
Automatic Porting of Binary File Descriptor Library

Maghsoud Abbaspour+, Jianwen Zhu++

Technical Report TR-09-01
September 2001

+ Electrical and Computer Engineering
University of Tehran, Iran
++ 10 King’s College Road

Edward S. Rogers Sr.
Electrical and Computer Engineering

University of Toronto, Ontario M5S 3G4, Canada

jzhu@eecg.toronto.edu
maghsoud@eecg.toronto.edu

Abstract

Since software is playing an increasingly important role in system-on-chip, retargetable compi-
lation has been an active research area in the last few years. However, the retargetting of equally
important downstream system tools, such as assemblers, linkers and debuggers, has either been
ignored, or falls short of production quality due to the complexity involved in these tools. In this
paper, we present a technique that can automatically retarget the GNU BFD library, the foundation
library for a suite of binary tools. Other than having all the advantages enjoyed by open-source
software by aligning to a de facto standard, our technique is systematic, as a result of using a
formal model of abstract binary interface (ABI) as a new element of architectural model; and
simple, as a result of leveraging free software to the largest extent.

Contents

1 Introduction 1

2 Related Work 2

3 Binary File Descriptor Library (BFD) 3

4 ABI Modeling 5

5 Retargetting BFD 9

6 Implementation and Experiments 10

7 Conclusion 12

8 References 12

i

1 Introduction

New products in consumer electronics and telecommunications are characterized by increasing
functional complexity and shorter design cycle. It is generally conceived that the complexity
problem can be best solved by the use of system-on-chip (SOC) technology. And the design cycle
problem can be best solved by pushing functionality as much as possible to software. However,
the conventional wisdom here that “software is cheaper than hardware”, is not necessarily true
unless the software development platform, typically includes operating system, compiler, assem-
bler, linker, and debugger are readily available. Unfortunately, all these tools depend intrinsically
on the processor architecture, which in an SOC context is usually designed to adapt to the ap-
plication. The development platform has to be retargeted to the new processor architecture and
this task is by no means trivial.

The field of retargetable compilation has evolved to the point where an architecture descrip-
tion language (ADL) can be used to model a processor micro-architecture, and a compiler can
be generated automatically from such a architecture specification. While research in compiler
generation is becoming mature, few efforts address the automatic generation of other tools. To
the best of our knowledge, only the automatic generation of assembler and simulator has been
published. This is partly due to the fact that these “downstream” tasks are perceived to be trivial
compared to optimizing compiler. While this perception has been persistent enough to be reflected
in all computer science curriculum, it is no longer valid. Take the linker as an example, while
the traditional linker does nothing but threading the object file together, the modern linker has
to handle features such as shared libraries and dynamic linking as a result of modern operating
system, static constructors and templates as a result of modern programming languages such as
C++ and Java, and even inter-procedural optimization as a result of modern compiler theory.
The most recent verion of Free Software Foundation’s binutils package, which delivers exactly
the downstream development tool suite, has a daunting size of 250k lines of C code.

Neither the manual development nor the automatic generation of software with such complexity
is reasonable to fit into an SOC development cycle. Most companies chose to port, or reuse the
majority of an existing package, while manually rewriting the architecture dependent part of it.
The de facto standard of such a package is the GNU binutils package, partly due to the fact
that it is designed to be “portable”, partly due to the fact that it is free software and accessible to
everyone in the world. While this package has been ported to virtually every known processor in
the world, it still has to be manually ported to every new processor ever created. Unfortunately,
the skill required to port this package is arguably limited only to the group of people worldwide
which can probably fit into one room.

A tool that can automatically port this mature, robust and standard package then seems both
ideal and feasible: the architecture-dependent part of the package is relatively small after all. It is
not trivial however, since the interface between the architecture dependent and independent part
is neither cleanly defined nor well documented.

In this paper, we focus on the automatic porting of the GNU Binary File Descriptor (BFD)
library, which implements an API that manipulates object files and forms the foundation of all
GNU’s downstream development tools. The contribution of this work is two fold: First, we present
a model of abstract binary interface (ABI) as a new element of architecture model. While ABI is
one of the essential information for retargetting, it hasn’t be a subject of architecture specification

1

in previous work. Second, to strike a balance between elegance and standard compatibility, we
have developed an automatic technique that can generate an implementation of obscure, poorly
documented interface from a cleanly defined ABI model.

In the sequel, we will first review the related work in Section 2 and give a brief tutorial of the
BFD library in Section 3 from the perspective of BFD user. We will then present the relevant
ABI model in Section 4. In Section 5, we describe BFD’s architecture-dependent interface in
detail and illustrate how C code can be automatically generated from the ABI specification to
implement this interface. Finally, we describe our tool implementation and show experimental
result in Section 6.

2 Related Work

The first step towards retargetable compilation is the establishment of architectural model
and the definition of corresponding architectural description languages (ADLs). The earliest
forms of ADLs are various code generator generators (CGGs) [5] [3] [8]. The CGGs typically
use tree pattern specifications to drive the generation of the instruction selector. However, such
specification is often tied to a particular compiler implementation, for example, a particular
intermediate representation.

A more recent effort is the the set of computer system description languages in the Zephyr
project, where [16] is devoted to the description of binary encoding of instruction set, [15] focuses
on the semantics of instruction sets, and [4], [6] describes the calling conventions. However, the
models are not integrated and different aspects of the same architecture are scattered in different
specifications in different languages. In addition, there is no explicit support of instruction level
parallelism (ILP). The machine description language MDES [9] of the impact compiler, seems to
be the most sophisticated in describing ILP. In MDES, the architecture model is accurate enough
to describe the superscalar, VLIW, as well as new architecture features such as predicated and
speculative execution.

Architecture descriptions for embedded processors, for example, the DSP processors and
application-specific instruction set processors (ASIPs), have also received intense interest in the
recent years. MIMOLA [13] used a hardware description language to describe the structural model
of the processor, code selection and register allocation is then performed by pattern matching [12].
Since ILP can be concisely represented using a structural model, some recent work adopted a sim-
ilar approach. For example, CHESS [14] uses a graph-based model, while EXPRESSION [11] uses
a network of abstract components including those that capture memory hierarchy. Other effort,
including nML [7], ISDL [10] and LISA [2] takes a more traditional approach.

Among all above-mentioned work, few addressed the issue of retargetting downstream tools.
The most sophisticated seems to be the New Jersey Machine-Code Toolkit [16], which can, for
example, automatically generate instruction encoding and decoding routines from an abstract
ADL specification. However, its ADL does not allow a complete specification of ABI, and leave
important issues such as the organization of relocation closure to the application. Furthermore,
the tools generated have by far less capability than standard tools such as GNU binutils, and
therefore is not yet practical for use in a production environment.

2

3 Binary File Descriptor Library (BFD)

GNU’s BFD library is a package which contains a set of common routines to manipulate object
files [17]. There are three types of object files:

• relocatable object files, which hold code and data suitable to be linked with other object
files to create an executable or shared object file, or another relocatable object;

• executable files, which hold a program ready to execute;

• shared object files, which hold code and data suitable to be linked in two contexts: first, the
link-editor can process them with other relocatable and shared object files to create other
object files; second, the runtime linker can combine them with a dynamic executable file
and other shared objects to create a process image [1].

Due to historical reasons, object files present with different formats, called the binary file
format (BFF). The most commonly used BFFs are a.out, COFF and ELF. As shown in Figure 1,
The general structure of an BFF contains four major parts: a file header containing general
information as well as pointers to other parts of the file, a number of sections holding code and
raw data, relocation tables and symbol table information.

File header

Relocation Table

Symbol Table

Section 1

Section 2

Section n

...

...

Figure 1. Binary File Format.

As indicated, object files participate in both program linking and program execution. For con-
venience and efficiency, the object file format provides parallel views of a file’s contents, reflecting
the differing needs of these activities. Figure 2 shows an ELF object file’s organization with both
execution and linking view. An ELF header resides at the beginning of an object file and holds
a road map describing the file’s organization. Sections represent the smallest indivisible units
that can be processed within an ELF file. Segments are a collection of sections that represent
the smallest individual units that can be mapped to a process memory image. Sections hold the
bulk of object file information for the linking view: instructions, data, symbol table, relocation
information, and so on [1].

Since the processing of object files depends on different operating system, CPU target, and BFF
configuration, the BFD package is designed with two layers: the frontend and backend. As shown

3

Section 1

Section n
...

...

Section header
table

Program header
table(optional)

ELF header

Linking view

...

...

ELF header

Program header

table

Section header

table(optional)

Segment 1

Segment 2

Execution view

Figure 2. Executable and Linking File(ELF) Format.

in Figure 3, the unique frontend provides the interface to the application so that the differences
between different CPU/OS/BFF configuration are abstracted away. The backend layer provides
the concrete implementations for each of the CPU/OS/BFF configuration.

Application

BFD

Back−End

Front−End

ELF COFF AOUT

RS6000

ELF COFF AOUT

I386

ELF COFF AOUT

Sparc

AIX
Linux

ELF COFF AOUT

RS6000

ELF COFF AOUT

I386

ELF COFF AOUT

Sparc
ELF COFF AOUT

RS6000

ELF COFF AOUT

I386

ELF COFF AOUT

Sparc

Solaris

Figure 3. BFD.

When an object file is opened, the frontend routine automatically determines the format of the
input object file. An internal data structure, called the cannonical binary file format, is built in
memory with all information of the object file ready to be queried by the applications. Obviously,
the process involves the calling of BFD backend routine by the frontend on applications’ behalf.
For example, when an application wishes to access an object file’s symbol table, there is a routine
in the BFD back end for that particular CPU/OS/BFF configuration that converts the concrete
representation of the object file to the canonical format. The backend routine is automatically

4

called by the frontend. When the processing is performed and the result is to be written back
into disk, another BFD backend routine is called to the canonical representation to the desired
output format.

The BFD cannoical format consists of the following:

• files, which contain target architecture, format types, demand pageable bit, write protected
bit;

• sections, which contain names, addresses in the object file, size and alignment information,
various flags as well as other BFD data structure.

• symbols, which contain the names, values as well as other flags.

• relocation level, which contains the symbol to which to relocate, the offset of the data to
relocation, the section to which the data belong, as well as the relocation type.

• line numbers, which contain debugging information.

One difficulty in using the BFD library is its complexity. The library itself is very large, the
number of functions offered in the front end are exceptionally many. The BFD front end was
designed in mind to allow the programmer to be able to retrieve all type of information about
any BFF, at least the existing ones. The BFD library can be integrated with disassemblers,
decompilers, debuggers, etc. Due to this generality and hence its bulkiness, it is difficult to use it
without spending a great deal of time learning how to use it. Perhaps because it is too general,
it often contains information that is not needed for some applications.

4 ABI Modeling

An ABI defines a binary interface for application programs that are compiled and packaged
for a specific OS running on a specific hardware architecture. An ABI is a protocol between
different software development tools, so that software created in different languages and compiled
by different compilers can still be linked and interoperate with each other. An ABI is also a
protocol between the application and the OS, so that the OS loader can create the correct process
image from an executable file and possibly many shared object files. Rather than presenting a
complete ABI model, in this paper we focus only on part of the ABI that is relevant for BFD
porting and describe the modeling of relocation and procedure linkage table (PLT). An architecture
description can be specified using this model and serves as the input to our automatic porting
tool.

Since software programs are compiled separately into object files, each object file may contain
data or instructions that reference symbols defined elsewhere. Even for the reference of local
symbols, the actual address of these local symbols cannot be resolved at compile time since the
enclosing sections can be moved to arbitrary locations at link or load time. The process of
calculating the correct values of these external or local symbol references, called the relocated
values, and adjusting the bits within the corresponding instructions or data, called the relocation
field, is called relocation. Typically, an object file contains an array of relocation entries in a
special relocation section, each of which points to the instruction or datum to be relocated.

5

Depending on different BFF used, the relocation entry may contain a relocation type, which
designates the calculation method of relocated values, and a relocation addend, which is an integer-
sized storage that can help store useful information for the calculation in case the relocation field
of the instruction or datum to be relocated is not large enough to hold the information. While
the exact source of this information may vary, it is always an integer value that will be added to
relocated value, and hence the name.

To support shared object and dynamic linking, position-independent code (PIC) whose in-
structions need no relocation should be supported. The linker usually creates a global offset table
(GOT) that contains pointer to all the global data that the executable file addresses. GOT entries
can be considered as global data themselves and therefore any reference to them need relocation.
Similarly, the linker may also create a procedure linkage table (PLT for procedure symbols. Due
to the need for lazy evaluation, that is, not providing procedure addresses until they are called for
the first time, each PLT entry contain a series of architecture-dependent instructions that calls
routines defined in the dynamic linker.

The calculation of the relocated value involves the following parameters, which are either infor-
mation kept in the relocation field, or relocation entry, or values maintained by applications such
as linker or loader:

• A: the addend, which can either be stored in the relocation field of the instruction or datum
to be relocated, or the relocation entry;

• B: the base address at which a shared object is loaded into the memory during execution;

• GOT : the address of the global offset table;

• G: the offset into the global offset table at which the address of the referenced symbol resides
during execution;

• L: the place (section offset or address) of the procedure linkage table entry for the reference
procedure symbol;

• P : the place (section offset or address) of the instruction or datum to be relocated;

• S: the value of the referenced symbol.

Figure 4 and Figure 5 shows the relocation types of ELF object format for SPARC and Intel
386 microprocessors respectively. The first column shows the name and the second column shows
the calculation method. The calculation expression used is easy as it involves only addition (+),
subtraction (−), shifting (>>) and bit masking (&).

The relocation model for ABI specification can thus be characterized by the calculation method
as well as the identification of relocation field. Definition 1 gives our simple model of relocation
type, which is on the other hand a complete one due to the specialty of the relocation calculation
expression.

Definition 1 A relocation type is a member of

6

Name Calculation
R SPARC NONE NONE

R SPARC 8 S + A

R SPARC 16 S + A

R SPARC 32 S + A

R SPARC DISP8 S + A − P

R SPARC DISP16 S + A − P

R SPARC DISP32 S + A − P

R SPARC WDISP30 S + A − P >> 2
R SPARC WDISP22 S + A − P >> 2
R SPARC HI22 (S + A) >> 10
R SPARC 22 S + A

R SPARC 13 S + A

R SPARC LO10 (S + A)&0x3ff

R SPARC GOT10 (G)&0x3ff

R SPARC GOT13 G

R SPARC GOT22 G >> 10
R SPARC PC10 (S + A − P)&0x3ff

R SPARC PC22 S + A − P >> 10
R SPARC PC10 L + A − P >> 2
R SPARC COPY NONE

R SPARC GLOB DAT S + A

R SPARC JMP SLOT NONE

R SPARC RELATIV E B + A

R SPARC UA32 S + A

Figure 4. Relocation types and PLT entries for SPARC.

Reloc = tuple { 1

id : int; 2

expCode : byte; 3

rightshift : int; 4

bitsize : int; 5

bitpos : int; 6

complain : {IGNORE,BIT, SIGN,UNSIGNED}; 7

} 8

where id is an unique integer identifier, expCode = 〈C7, C6, ..., C0〉 encodes the expression ΣiCiPi,
with P7, ...P0 being −GOT, A, B, G, GOT, L,−P, S respectively; rightshift represents the number
of bits at the right side of the calculated ΣiCiPi that should be dropped; bitpos and bitsize represents
the bit position as well as the size of the relocation field within the instruction or datum to be
relocated; complain encodes the action to take when specific type of overflow occurs.

Figure 6 shows an example of relocation expression.
Example 1 and Example 2 show the specification of SPARC and Intel 386 relocation types.

7

Name Calculation
R 386 NONE NONE

R 386 32 S + A

R 386 PC32 S + A − P

R 386 GOT32 G + A − P

R 386 PLT32 L + A − P

R 386 GOTOFF S + A − GOT

R 386 GOTPC GOT + A − P

R SPARC COPY NONE

R SPARC GLOB DAT S

R SPARC JMP SLOT S

R SPARC RELATIV E B + A

Figure 5. Relocation types and PLT entries for I386.

+S−P+L+G +GOT+B+A

1 11000 0

==> S+A−P

=0x43

−GOT

0

Figure 6. Relocation calculation expression.

Example 1 SPARC relocation description:
R SPARC NONE= 〈0, 0x00, 0, 0, 0, IGNORE〉

R SPARC 8= 〈1, 0x41, 0, 8, 0, BIT 〉
R SPARC 16= 〈2, 0x41, 0, 16, 0, BIT 〉
R SPARC 32= 〈3, 0x41, 0, 32, 0, BIT 〉
R SPARC DISP8= 〈4, 0x43, 0, 8, 0, UNSIGNED〉
R SPARC DISP16= 〈5, 0x43, 0, 16, 0, UNSIGNED〉
R SPARC DISP32= 〈6, 0x43, 0, 32, 0, UNSIGNED〉
R SPARC WDISP30= 〈7, 0x43, 2, 30, 0, UNSIGNED〉
R SPARC WDISP22= 〈8, 0x43, 2, 30, 0, UNSIGNED〉
R SPARC HI22= 〈9, 0x41, 10, 22, 0, IGNORE〉
R SPARC 22= 〈10, 0x41, 0, 22, 0, BIT 〉
R SPARC 13= 〈11, 0x41, 0, 13, 0, BIT 〉
R SPARC LO10= 〈12, 0x41, 0, 10, 0, IGNORE〉
R SPARC GOT10= 〈13, 0x10, 0, 10, 0, IGNORE〉
R SPARC GOT13= 〈14, 0x10, 0, 13, 0, BIT 〉
R SPARC GOT22= 〈15, 0x10, 10, 22, 0, IGNORE〉
R SPARC PC10= 〈16, 0x43, 0, 10, 0, IGNORE〉
R SPARC PC22= 〈17, 0x43, 10, 22, 0, BIT 〉
R SPARC WPLT30= 〈18, 0x46, 2, 30, 0, UNSIGNED〉
R SPARC COPY= 〈19, 0x00, 0, 0, 0, IGNORE〉
R SPARC GLOB DAT=〈20, 0x41, 0, 0, 0, IGNORE〉

8

R SPARC JMP SLOT=〈21, 0x00, 0, 0, 0, IGNORE〉
R SPARC RELATIVE= 〈22, 0x60, 0, 0, 0, IGNORE〉
R SPARC UA32= 〈23, 0x41, 0, 0, 0, IGNORE〉

Example 2 Intel 386 family relocation description:
R I386 NONE= 〈0, 0x00, 0, 0, 0, IGNORE〉

R I386 32= 〈1, 0x41, 0, 32, 0, BIT 〉
R I386 PC32= 〈2, 0x43, 0, 32, 0, BIT 〉
R I386 GOT32= 〈3, 0x52, 0, 32, 0, BIT 〉
R I386 PLT32= 〈4, 0x46, 0, 32, 0, BIT 〉
R I386 COPY= 〈5, 0x00, 0, 0, 0, BIT 〉
R I386 GLOB DAT= 〈6, 0x01, 0, 0, 0, BIT 〉
R I386 JUMP SLOT=〈7, 0x01, 0, 0, 0, BIT 〉
R I386 RELATIVE= 〈8, 0x60, 0, 32, 0, BIT 〉
R I386 GOTOFF= 〈9, 0x61, 0, 32, 0, BIT 〉
R I386 GOTPC= 〈10, 0x4a, 0, 32, 0, BIT 〉

Each PLT entry contains a sequence of instructions that are executed when the corresponding
procedure symbol is first referenced. The instruction usually jumps to the stub code of the
dynamic linker which in turn load the corresponding shared object files. While the exact way of
implementing this mechanism is outside the scope of this paper, it is suffice to model the PLT
entry as a sequence of binary words that represents these instructions. Note that PLT is specific
to ELF format. Definition 2 gives our PLT model.

Definition 2 A PLT entry is a member of

plt = tuple { 9

size : int; 10

instrns : []int; 11

} 12

where size is the number of words (4 byte) for each PLT entry and instrns is a sequence of binary
words.

Example 3 shows one PLT description for ELF object format of SPARC.

Example 3 PLT Description for SPARC ELF32 Format:
pltn=〈3, 〈0x03000000, 0x30800000, 0x01000000〉〉

5 Retargetting BFD

To port the BFD library to a new processor, the architecture-dependent part of the BFD
implementation needs to be generated. Unfortunately, this part does not have a clean interface

9

due to historical reasons, and is winded together with BFF-specific code and scattered in many
different C files.

The architecture-dependent interface of BFD contains type declarations, data and functions,
detailed as follows.

• Types: It includes the definition of an enumeration type which defines the relocation type
identifiers.

• Data: It contains some general information about the target processor, such as word size,
address size and name. It includes the definition of a relocation howto table, an internal
representation that characterizes the relocation calculation methods of each relocation type.
It also contains an internal representation of the PLT entries to be generated.

• Functions: it contains the functions for checking relocations as well as generating dynamic
sections. The dynamic sections, such as .dynamic, .hash, .got and .plt, are used by dynamic
linker for creating process image. They are created by the linker to hold various data,
symbol table, global offset table and procedure linkage table respectively. It also contains
the function to relocate all relocation entries of a section. For example, for ELF format and
mycpu processor, the following functions are defined in bfd/elf32-mycpu.c.

- elf32 mycpu create dynamic sections

- elf32 mycpu create got gotsection

- elf32 mycpu check relocs

- elf32 mycpu adjust dynamic symbol

- elf32 mycpu adjust dynindx

- elf32 mycpu size dynamic sections

- elf32 mycpu relocate section

- elf32 mycpu finish dynamic symbol

- elf32 mycpu finish dynamic sections

The architecture-dependent implementation of BFD for a specific processor can be generated
from the architecture specification, which includes the ABI model that we have described in
Section 4.

6 Implementation and Experiments

Figure 7 shows the block diagram of bfdgen, the tool we implemented. The tool takes two
inputs: one is the architecture description from the user. This description is compiled by the ADL
compiler and converted into an internal representation. The architecture description contains not
only the instruction set that can be used to retarget compiler and assembler, but also the ABI
information of the processor. The other input is a set of template files provided by our tool suite
for the BFF/OS configuration of interest. The template files are essentially C headers, files, as

10

Processor ABI complexity (#line)
sparc 26
i386 13

Table 1. Complexity of ABI specification.

well as configuration scripts with special placeholders for architecture-dependent code. Our code
generator generates code at these placeholders according to the compiled architectural model.
The generated files can be merged with GNU BFD source tree, and configured and compiled by
the normal BFD building process.

template files
 (BFF/OS)

 ADL
Compiler

Ported
 BFD

Arch Dependent
Code Generator

 Arch
Database

Architecture
Description

 BFD
source tree

Figure 7. bfdgen block diagram.

To exercise the tool, we have specified the processor model for both SPARC and Intel 386, as
they are representative to the RISC and CISC architectures. Table 1 shows the complexity of the
ABI specification that is relevant to BFD porting.

We fed the template files for ELF/Solaris and the SPARC architecture description to bfdgen

and copied the generated files to the binutil source tree. The files can be used to build both
the BFD library and the GNU link editor, ld. Table 2 shows the generated files. It generated
13, 247 lines of code in total. To verify the ported BFD and linker, we built all SPEC2000 in-
teger benchmark including gzip, mcf, eon, vortex, vpr, crafty, perlbmk, bzip2, gcc,

parser, gap and twolf using the generated linker. They linked and ran successfully.

11

Generated Files #line
(generated)

/bfd/config/mysparc-elf.mt 3
/bfd/archures.c 1483
/bfd/configure.host 112
/bfd/configure.in 286
/bfd/config.bfd 166
/bfd/elf32-mysparc.c 1482
/include/elf/common.h 229
config.sub 1014
/bfd/target.c 785
/bfd/cpu-mysparc.c 44
/bfd/elfcode.h 6582
/ld/configure.in 183
/ld/emulparam/
elf32 mysparc.sh 9
/ld/Makefile.in 868
/ld/config/mysparc-elf.mt 1

Table 2. Generated and changed files.

7 Conclusion

In conclusion, we have argued that the complexity involved in modern downstream tools such as
assemblers and linkers have made development or automatic generation of these tools from scratch
an impractical task. This has led to our effort which seeks to automatically port an existing tools
that is powerful, robust and freely available. By augmenting the specification of instruction set
information of a processor with ABI information, we are able to automatically port the heart of
GNU’s binutils package, the BFD library. Our experiment shows that this approach is both
feasible and practical. The tool that we developed using this technique is extremely easy to use:
the porting of GNU linker takes only tens of lines of ABI specification and seconds of running
time of our tool, bfdgen.

8 References

[1] Linker and Libraries Guide. Sun Microsystems, Inc.
[2] LISA Language for Instruction Set Architectures. Institute for Integrated Signal Processing System,

ISS - RWTH Aachen, oct. 24, 2000.
[3] A. Aho, M. Ganapathi, and S. Tjiang. Code generation using tree pattern matching and dynamic

programming. ACM TOPLAS, 11(4):491–516, October 1989.
[4] M. Bailey and J. Davidson. A formal model and specification language for procedure calling con-

ventions. Technical Report CS-94-39, Computer Science, University of Virginia, 1994.
[5] R. Cattell. Code generation and machine descriptions. Technical Report CSL-79-8, Xerox Palo Alto

Research Center, October 1979.

12

[6] C. Cifuentes and D. Simon. Procedural abstraction recovery from binary. Technical Report 448,
Department of Computer Science and Electrical Engineering, University of Queensland,Brisbane
QLD 4072,Australia, September 1999.

[7] A. Fauth, J. Praet, and M. Freericks. Describing instruction sets using nML. Technical report,
Technische Universiteat Berlin and IMEC, Berlin(Germany)/Leuven(Belgium), 1995.

[8] C. W. Fraser, R. R. Henry, and T. A. Proebsting. BURG—fast optimal instruction selection and
tree parsing. SIGPLAN Notices, 27(4):68–76, April 1992.

[9] J. Gyllenhaal. A machine description language for compilation. Technical report, Department of
Electrical and Computer Engineering, University of Illinois, Urbana IL, September 1994.

[10] G. Hadjiyiannis, S. Hanono, and S. Devadas. ISDL: An instruction set description language for
retargetability. In Proceeding of the 34th Design Automation Conference, June 1997.

[11] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and A. Nicolau. Expression: A language for
architecture exploration through compiler/simulator retargetability. In Proceedings of the Design

Automation and Test Conference in Europe, March 1999.
[12] R. Leupers and P. Marwedel. Retargetable code generation based on structural processor descrip-

tions. Design Automation for Embedded Systems, 3(1), 1998.
[13] P. Marwedel. The MIMOLA design system: Tools for the design of digital processors. In Proceeding

of the 21st Design Automation Conference, pages 587–593, June 1984.
[14] J. V. Prate, D. L. W.Geurts, and G. Goossens. Processor modeling and code selection for retar-

getable compilation. ACM Transaction on Design Automation of Electronic Systems, 6(3), July
2001.

[15] N. Ramsey and J. Davidson. Specifying instructions’ semantics using CSDL. Technical report,
Department of Computer Science, University of Virginia, 1998.

[16] N. Ramsey and M. Fernandez. The New Jersey machine-code toolkit. In Proceedings of the 1995

USENIX Technical Conference, pages 289–302, January 1995.
[17] S.Chamberlain. libbfd: the Binary File Descriptor library. Cygnus Support, Free Software Founda-

tion, Inc., first edition edition, April 1991.

13

