hiIconifyWindow( windowID )
            libTable[destlibname2] = t
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)

            closeWin = t
        )

        ;; flatten all mosaics and instances
        flattenAll( destDb )

        ; Merge all similar layers into a single polygon
        mergeShapes( destDb list( metal3 metal2 metal1 poly active  nwell "pwell" pselect ) t 

        ;; convert all paths to polygons
        convertPathToPoly( destDb )

        ;; Shrink all rectangles
        shrinkShapes( destDb "rect" trans )

        ;; shrink all polygons
        shrinkShapes( destDb "polygon" trans )

        ;; shrink all pin labels
        shrinkPinNames( destDb )

        ;; shrink all labels
        numfound = shrinkLabels( destDb factor trans )
        printf("%d labels shrunk\n" numfound)
        fprintf( SCALE_LOG "%d labels shrunk\n" numfound)

        ;; find any other shapes
        findOtherShapes( destDb )

        ; Expand/Shrink all contacts and vias to correct size
        expandVia( destDb list( contact "cp" via1 via2 ) )

        ;; merge and split all Vias that are vertically too close to each other
        printf("Merging and creating properly spaced vias...\n")
        fprintf( SCALE_LOG "Merging and creating properly spaced vias...\n")
        mergeViaVert( destDb )
        splitShape( destDb "vertical" )
        ;; merge all Vias that are Horizontally too close to each other
        mergeViaHoriz( destDb )
        splitShape( destDb "horizontal" )

        ;; Shrinking select layers
        printf("Shrinking and adjusting select layers...\n")
        fprintf( SCALE_LOG "Shrinking and adjusting select layers...\n")
        shrinkSelect( destDb "nselect" "pselect" 0.1 )
        shrinkSelect( destDb "pselect" "nselect" 0.1 )
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        ;; Shrinking to minimum size
        shrinkToMin( destDb list( poly metal1 metal2 metal3 ) )

        ;; Repairing the contact/via enclosure
        repairContacts( destDb )

        ; Merge all similar layers into a single polygon
        mergeShapes( destDb list( metal3 metal2 metal1 poly active ) t )

        ;; Resizing transistor widths
        resizeXtr( destDb )

        ;; shrink area around contacts and vias
        printf("Minimizing contact/via area...\n")
        fprintf( SCALE_LOG "Minimizing contact/via area...\n")
        numfound = 0
        numfound = shrinkContactArea( destDb "cp" poly numfound )
        numfound = shrinkContactArea( destDb contact active numfound )
        numfound = shrinkContactArea( destDb contact metal1 numfound )
        numfound = shrinkContactArea( destDb "cp" metal1 numfound )
        printf("%d contact/via area minimized\n" numfound )
        fprintf( SCALE_LOG "%d contact/via area minimized\n" numfound )

        ;; Fixing min size vilations after trimming around contacts
        expandToMin( destDb list( poly metal1 metal2 metal3 ) )

        ; Merge all similar layers into a single polygon
        mergeShapes( destDb list( metal3 metal2 metal1 poly pselect ) t )

        printf("Repairing notched figures...\n")
        fprintf( SCALE_LOG "Repairing notched figures...\n")
        delta = contact_width + 2*active_overlap_contact - min_design_grid
        activeFix( destDb active delta )

        notchFix( destDb active active_space )
        notchFix( destDb poly poly_width )
        notchFix( destDb metal3 metal3_width )

        printf("Adjusting and trimming pin layers...\n")
        fprintf( SCALE_LOG "Adjusting and trimming pin layers...\n")
        adjustPin( destDb metal1 metal1_width/2 old_metal1_width )
        adjustPin( destDb metal2 metal2_width/2 old_metal2_width )
        adjustPin( destDb metal3 metal3_width/2 old_metal3_width )
        adjustPin( destDb poly poly_width/2 old_poly_width )
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        adjustPolyEdge( destDb )

        removeSelectOverlaps( destDb )

        ;; Get a list of all the instances in this level
        instanceList = dbProduceOverlapInst(destDb destDb->bBox)
        foreach( obj instanceList
           ;; move each instance to new location
           newXY = car(obj->xy)*factor:cadr(obj->xy)*factor
           obj->xy = alignToGrid( newXY )
           ;; resize instance’s bBox
           newbBox = list( caar(obj->bBox)*factor:cadar(obj->bBox)*factor
                                caadr(obj->bBox)*factor:cadadr(obj->bBox)*factor )
           obj->bBox = alignToGridBBox( newbBox )
           ;; shrink each instance recursively
           ;; Each cell is shrunk into "libname_SGS2"
           libName = strcat( obj->libName "_SGS2" )
           libId = dmOpenLib( libName )
           if( !libId then
                ;; If the library does not exist, then create it and load the
                ;; technology file
                libId = dmCreateLib( libName "." )
                tcLoadTechFile( libId "/tools/cadence/tech/cmos14tb.tf")
                tcSaveTech( libId )
           else
                ;; If the library exist, check that the technology file was
                ;; already loaded.  If not, load it.
                if( !tcGetLayerNum( "poly" libId ) then
                    tcLoadTechFile( libId "/tools/cadence/tech/cmos14tb.tf")
                    tcSaveTech( libId )
                )
           )
           if( !dmFindCellView( dmFindLib( libName ) obj->cellName "layout" ) ||
                                                                overwrite2 then
               printf("\nDescending into %s\n" obj->cellName)
               fprintf( SCALE_LOG "\nDescending into %s\n" obj->cellName)
               temp = shrinkCodeRecurs( obj->libName libName obj->cellName obj->cellName
                                                overwrite destDb obj->xy obj->orient)
               printf("\nReturned from  %s\n" obj->cellName )
               fprintf( SCALE_LOG "\nReturned from  %s\n" obj->cellName )
           else
               printf("Using %s from %s library.\n" obj->cellName libName )
               fprintf( SCALE_LOG "Using %s from %s library.\n" obj->cellName libName )
               temp = dbOpenCellView( dmFindLib( libName ) obj->cellName "layout" )
               copyFigToParent( temp destDb obj->xy obj->orient pselect "y0" )
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               copyFigToParent( temp destDb obj->xy obj->orient metal1 "y1" )
               copyFigToParent( temp destDb obj->xy obj->orient metal2 "y2" )
               copyFigToParent( temp destDb obj->xy obj->orient metal3 "y3" )
               copyFigToParent( temp destDb obj->xy obj->orient poly "y4" )
               copyFigToParent( temp destDb obj->xy obj->orient active "y5" )
           )
           ;; make instance point to new master
           obj->master = temp
           dbClose( temp )
           dmCloseLib( libId )
        ); foreach

        adjustLayer( destDb pselect select_space/2 "y0" )
        adjustLayer( destDb metal1 metal1_width/2 "y1" )
        adjustLayer( destDb metal2 metal2_width/2 "y2" )
        adjustLayer( destDb metal3 metal3_width/2 "y3" )
        adjustLayer( destDb poly poly_width/2 "y4" )
        adjustLayer( destDb active active_space/2 "y5" )

        copyFigToParent( destDb parentDb parentXY parentOrient pselect "y0" )
        copyFigToParent( destDb parentDb parentXY parentOrient metal1 "y1" )
        copyFigToParent( destDb parentDb parentXY parentOrient metal2 "y2" )
        copyFigToParent( destDb parentDb parentXY parentOrient metal3 "y3" )
        copyFigToParent( destDb parentDb parentXY parentOrient poly "y4" )
        copyFigToParent( destDb parentDb parentXY parentOrient active "y5" )

        ;; Save pin information to a text file in the current directory.
        filename = strcat("./" destlibname2 "_" descellname2 ".txt")
        printOutPins( destDb filename )
        deleteAllPins( destDb )
        ;; save and close
        dbSave(destDb)
        dbClose(destDb)
        if( closeWin then hiCloseWindow( windowID ) )
        return( destDb )
        )
)

A.3  Function Description

Name: Shrink
Description: This is the top most function. It displays a menu for the user to enter the requ

information and then passes those to the main program.
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Name: shrinkCode
Description: This function receives the source and destination cell and library names. It 

gets the ‘overwrite’ request from the user. It initializes some log files and the
scaling factor, opens the top most cell then calls the rest of the program whic
executed recursively.

Name: shrinkCodeRecurs
Description: This is the actual main routine that is responsible for the shrinking of each c

This function calls all the other functions that perform the scaling / expandin
and other operations on all the different layers.

Name: flattenAll
Description: Flattens all mosaics.   (commented out within this function is a section that 

flatten the entire design. If the comments are removed the resulting scaled 
layout will no longer be hierarchical)

Name: mergeShapes
Description: Merges all shapes of the same layer into one polygon.

Name: convertPathToPoly
Description: Converts all figures of type path to polygon for all layers.

Name: shrinkShapes
Description: Shrinks shapes of type rectangle and polygons by the scaling factor.

Name: shrinkPinNames
Description: Shrinks all pin names by the scaling factor.

Name: shrinkLabels
Description: Shrinks all labels by the scaling factor.

Name: findOtherShapes
Description: Reports if any other shapes of type line, ellipse, arc, donut, or dot exist in the

out.

Name: expandVia
Description: Expands all vias (via1 and via2) as well as contacts to their correct dimensi

Name: mergeViaVert
Description: Merges all via arrays that are lined up in a vertical line into one long rectang

Name: splitShape
Description: Splits the long via rectangle into individual, properly sized and spaced, vias

Name: mergeViaHoriz
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Description: Similar to mergeViaVert. It merges all the horizontal vias in a via array.

Name: shrinkSelect
Description: Shifts the select layer closer to the active to allow for enough spacing betwe

the select layers.

Name: shrinkToMin
Description: Shrinks all poly and metal lines to their respective minimum widths. Only th

traces that were minimum sized in the original design are transformed.

Name: repairContacts
Description: Repairs the overlap area around contacts and vias by adding the necessary l

For active contacts a rectangle of active and metal1 is added. For poly cont
metal1 and poly rectangles are added and so on.

Name: resizeXtr
Description: Resizes the transistors to their correct W/L ratio by chopping off a section of

active under the gate.

Name: shrinkContactArea
Description: Removes the excess overlap from around contacts and vias.

Name: expandToMin
Description: Expands those traces that were made smaller than minimum size due to som

the previous operations such as the shrinkContactArea function.

Name: activeFix
Description: Removes all notches from the active layer that are the result of the transisto

resizing.

Name: notchFix
Description: Fixes all notches on the given layers.

Name: adjustPin
Description: Trims the pin layers so a drawing layer always exists under it.

Name: adjustPolyEdge
Description: Adjusts the poly endcaps and makes them shorter to avoid spacing violatio

with an adjacent active layer.

Name: removeSelectOverlaps
Description: Removes any overlaps created around donuts or when one of two abutting s

layers is minimum size and therefore gets expanded resulting in an area of
lap.

Name: copyFigToParent
56



s
the

s

Description: Copies all shapes of a given layer to the parent cell. The reason for this wa
described earlier and is to resolve spacing and notches that are caused by 
hierarchical nature of the design.

Name: adjustLayer
Description: Creates the necessary “pockets” to remove any spacing and sizing violation

over two levels of the hierarchy.

Name: printOutPins
Description: Prints out the pin information for each cell to a text file.
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   B
DRC Results

The following table gives a comprehensive listing of all the violations and the

required number of fixes in the DRC process.
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a8AbortPipe a8AbortPipe 7 4 2

a8AoutMux a8AoutMux 1 1 1

la8aoutmux_con 7 4 2 1 1

la8aoutmux_dp 128 10

a8ByteRot a8ByteRot 9 1 1

la8byterot_con 0 0

la8byterot_dp 0 0

a8ConsGen a8ConsGen 31 0

la8consgen_con 9 2

la8consgen_dp 3 2 3

a8DataPipe a8DataPipe 1 1 1

la8datapipe_con 7 3 1

la8datapipe_dp 0 0

a8DinMux a8DinMux 0 0

la8dinmux_con 5 2

la8dinmux_dp 0 0

a8ExGen a8ExGen 0 0
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a8Fwd a8Fwd 4 3 2

a8IMux a8IMux 6 1

la8imux_dp 0 0

a8MAS a8MAS 0 0

a8MAadder a8MAadder 17 0

la8maadder_con 2 2 2

la8maadder_dp 4 1

a8MainDec 8MainDec 8* 2 1 3

a8Mem a8Mem 3 2 1

a8Mul a8Mul 0 0

a8MulCtrl 6 5 2 4

a8Muldata 56 14 4 3

a8MulIER 0 0

a8MulRow 1 1 1

a8MulRow4 0 0

a8mAccSel 2 1 1 1

a8mBoothSel 0 0
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a8Mul
(contd.)

a8mBottomDecoder 3 3 3

a8mBottomLatch 0 0

a8mEarlyTerm 6 6

a8mTopMux 0 0

a8mWriteResult 260 9 2

a8mulAccHighInit 0 0

a8mulAccLowInit 0 0

a8NextInst a8NextInst 3 3 1 2

a8PCin a8PCin 72 29 58

la8pcin_con 0 0

la8pcin_dp 0 0

a8PSR a8PSR 5 4 1 4

a8PuAdd a8PuAdd 23 23 23

la8puadd_30 47 30 15 32

a8PuBus a8PuBus 2 2 2

a8PuCC a8PuCC 2 1

a8PuIin a8PuIin 25 6 2

la8puiin_con 0 0
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a8PuIin la8puiin_dp 3 2

a8PuPSM a8PuPSM 4 3 2

a8PuPcInc a8PuPcInc 18 2 2 1

la8pupcinc_con 4 4 2 2

la8pupcinc_dp 0 0

a8PuRAM a8PuRAM 2 2 1

la8puram_con 3 3

la8puram_dp 1047 3 31 8

a8PuRAMctl a8PuRAMctl 19 6 3 9 1

a8ReadReg a8ReadReg 84 8 1 1 3 1

a8RegBank a8RegBank 0 0

la8regbank_con 2 2 1

la8regbank_dp 215 10 32

a8SALU a8SALU 42 1 1

la8salu_con 4 4 2 1 1

la8salu_dp 73 4 72 1

a8Write 8Write 2 2 2
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