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Abstract 
In this paper we propose a novel VLSI artwork modification tech- 
nique based on the concept of a minimum layoutperturbation. Lay- 
outs are designed so that minimum design rules must be satisfied. 
Often layout processes such as custom layout methodologies and 
design rule migration activities introduce design rule violations in 
layouts. A minimum layout perturbation defines a minimum cost 
change to a layout, such that the resulting layout satisfies all design 
rules. We formulate the minimum perturbation cost with the objec- 
tive of preserving as much as possible the geometric and topologi- 
cal features of the original layout. The proposed minimum 
perturbation problem formulation is transformed into a linear pro- 
gramming problem with special structure. We exploit the structure 
of the problem to propose efficient algorithms that solve the prob- 
lem. We also propose and implement a practical graph-based sim- 
plex algorithm, which we compare to a commercially available 
linear programming package, resulting in more than 40X perfor- 
mance improvements in some cases. Finally, the proposed methods 
have been implemented and used in real life problems, for example 
in the technology migration of data path macros and a 30O-cell gate 
array library. 

1. Introduction 

The generation of ground-rule correct VLSI layouts, also known as 
artwork, has been subject to a large body of research. Automatic 
techniques exist for automatic generation of layouts, such as place- 
ment, routing, and compaction. However many layouts, so-called 
custom layouts, such as memory cores and microprocessor data 
path macros are still designed manually. For these layouts very few 
effective automation techniques exist, thus making their creation a 
manual, error-prone process. In addition, layout methodologies 
such as design rule migration techniques routinely introduce 
ground-rule violations as part of a design shrink step. The problem 
that arises from these layouts is to remove these design ruIe viola- 
tions with minimal changes to the layouts. 

In this paper we investigate the problem of minimally m@iW a 
starting layout with design rule violations, SO that the resulting 1~ 
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out is ground-mle correct. As far as we know, the problem of cor- 
recting design rule violations with minimal perturbntion of n layout 

has not been posed or formalized. Previous work on these types of 
problems has focused on layout compaction techniques, For n sur- 
vey on these techniques see [I]. Unfortunately lnyout compnctors 
consider trade-offs between only a few design objectives: mainly 
area, wire length and yield. Real layouts, however, must often den1 
simultaneously with complicated objectives like performnncc, 
power, reliability, yield, porosity and constraints imposed by dc- 
sign style. In compaction these other objectives must be captured in 
the form of layout constraints, which is a non-trivinl, timc-consum- 
ing and often frustrating task. Another problem facing the tradition- 
al compactor is when the input set of constraints cannot be satisfied 
simultaneously. The situation can be detected by finding a cycle of 
positive length in the input constraints set. In the presence of a pos- 
itive cycle, there is no solution to the longest path problem (no fcn- 
sible solution) and thus no obvious partial solution is provided. 
There are methods to provide partial solution in the presence of pos- 
itive cycles for compaction in the traditional sense [4], WC give a 
practical partial solution in the context ofcorrecting rule violntions. 

The outline ofthis paper is as follows. In Section 2 we motivntc the 
work through a real life example. In Section 3 we propose n grnph- 
based formulntion ofthe problem with a convex objective function. 
In Section 4 we propose a transformation of the objective function 
that yields a linear objective, and then propose several algorithms 
that solve the linearized objective. In Section 5 we show some com- 
parisons between the different proposed solutions, nnd in Section 6 
we present some conclusions. 

2. Motivation 

In an aggressive microprocessor design, ns more ndvnnced technol- 
ogy become available, existing physical layout is mnppcd to the 
new technology in order to boost performance. In most cases, some 
adjustments in the existing layout are needed in order to maintnin 
design rule correctness of the layout in the new technology, The nd- 
justments are either done by hiring an army of layout technicians to 
push polygons or by hiring programmers to write special purpose 
shape processing code to map the design. The first solution is very 
time and resource consuming. The second solution hns its limitation 
as we will illustrate in the following example. A more gcnernl-pur- 
pose layout modification technique, that will minhnallyperturb tho 
layout while correcting the design rule errors due to technology 
changes, is needed. 

In an actual microprocessor design project, the spacing distance 
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Figure I , Contrast of minimum perturbation solution with traditional compaction. 

from the diffision layer, DIFF to the contact layer, CA is changed 
from s to 1.125s in order to accomplish a linear shrink of the design 
to a more advanced technology. This single design rule change re- 
sulted in millions of DIFF to CA spacing violations. Figure I shows 
a snapshot of a piece of a custom design that illustrate the nature of 
the problem. 

The problem is to change DIFF-to-CA spacing fioms units apart to 
1,125s units, A manual solution would be to examine if there is 
room for CA below the violation, and move the CA if possible. 
When there is no room, tight neighbors of CA must move as well. 
In some cases this may imply that some device width must be sac- 
rificed, i,e. the DIFF edge moves by 0.12% units. Special-purpose 
shape-processing software can be implemented to perform the steps 
mentioned in the above manual solution. The difficulty lies in cap- 
turing the transitive neighboring relationship of tight neighbors and 
in choosing the changes which least impact the layout 
The constraint graph used by traditional constraint-based compac- 
tors [4] can be used to model the layout and capture all the transitive 
neighboring relationships. However we require a new objective 
function to produce the desired effect: move the CA shape and its 
tight neighbors to achieve the new 1.125s spacing between CA and 
DIFF, do not move DIFF unless it is necessary and do not move 
anything that is not affected by the violation. In general, when there 
are conflicting violations competing for slacks area in the layout, 
the desired effect is difficult to describe without a formal cost ob- 
jective. 

We define the perturbation of a layout object (edges of a shape, 
wire segments, instances of vias, etc) to be the movement of the ob- 
ject from its existing position. We can describe the above problem 
informally as: fix all the design rule violations with minimum total 
perturbation of the layout. In practice, we used weighted perturba- 
tion to assign penalty to objects whose movement is less desirable. 
In the above example, the diffision edge will have a larger weight 
than the contact, This helps avoid sacrificing the device width un- 
less it is necessary. Figure la shows the DIFF to CA spacing viola- 
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c) Layout obtained bzompaction using 
minimum area and wire length objective: 

tion due to technology changes. Figure lb shows the solution using 
the minimum perturbation criteria, Figure Ic shows the solution ob- 
tained by traditional compaction using the minimum area and wire 
length objective. Notice the disruptive change of the layout in Fig- 
ure Ic, resulting from the traditional compaction approach. The dis- 
ruption is very undesirable since the original layout is a working 
design (in the previous technology). 

In the following sections we will describe the minimum perturba- 
tion problem and its solution formally. 

3. Formulation 

In this section we will detail tbe formulation of the minimum Iayout 
perturbation problem. For the purposes of this paper, a layout con- 
sists of a set of polygons with an assigned layer. We assume that the 
layout is a Manhattan layout, so each polygon, in turn, consists of 
an ordered list of horizontal edges 

2edgesE,=‘{(X 
= 1 UP&%)~ 

&EpjfkE’i=l,...,IEd). 
IEd} and verti- 

A horizontal edge cai ed $i n?oving % Y location, and 
stretched by moving the vertical edges on its ends. Similarly, a ver- 
tical edge can be modified by moving its X location, and stretched 
by moving the horizontal edges on its ends. Ideally, a minimum per- 
turbation should be defined as a 2-dimensional modification of the 
layout wherein the X and Y coordinates of the edges are modified 
simultaneously. However it is well known that many Zdimensional 
optimization problems of this kind, such as compaction, are NP- 
hard[lO]. We therefore simplify the minimum layout perturbation 
problem by considering only the one-dimensional minimum layout 
perturbation problem, wherein only one direction of optimization 
is considered at a time. An approximate solution to the 2D problem 
is obtained through successive applications ofthe 1 D problem, as is 
also done in constraint-based compaction. 

We next turn to the characterization of the layout constraints. The 
relative locations of edges are constrained in several ways: 
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l ground-rules impose minimum separation con- 
straints between edges. 

l Connectivity constraints also impose separation 
constraints. 

l Users may require separations on edges, this impos- 
ing upper and lower bounds on edge separations. 

l To make the problem tractable, we assume that poly- 
gon topologies should be invariant. Topological 
invariance also imposes bounds on the edges. 

Note that all of these are two-variable constraints. This observation, 
coupled with the one-dimensional simplification of the problem 
leads to a convenient formulation. We will next outline the transfor- 
mation of the edge location constraints into a constraint graph, and 
we will consider only the vertical edges. Treatment of the horizon- 
tal edges is similar. Let each edge E, of a layout have a variable Xi. 
Then a constraint between two edges Xi and Xj is of the form: 
X,-X, k- Lu. Let G(V,A) denote a constraint graph of vertices V 
and arcs A. Let each edge Ei in the layout have a vertex Vi in the 
graph, and IetX, represent a variable associated with each vertex. 
Then for each constraint between two edges E, and E, , add an arc 
A,, between vertices V, and 5 in the graph. Hence the graph 
completely represents the set of inequalities that arise from the edge 
spacing constraints. The construction of a constraint graph is a well 
studied problem in compaction; for references see [4]. 

We next turn to the objective of the minimum layout perturbation 
problem. The minimum layout perturbation problem seeks to min- 
imize changes to a layout, subject to the layout constraints. Hence 
fo$,j given layout, each vertex X, has an associated constant, 
4 that represents the current location of that vertex. We mea- 
sure ;he perturbation on layout as a distance function from a given 
layout to the old (initial) layout: 

The set of vertex locations X, which represents a given layout, is 
said to be feasible if it satisfies all ofthe constraints in the constraint 
graph G( V,A) . We can now formalize minimum layout perturba- 
tion as a constrained optimization problem. 

ID minimum Iayoutperturbutionproblem (MP): Given a layout in 
the form of a constraint graph G( V,A) , where the vertices V have 
desired locations/Pld, the problem is to find a set of feasible vertex 
locations Xthat minimizes the layout perturbation function: 

minimize: Ilx-x”“ll 

subject to: Xj-Xi2 L, VA, B A 

To complete the formulation, we discuss the choice of perturbation 
function. Note that if the perturbation timction is convex, and since 
the constraint equations are linear, then the problem is solvable ex- 
actly by a variety of methods. There are various possible choices of 
distance metrics that are suitable for this problem, we have consid- 
ered the two following metrics: 

l Ll-metric: weighted absolute value function 

tbnction 

118 

Ll metric 
Minimum 
Pertur&atlon 

Figure 2. Minimum layout perturbation using LI and L2 
metrics. Minimum spacing groundrule is 2s, and original 
layout uses a spacing of s. Note that L2 metric is evenly dis- 
tributed around the initial layout solution. 
An example ofa minimum perturbation solution using both metrics 
is shown in Figure 2. The qualitative difference between these met- 
rics is that the L2 metric tends to distribute the perturbation more 
evenly than the Ll metric. The practical benetits and disadvantages 
of each metric are unclear and case dependent. When the Ll metric 
is used, the problem can be transformed into a linear programming 
problem that can be solved very efficiently. When the L2 metric is 
used, the problem can also be transformed similarly but more in- 
volved See Section 4. We use the LI metric in our implementntion 
and have obtained excellent results. Further investigation is re- 
quired to determine the benefit of the L2 metric. 

4. Algorithms 

To characterize the 1D minimum layout perturbation problem, note 
that the Ll and L2 metrics are convex functions, thus the above ob- 
jective is convex and must have a global minimum, if feasible. Be- 
cause of its special structure, the problem can also be solved with 
the algorithms proposed in [6][7]. In this section, we will focus on 
the Ll metric problem, and we will show that it cnn be converted 
and solved exactly by a transformation to a lincar programming 
problem. Furthermore, we will extend the problem to handle the 
case where no feasible solution to the original problem exists, 

The minimum perturbation objective function can be linearized OS 
follows. Define two variaJJes for each edge E, , O~~mely L,, R,, 
such that L,f;X,, L,SX, , R,ZX, and R,TX, . Let VL de- 
notes the set of new variables L,‘s and R,‘s. Let AL denotes the set 
of arcs representing the new constraints. The resulting linearized 
constraint graph, denoted G, ( VU V,, A v AL) , consists of 3 0 1 Vl 
vertices and 4. lfl+ IA] arcs. Then the following linear progmm- 
ming problem is equivalent to the convex 1 D minimum layout per- 
turbation problem: 

Linear ID minimum layout perturbation problem (LMP): Given 
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n lnyout in the form of set of edges E with locations X?Id, a con- 
straint graph G( V,A) , the problem is to find a set of feasible edge 
locations X that minimizes the weighted sum: 

minimize: C W,- (4-U v,c v 

subject to: X,-X,2 L,, ‘+Ag E A 

L&X,, L,sxp” vv, E v 

Figure 3 , Graph repmentation of a linearized variable Xl . 
The equivalence between these two problems can be shown as fol- 
lows: consider an optimum solution {X L, R} for LMP, where X, L, 

Furthermore, for each optimal solution {X) of MP, we can con- 
struct an equal cost solution for LMP with appropriate L and R as 
above, The linearized graph for a single variable is shown in Figure 
3. 

The linenr ID minimum layout perturbation problem in practice 
must be solved while satisfying additional requirements: 

1. The layout coordinates X, must be integers. This is a 
practical constraint imposed by the structure of indus- 
trinl layout dotabases and manufacturing considerations. 

II.. Special consideration must be given to layouts where 
no feasible solution exists to the constraint graph. Pro- 
ducing an infeasible but improved solution is preferable. 

Requirement 1 is handled naturally by the structure of the probleg 
in the case of the Ll metric. It can be shown that if all L and g 
are integers, then the solution of the linear ID minimum Y ayout per- 
turbntion with graph based constraints also consists of integers (lo- 
fal unimodularity properfy)[ 111. In the case of the L2 metric, the 
problem can be made unimodular by converting the quadratic ob- 
jective function into n piece-wise linear objective, such that the 
breaks in the objective are all at integer values. 
Requirement II implies modifications to the proposed formulation. 
The problem of hnndling infeasible problems has been considered 
previously, In [8] it was shown that the problem of minimizing the 
number of infeasible constraints is NP-complete. In [8] the problem 
is npproached by constraint relaxation and minimization of a re- 

laxed objective. We take a similar approach. We relax the arc con- 
straints that are not satisfied initially, such that: 

All constraints are feasible. 

A penalty is added to the cost function for the region 
where the original constraints are not satisfied. 

The current solution, X = x”” is made feasible, 
but not optimal. 

We accomplish this by a further transformation of the problem. Let 
A, be the set ofarcs in,# assqciated with constraints that are not sat- 
isfied initially, i.e. .$ -x c Lg. Define a new variable (graph 
node) Mr for each arc Au in A, Let V, denotes the set of new vari- 
ables Mi’S. Let AR denotes the set of new arcs to be added. We con- 
struct relaxed graph 
G,&vV,uav,A-A,vA,uAJ ,asfollows, 

denoted 

for each arc A,/ E A, 

Define Di/ = $Id-$ld 

Let M(i) denotes the index OfMi in the vertex set of 
GR 

Add constraints: XI-M,2 DI/, M,-X,10, and 
M,-XJ l-L,, . The constraints are represented by 
arcs A,o,,A,~o,Al~o E A, in the relaxed 
graph. 
Let A, denotes the set of arcs AMfi - i.e. arcs corre- 
sponding to constraints XI- MI 2 k ,, 

Relaxation d 
Constraint 

Figure 4. Relmation of a graph edge yielding an initial fea- 
sible solution 
We also set the initial location of the relaxed vertices @” = #“. 
The minimum layout perturbation with relaxed constraints problem 
can now be formaliid as follows: 

Relaxed Linear ID minimum layout perturbation problem (R- 
LMP): Given a layout in the form of a set of edges E with locations 
A”ld, with a set of layout constraints represented by a constraint 
graph G(V,A), and its corresponding relaxed constraint graph 
CR (V, u V, u V, A -A, v A, v AJ , find a set of feasible edg 
locations Xwith the objective: 
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i 

min: vlyf* W-L,) +k2ZeA (4-x/+Llj) 
I I 

To see that R-LMP is equivalent to a feasible LMP problem, first 
note that X,-M, 5 L,, , and by setting h. > 0, 
minimum at X-MI 

(MI-X, + L,,) . h is 

i 
= Lv , making the contribution of the penalty 

objective equa to 0. If the value h is too small, an infeasible solu- 
tion could have less cost than a feasible solution, We avoid this 
problem by choosing x to be greater than C Wi. This way, for 
each unit of violation reduction, c W,. (R,-L,) < X, therefore 
the contribution from (M,-X, + L,J . h to the cost function will 
supersede the penalty contributed by movements of object from its 
existing position. When the contribution from (Ml-X + Lii> -3L 
is minimized to zero, unsatisfied constraints in the initia I layout are 
satisfied. Now consider the case when we have an infeasible LMP 
problem. The algorithm that solves the R-LMP problem will return 
a solution which is not feasible in the original problem. However, 
since this solution is often an improvement over the original layout, 
it can be further used to make manual layout changes. Figure 4 il- 
lustrates the transformations for a constraint that is not satisfied ini- 
tially. 

The R-LMP problem can be solved by various algorithms. Fast 
heuristic algorithms proposed in [7’j can be used to solve this prob- 
lem; unfortunately, the quality of the solution obtained from these 
heuristics is unpredictable. A general-purpose linear programming 

solver such as OSL[5], can also be used to solve the problem exnct- 
ly. However, in this case, the constraint structure of the problem can 
be exploited to obtain more efficient algorithms. It can be shown 
that the linear programming dual of this problem is a min-cost net- 
work flows problem [9], thus an exact polynomial time solution ex- 
ists. In practice the best solutions of this problem nre obtained by 
exploiting the graph representation of the problem and applying the 
Simplex algorithm. The resulting algorithm is cnllcd the Graph- 
Based Simplex algorithm [3] (GBS) or Dual Network Simplex 
method [9]. For the results presented in this paper we use the imple- 
mentation of the GBS algorithm detailed in [6]. 

5. Experimental Results. 

We have implemented the Graph-Based Simplex solution in Ct-t; 
We have tested our implementation on various industrinl problems, 
The examples are all real data from the migration projects that use 
the minimum perturbation violations removal technique that we im- 
plemented. We have used it to accomplish migration from 1.8~ 
metal pitch technology to 1.Q technology for the gate-array cells. 
We have also used it to accomplish a SO% shrink migration for dntn 
path macros of a microprocessor. Layout with less than 100 trnnsis- 
tars (gate-array book and bit cell of a data path macro) typically 
takes less than a few seconds to migrate on a PowerPC 604 mn- 
chine. For a macro with around 5000 transistors, the runtime ranges 
from 1 to 2 hours. 

We also implemented a solution using the OSL linear programming 

‘ii-piii 
Layouts with substantial slack and the perturbations are relative& local 

Table 1: Empirical results of the minimum perturbation algorithm using theL1 metric 
objective. The results are compared with the OSL implementation. In these examples 
the resulting layouts had no violations. 



solver. Table 1 shows the runtime comparison between the two im- 
plementations running on a PowerPC 604 machine. Table 1 shows 
that the GBS solution is 4X to 47X more efficient than the OSL so- 
lution. The run-time depends very much on the nature of the data 
The GBS implementation tends to be very efficient for layouts that 
have a lot of slack, where the perturbations are very local. This is 
because in the Graph-Based Simplex algorithm, the pivoting cost 
for a local change is very low, while the pivoting cost of a generic 
linear programing is linear in the number of non-zero elements in 
the constraint matrix. The first set of examples (ERROR1 to OCD) 
are layouts with high slacks and low perturbation and the GBS 
speed up is quite dramatic. For layouts that are generally tight, the 
efficiency as compared to OSL is less dramatic but still substantial. 

For a layout that does not have a feasible solution, our relaxed for- 
mulation produces a layout that is as legal aa possible. The almost 
legal layout provides a good starting point so that beneficial local 
modifications of the layout can be discovered quickly. This is in 
contrast with techniques that remove unsatisfied constraints from 
the constraint graph resulting in bad layout topology. 

6. Conclusions 

We hnve introduced a novel criterion to legalize a layout with 
ground rule violations: the minimum layout perturbation criterion. 
The concept of minimum layout perturbation captures the essence 
of the ground rule violations removal problem. We have proposed 
a general formulation for the minimum layout perturbation criteri- 
on, which we show can be simplified into a linear programing prob 
lem. We then extended the linear programing formulation to handle 
the case when the layout cannot be legalized, by proposing a con- 
straint relaxation methodology. 

We also proposed algorithms that solve the minimum perturbation 
problem. We noted the special structure of the problem, which we 
exploited in the implementation of a Graph-Based Simplex algo- 
rithm which solves the problem efficiently, as much as 40X taster 
than an industrial linear program solver. 

The algorithms we implemented were used successfully in the mi- 
gration of data path macros and gate-atray library cells. Further- 
more these algorithms also been used by custom layout designers to 
remove violations during the layout process. Other applications of 
the minimum perturbation technique include incremental device re- 
sizing, and wire spacing for noise reduction. 
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