
FBDD: A Folded Logic Synthesis System

Dennis Wu, Jianwen Zhu

Department of Electrical and Computer Engineering
University of Toronto, Toronto, Ontario, Canada

{

wudenni, jzhu
}

@eecg.toronto.edu

Abstract

Despite decades of efforts and successes in logic synthesis, algorithm runtime has

rarely been taken as a first class objective in research. As design complexity soars

and million gate designs become common, as deep submicron effects dominate and

frequently invoking logic synthesis within a low-level physical design environment,

or a high-level architectural exploration environment become mandatory, it becomes

necessary to revisit the fundamental logic synthesis infrastructure and algorithms.

In this paper, we demonstrate FBDD, an open sourced, Binary Decision Diagram

(BDD) based logic synthesis package, which employs several new techniques, includ-

ing folded logic transformations and two-variable sharing extraction. Towards the goal

of scaling logic synthesis algorithms, we show that for standard benchmarks, and for

field programmable gate array (FPGA) technology, FBDD can produce circuits with

comparable area with commercial tools, while running one order of magnitude faster.

1. Introduction

Logic synthesis, the task of optimizing gate level networks,
has been the corner stone of modern electronic design automation
methodology since the 1990s. As the chip size grows exponen-
tially, and as the logic synthesis task increasingly becomes cou-
pled with physical design, the synthesis runtime has emerged as a
new priority, in addition to the traditional metrics of synthesis qual-
ity, including area, speed and power. To this end, there is a grow-
ing interest in migrating from an algebraic method, exemplified by
SIS [1], to a Binary Decision Diagram (BDD) based method, ex-
emplified by BDS [2]. Compared with the former, which uses cube
set as the central data structure for design optimization, the latter
exploits the compactness and canonicality of BDD so that Boolean
decomposition, Boolean matching and don’t care minimization can
be performed in an efficient way. Despite these advantages, our
experiments on publicly available packages show that BDD-based
methods are not yet competitive with cube set based methods in
terms of area quality. A major reason for this shortcoming is the
lack of a sharing extraction strategy. Sharing extraction is the pro-
cess of extracting common functions among gates in the Boolean
network to save area. Their usefulness have long been proven in
cube set based systems. One example implementation is kernel ex-
traction, which has been central in producing low area designs in
the SIS [1] synthesis package and commercial tools. In contrast,
BDD-based systems have provided relatively low support for shar-

ing extraction.
In this paper, we document the key techniques employed in a re-

cently released logic synthesis package, FBDD (acronym for folded
binary decision diagram), which achieved competitive synthesis
quality, and significantly outperformed publicly available logic syn-
thesis packages in runtime at the time of release. In particular, it
achieved one order of magnitude speedup over commercial FPGA
logic synthesis tool, while maintaining comparable area measured
in lookup table count (LUT) on academic benchmarks.

Our first technique attempts to address synthesis quality: a shar-
ing extraction algorithm that directly exploits the structural proper-
ties of BDDs. More specifically, we make the following contribu-
tions. First, we demonstrate that by limiting our attention to a spe-
cific class of extractors (similar to limiting to kernels in the classic
method), namely two-variable disjunctive extractors, effective area
reduction can be achieved. Second, we show that an exact, polyno-
mial time algorithm can be developed for the full enumeration of
such extractors. Third, we show that just like the case of kernels,
there are inherent structures for the set of extractors contained in a
logic function, which we can use to make the algorithm incremental
and as such, further speed up the algorithm. Our experiments in-
dicate that an overhead of merely 6% is needed to run our sharing
extraction algorithm, whereas 25% area reduction can be achieved.

Our second technique attempts to scale synthesis runtime: a
new logic transformation strategy, called logic folding, that exploits
the regularities commonly found in circuits. Regularities, or the
repetition of logic functions, are not only abundant in array-based
circuits such as arithmetic units, but can also be found in random
logic as well. Using the simple metric of regularity, (# of gates) / (#
of gate types), we typically find the regularity of datapath circuits to
be on the order of several hundreds. The introduction of the BDD,
with its fast equivalence checking properties, has made fast detec-
tion of regularity in circuits possible. On the BDD, the equivalence
of two functions can be confirmed in constant time. Our logic syn-
thesis system aggressively applies this new capability throughout
the entire synthesis flow. With regularity information at hand, logic
transformations applied to one logic structure can be easily shared
wherever the logic structure is repeated. This dramatically reduces
the number of logic transformations required for synthesis, and as
a result, improves runtime.

The remainder of the paper is organized as follows. Section 2
introduces related works. Section 3 describe our sharing extrac-
tion technique. Section 4 describes logic folding technique. In
Section 5, we briefly describe the logic synthesis software package
within which the proposed techniques are implemented. In Sec-
tion 6, experimental results are presented before we draw conclu-

sions in Section 7.

2. Related Works

Two decades of literature makes it impossible to cover all im-
portant works. In this section we only focus on those most relevant
to our proposed techniques.

It is important to distinguish two sharing extraction strategies.
Active sharing first enumerates all candidate extractors for each
gate, and then evaluates the extractors within the network before
the actual extractions are committed. Passive sharing first performs
decomposition, whose purpose, like sharing extraction, is to break
large gates down into smaller ones. It differs in that decompositions
are judged by area savings with respect to a single gate, without
considering external opportunities for sharing. The passive shar-
ing mechanism can thus only save area only by removing existing,
redundant gates in the network after decomposition. Although ac-
tive sharing is preferred for better area result, BDD-based synthesis
systems often perform passive sharing due to the availability of ef-
ficient decomposition algorithms.

The most widely used sharing extraction algorithm, the cubeset
based kernel extraction by Brayton and McMullen [3], performs
active sharing. This algorithm has been improved in different gen-
erations of the Berkeley logic synthesis tools, including MIS [4]
and SIS [1]. Their latest tool, MVSIS [5], generalizes the previous
binary valued logic network optimization framework into a multi-
valued network optimization framework. It has since served as a
testbed for new logic synthesis algorithms. In particular, it used
hybrid data structures, including the traditional cube set, BDDs,
and AND-INVERTER graphs, to represent discrete functions un-
der different contexts. The sharing extraction algorithm employed
is reportedly a fast implementation of the algebraic method used in
SIS [5]. Sawada et al [6] describe a BDD-based equivalent for ker-
nel extraction. While they use BDDs to represent logic functions,
they are represented in Zero-Suppressed Decision Diagram (ZDD)
form, which implicitly represents cubesets. Essentially, the algo-
rithm is cubeset based and cannot use the advantages of the BDD
as described earlier.

Yang and Ciesielski’s BDS [2] takes an approach to synthesis
that moves away from cubesets altogether. They identify good de-
compositions by relying heavily on structural properties of BDDs.
For example, 1, 0 and X dominators produce algebraic AND, OR
and XOR decompositions respectively. They also describe struc-
tural methods for non-disjunctive decomposition based on their con-
cept of a generalized dominator. They also perform other non-
disjunctive decompositions, such as variable and functional mux
decompositions. After performing a complete decomposition of
the circuit, they perform sharing extraction by computing BDDs
for each node in the Boolean network, in terms of the primary in-
puts. Nodes with equivalent BDDs can be shared. Vemuri, Kalla
and Tessier [7] described an adaptation of BDS to the FPGA tech-
nology by performing elimination in the unit of maximum fanout
free cones, and variable partitioning techniques for k-LUT feasi-
ble decomposition. Mishchenko et al [8] developed a BDD-based
synthesis system centered on the Bi-decomposition of functions.
They give a theory for when strong or weak bi-decompositions ex-
ist and give expressions for deriving their decomposition results.
Their sharing extraction step is interleaved with decomposition so
that sharing can be found earlier, avoiding redundant computations.
They also retain don’t care information across network transforma-
tions to increase flexibility in matching. For obvious reasons, the
passive form of sharing extraction employed in the above systems
produces area results inferior to kernel extraction.

3. Sharing Extraction

Our sharing extraction algorithm, like kernel extraction, de-
composes sharing extraction into a two-step flow. In the first step,
the candidate extractors are enumerated for each gate in the net-
work. For practicality, not all extractors can be enumerated because
they are too numerous. In kernel extraction, extractors are limited
to those of the algebraic kind, because they can be found efficiently
on the cube set. Similarly, we limit our extractors to two variable,
disjunctive extractors because they can be found efficiently on the
BDD.

In the second step, common extractors are selected to share.
Committing some extractors destroy others so ordering is important
in choosing the extractors that have the most impact. One method
that works well, is to select the extractors greedily, based on the size
of the extractor and the number of times the extractor is repeated
(frequency). In two variable extraction, all extractors have size of
two, so selection is based solely on the frequency of the extractor.
Extractors are matched in a hash table using a key based on their
two variable support and gate type.

With the selection step described, the remainder of the section
will focuses on the process of enumerating extractors. We use the
following conventions for notations. Uppercase letters F,G,H rep-
resent functions. Lowercase letters a,b,c represent the variables of
those functions. Supp(F) is the support set of F. F|x is the cofactor
of F with respect to x. [F,C] represents an incompletely specified
function with F as it’s completely specified function and C as it’s
care set. ⇓ represents the restrict operation.

3.1 Functional Extraction

Given two functions F and E, the extraction process breaks F
into two simpler functions, extractor E and remainder R.

F(X) = R(e,XR) (1)

R(e,XR) = eR1(XR)+ eR2(XR) (2)

e = E(XE) (3)

X is the support set of F . XE is the support set of E. XR is the
support set of R. XE

�
XR = X .

Both R1 and R2 have multiple solutions. The range of solutions
can be characterized by an incompletely specified function [F,C],
where F is a completely specified solution and C is the care set.
One solution is R1 = F and R2 = F . We obtain the C conditions
by noting R1 is a don’t care when E is false and R2 is a don’t care
when E is true.

R1 = [F,E] (4)

R2 = [F,E] (5)

We want a completely specified solution that minimizes the
complexity of R1 and R2. To do this, we assign the don’t care con-
ditions in a way that minimizes the resulting node count. This prob-
lem was found to be NP complete [9] but a solution can be obtained
using one of several don’t care minimization heuristics. One well
known heuristic, which has been shown to be fast, is the restrict
operation [10]. Applying the restrict operator, the final equations
for the remainder and extractor are shown below:

R(e,XR) = e(F ⇓ E)+ e(F ⇓ E)

e = E(XE)

Condition Extractor Remainder
F|ab = F|ab = F|ab AND R = eF|ab + eF|ab
F|ab = F|ab = F|ab OR R = eF|ab + eF|ab
F|ab = F|ab = F|ab AND10 R = eF|ab + eF|ab
F|ab = F|ab = F|ab AND01 R = eF|ab + eF|ab
F|ab = F|ab XOR R = eF|ab + eF|ab
& F|ab = F|ab

Table 1: Cofactor conditions for good extraction

3.2 Disjunctive Two Variable Extraction

The last section described how to compute the remainder for
an arbitrary function and extractor. In this section we describe a
specialized extraction algorithm tailored to good extractors.

DEFINITION 1. Given function F, extractor E and remainder
R, good extractors are two variable extractors whose variables are
disjunctive from R. E and R are disjunctive when they do not share
support.

It is important to note, the limitations of good extractors will
force us to miss some good sharing opportunities. Not all good
sharing opportunities use disjunctive extractors. Nor are all dis-
junctive extractors the combination of two variable disjunctive ex-
tractors. Restricting candidate extractors is necessary however, to
keep the runtime reasonable. Nevertheless, good extractors are
good candidates because they can be found and matched quickly.
We show experimentally that they are effective in reducing area.

All two variable functions are considered potential good extrac-
tors. A two variable function has four unique input values. Each of
these input values have two possible outputs. That makes 42 = 16
unique, two variable, functions. The one and zero constants and the
single variable functions (F = a, F = a, F = b and F = b) make six
trivial functions. These functions cannot produce good extractors.
The ten remaining functions are listed below:

F = ab F = a +b

F = a+b F = ab

F = a⊕b F = a⊕b

F = ab F = a +b

F = ab F = a+b

The right five functions are compliments of the left five. They
will produce the same extractors so half can be discarded. In total,
there are five functions to consider when looking for good extrac-
tors.

The same procedure used for computing extraction for arbitrary
functions and extractors (shown earlier) can also be applied to good
extractors. However, a faster algorithm is available for the special
case of good extractors. Essentially, good extractors require equiv-
alence between certain cofactors of F .

THEOREM 1. E = ab is a good extractor of F iff F|ab = F|ab =
F|ab.

The theorem states that a disjunctive, two variable, AND ex-
tractor can be detected by comparing three cofactors for equiva-
lence. Cofactor conditions also exist for the four other extractor
types, and are listed in Table 1.

The complete extractor search algorithm then proceeds by enu-
merating every variable pair (O(N2)) of the gate, and for each pair
an a O(G) cofactor operation is performed. Thus the total worst

case complexity for finding the good extractors of a function is
O(N2G).

3.3 Incrementally Finding Extractors

In this section we discuss techniques that speed up the extrac-
tion algorithm further. The first improvement uses the property that
good extractors of a function continue to be good extractors in their
remainders. Instead of rediscovering these good extractors, they
can be copied over.

THEOREM 2. Let E1 and E2 be arbitrary good extractors of F.
Supp(E1) = {a,b}, Supp(E2) = {c,d} and Supp(E1) � Supp(E2) =
�. If R is the remainder of F extracted by E1, then E2 is a good
extractor of R.

We call these extractors “copy” extractors. Copy extractors
do not account for all good extractors of R. The good extractors
missed are those formed with variable e. To find these extractors,
cofactor conditions between e and every other variables of R must
be checked. Extractors found in this way are called “new e” ex-
tractors. These two types of extractors, in fact, account for all good
extractors of R. The benefit is that good extractors of R can be ob-
tained through “copy” and “new e” extractors. This is faster than
computing good extractors directly.

THEOREM 3. Let R be the remainder of F extracted by E1. E
is a good extractor of R iff E is a “copy” extractor or “new e”
extractor.

The complexity of transferring extractors from F to R is O(N2).
The complexity for finding new extractors involving variable e is
O(NG). The total complexity for finding extractors for a remainder
is O(N2 +NG). The incremental algorithm only applies when find-
ing extractors for remainders. When finding extractors for func-
tions whose parent extractors have not been computed, the O(N2G)
complexity still applies.

3.4 Transitive Property of Good Extractors

The O(N2G) complexity required to find the initial set of ex-
tractors can be reduced if we are willing to relax the condition that
all good extractors be found.

THEOREM 4. E1(a,b) and E2(b,c) are good extractors of F ⇒
∃ E3(a,c) such that E3(a,c) is a good extractor of F.

The transitive property of good extractors allows us to reduce
the complexity of finding good extractors. In our previous algo-
rithm, the O(N2G) complexity arose from the need to explicitly
find extractors between every pair of variables. Using the transitive
property of extractors, we only look for extractors between vari-
ables that are adjacent in the BDD order. This reduces the number
of pairs we consider from O(N2) to O(N). The transitive prop-
erty then, is applied across successively adjacent extractors to find
additional extractors. The new algorithm relies on a heuristic: If
two variables a and b form a good extractor, then they are likely to
satisfy one of two conditions:

1. They are adjacent in the BDD variable order.

2. They are separated by variables that form good extractors
with their adjacent variables.

This is not a rule however, as good extractors can be formed that
do not satisfy the above conditions. The heuristic works well how-
ever, because variables that form good extractors are likely clus-
tered together in the BDD variable order; It reduces node count.
What we have is a trade off between finding all extractors, and find-
ing them quickly. In our experimental results however, the tradeoff
in using this heuristic is minimal, degrading area quality by only
0.1%.

4. Folded Logic Transformations

In the design of large circuits, design reuse through hierarchy or
repetition of logic structures is often applied to reduce design effort.
This theme can be used to speed up synthesis speed. In this section
we exploit the inherent regularity in logic circuits to share the trans-
formation results between equivalent logic structures, called logic
folding, with the focus of improving runtime.

Since logic transformations typically operate on one or two
gates at a time, we use a simpler form of regularity that only con-
siders equivalence between single gates, or pairs of gates. When
matching single gates, we are interested in whether a gate is func-
tionally equivalent to other gates in the network. When dealing
with pairs of gates, we are also interested in how the pair is in-
terconnected. Capturing this regularity information enables us to
detect instances in the circuit where the same logic transformation
is applied more than once. Noting that many circuits exhibit a fair
amount of regularity, and noting that many logic transformations
depend solely on the logic functions of the gates, we propose to use
logic folding to identify regularities in the circuit, to share the logic
transformations and improve runtime.

In our circuit representation, we take advantage of the canonical
property of BDDs by separating gates from their logic functions.
The logic functions are stored in a global function manager where
the N variables of a function are mapped to the bottom N generic
variables of the function manager. When a new gate is constructed,
its logic function is constructed in the global function manager. If
the BDD for the logic function finds a match, then the function is
shared and the gates are grouped together into an equivalent class.
Otherwise a new function is added to the global manager.

There are also logic transformations however that work on two
gates at a time. For example, elimination collapses one gate into
its fanout. In this section we describe how sharing transforma-
tions can be extend to pairs of gates. Two gate pairs P1 and P2,
have the same logic transformation result when the gate pairs meet
two requirements. First, the Boolean function for each of the two
gates in P1 must match with the corresponding gates in P2. (i.e.
P1.gate1.bool = P2.gate1.bool and P1.gate2.bool = P2.gate2.bool).
With the Boolean functions of the gates already matched in the
shared function manager (described earlier) this problem is easily
solved by using a hash table with the two Boolean functions of gate
pair as the hash key. Secondly, we need to match how the gates
of a gate pair are interconnected. In particular, we need to identify
which variables are shared, and the positions that the shared vari-
ables take in the support sets. This information is called support
configuration. When the Boolean functions and support configura-
tions of two gate pairs match, their transformation results will be
the same.

4.1 Support Configurations

Support configuration tells us how variables are shared between
the two gates. It does not record information about where the sup-
port comes from, but rather what position that shared variable takes

in the support sets. Therefore, two gate pairs can have very differ-
ent support sets but identical support configurations. Before ex-
plaining how support configuration is computed, we make a few
assumptions that are required of the gates. First, no gate has re-
peating input variables in its support. And second, no gate has con-
stant values in its support. Both conditions can be met by sweeping
the circuit for these instances, and simplifying a gate whenever re-
peated or constant variables are found in its support.

Let S1 and S2 be two support sets. A support configuration is an
unordered set of pairs where each pair corresponds to a shared vari-
able. The first element of each pair represents the position of the
shared variable in S1 and the second element of each pair represents
the position of the shared variable in S2. The support configuration
can be computed in linear time with respect to the size of the sup-
port sets.

EXAMPLE 1. Let S1 = {a,d,b,c} and S2 = {c,d,e, f ,g} . The
arrangement is shown in Figure 1. Their support configuration is
C(S1,S2) = {(1,1),(3,0)}.

1 2 3 1 2 3 4

a b c d e f g

m n

gate1 gate2

0 0

Figure 1: Support Configuration Example.

The purpose of computing support configurations is to find match-
ing with support configurations in other gate pairs. Support config-
uration matching is performed very frequently. Whenever a gate
pair is created, its support configuration must be compared with all
other existing gates pairs for equivalence. A simple way to com-
pare two support configurations is to do a linear traversal of their
lists. However, this is a significantly slower than the constant time,
pointer comparison done with Boolean matching.

4.2 Characteristic Function

We present a faster way to compare support configurations by
computing a characteristic function. In our formulation of the char-
acteristic function, we use BDDs to represent the elements of a set.
An element is represented as a Boolean function of log2(N) vari-
ables, where N is the number of elements in the set. Let x0, · · · ,xK−1,
be the K variables of the characteristic functions. Then the elements
of the set are assigned as follows:

P(0,X) = xK−1 · · ·x1 · x0 (6)

P(1,X) = xK−1 · · ·x1 · x0 (7)

P(2,X) = xK−1 · · ·x1 · x0 (8)

P(3,X) = xK−1 · · ·x1 · x0 (9)

etc · · · (10)

P(i,X) is used to denote the characteristic function for ith el-
ement using the variables X = x0, · · · ,xK−1. This representation
grows logarithmically with the size of the set, and each element is

represented by a single cube. The characteristic functions for the
elements are combined to form a support configuration character-
istic function.

Let S1 be a support set of size |S1|. Let S2 be a support set of
size |S2|. Let C(S1,S2) = {(x1,y1),(x2,y2), · · · ,(xK ,yK)} be their
support configuration, where K is the number of shared variables.
Let X be a set of log2(|S1|) variables. Let Y be a set of log2(|S2|)
variables (independent of X).

Then the support configuration characteristic function is com-
puted as,

Q = P(x1,X)P(y1,Y)+P(x2,X)P(y2,Y)

+ · · ·+P(xK−1,X)P(yK−1,Y)

The memory requirements for this representation are quite mod-
est; the number of variables of the characteristic function is log2(|S1|)+
log2(|S2|). The major advantage with the characteristic function
representation, however, comes from the fact that when stored as
a BDD, equivalence between support configurations can be con-
firmed in constant time.

4.3 Folded Transformations

A logic expression can be expressed in a number of ways, with
some expressions being more compact than others. The goal of
simplification is to minimize the complexity of a logic function in
an effort to reduce area. In BDD based logic synthesis, one mea-
sure of the complexity is the size of its BDD. This size is very sen-
sitive to the variable order chosen and many techniques have been
devised to select a variable order that minimizes the node count.
BDD based simplification amounts to applying variable reordering
on a logic function of a gate, and remapping its support set ac-
cordingly. Using the property that two logically equivalent gates
have the same result after simplification, folded simplification is
performed on one logic function and the result applied to all in-
stances of that function.

Likewise, the folded decomposition algorithm works as follows.
Each decomposition is performed one equivalent class at a time.
The BDD for the equivalent class is decomposed into two or more
smaller BDDs. If these BDDs are not found in the global BDD
manager, new equivalent classes are created for them. Otherwise,
the existing equivalent classes are used. The gates are updated to
reflect the changes. If the new equivalent classes can be decom-
posed further, they are added to the heap, used to order the decom-
positions in non-increasing size of their support set. Decomposing
BDD’s in this order ensures that no decompositions are repeated.

Elimination is the process of merging nodes on the Boolean
network with the goal of removing inter-gate redundancies. An
adjacent pair of gates form an elimination pair 〈G1,G2, pos〉, which
consists of a parent gate G1, child gate G2 and a position pos. pos is
the position of the variable in the parent gate that is to be substituted
by the child function.

Two elimination pairs, P1 and P2, produce the same elimination
result if the logic functions of its gates are the same, the position
where they connect is the same, and their support configurations
are the same. i.e. P1.G1 = P2.G1, P1.G2 = P2.G2, P1.pos = P2.pos
and C(P1.G1,P1.G2) = C(P2.G1,P2.G2). A hash table is used to
identify elimination pairs with the same gate functions, position
pos and support configuration. When an elimination pair is cre-
ated, it is matched against the hash table. Eliminations pairs that
match are grouped together. Therefore, the elimination result can
be computed only once and shared to achieve folded elimination.

Folded sharing extraction is more involved: There are two sep-

arate computations that can take advantage of regularity. The first
computation is the enumeration of extractors. Equivalent functions
will produce the same list of disjunctive extractors which can be
shared by all instances of the function. This is the cost of comput-
ing cofactors between all adjacent variables of the function, to de-
termine if they can be disjunctively extracted. The extractors found
are written in terms of generic variables, not in terms of absolute
support. This computation is done only once. Then the extractor
list is enumerated in terms of absolute support for each instance of
the function.

Consider the functions F = ab+ cd and G = lm+ad. In terms
of generic variables, the logic functions are identical, H = x0x1 +
x2x3. The extractors are enumerated on the logic function to pro-
duce the following extractors (x0x1,x2x3). At this point, the expen-
sive process of computing the cofactor conditions has been com-
pleted. The extractors for F and G are then enumerated by remap-
ping the generic variables to actual support. F has extractors ab,cd
and G has extractors lm,ad.

The second computation where regularity can be taken advan-
tage of is the computation of remainders. When an extractor is se-
lected for sharing, it must be extracted from it’s parent function to
produce a remainder. This requires the expensive process of com-
puting the extractor, and then simplifying the function through vari-
able reordering. For an extraction that breaks F down into remain-
der R and extractor E, extractions that involve the same F and use
the same relative positions of the variables of E in F , produce the
same remainders. In the example given earlier, the remainder for F
when extracting (a,b) is the same as the remainder for G when ex-
tracting (l,m) because the logic functions for F and G are the same,
and the relative position of the variables of their extractors are the
same (using variables (x0,x1)). Thus the remainder R = e+ v2v3 is
computed once only, and shared by both instances F and G.

5. Open Sourced FBDD Package

The proposed techniques are implemented in a complete, BDD-
based logic synthesis system, called FBDD, that targets combina-
tional circuit optimization. Its complete source code can be down-
loaded at [11]. FBDD takes as input a gate level description of a cir-
cuit in the Berkeley Logic Interchange Format (BLIF) [1]. FBDD
then applies a set of algorithms to minimize area while also break-
ing the circuit down into basic gates in preparation for technology
mapping. The output produced, is an area optimized, technology
independent circuit in BLIF or structural Verilog format. The BLIF
output enables a path from FBDD to academic, standard cell or
FPGA technology mappers. The industry standard Verilog output
allows for integration with a wider array of tools, including com-
mercial tools.

In addition to the new optimization techniques described in this
paper, and a comprehensive set of decomposition algorithms re-
ported in BDS [2], FBDD performs many of the steps present in
a typical BDD-based synthesis flow. Logic minimization is per-
formed through BDD variable reordering using the sifting heuris-
tic [12]. The sifting heuristic, like bubble sort, swaps adjacent
variables in search of the minimum BDD size. The sweep stage,
further simplifies gates by propagating constant values, and merg-
ing support that is repeated more than once within a single gate.
In the elimination stage, gates of the network are selectively col-
lapsed in an attempt to remove inter-gate redundancies. Finally, the
sharing extraction and decomposition steps are interleaved. Shar-
ing extraction is applied first to find as much disjunctive sharing
as possible. Decomposition then breaks down gates where sharing
extraction cannot, such as where conjunctive decompositions are

Table 2: Comparative Area and Runtime Statistics.
FBDD SIS BDS BDS-PGA Altera Xilinx

1.0 1.2 1.2 2.0
LUT 100% 97.8% 113.1 % 116.5% 101.7% 119.4%

runtime 1.0X 59.8X 1.8X 3.8X 33.0X 19.0X

required. As decompositions are applied, new good extractors may
be created and sharing extraction is re-applied.

FBDD contains over 31000 lines of code, written in the C pro-
gramming language. Low level BDD storage and manipulation
are handled with the CUDD package [13], developed by Fabio
Somenzi at the University of Colorado at Boulder. Automated
scripts that drive the standard cell and technology mappers, and
collect result statistics, are also provided.

6. Experimental Results

We use the MCNC benchmarks [14], whic are highly reported
in academic publications, to enable comparison with other works.
We use only the combinational, multi-level examples with approx-
imate gate counts of 500 or more for testing.

For Field Programmable Gate Array (FPGA) technology, for
academic benchmarks, FBDD 1.0 is able to produce comparable
area result against commercial tools, while running one order of
magnitude faster. The detailed results at the time of release (June,
2005), comparing against publicly accessible academic logic syn-
thesis packages, including SIS version 1.2 [15], BDS version 1.2 [16],
BDS-PGA version 2.0 [17], as well as commercial logic synthesis
tools, Xilinx ISE ver. 7.1.01i [18] and Altera Quartus ver. 5.0
sp1 [19], are provided in both spreadsheet and chart formats on
the FBDD website [11]. To summarize, FBDD 1.0 reports slight
area gain for all packages except SIS, and significant speed up for
all packages. Note that all packages are run with their default op-
tions. And benchmarks that fail or do not terminate within four
hours in the other packages are discarded for the statistics. The
readers are also referred to [20] for more experiments aiming to
justify and quantify the individual benefits of sharing extraction and
folded transformations.

7. Conclusions

From our study, we observe that compared to the classic, cube-
set based logic synthesis targeting standard cells, FBDD produces
inferior area results on the smaller MCNC benchmark suite, but
comparable results on the much larger ITC benchmark suite. FBDD
however runs orders of magnitude faster. This discrepancy of area
performance on MCNC disappeared on FPGAs, suggesting that
FBDD might be spending the right amount of effort on sharing
extraction. Compared with other BDD-based logic synthesis sys-
tems, FBDD has consistently improved on both area and runtime,
for both standard cells and FPGAs.

Still at the early stage of research, FBDD suffers from a num-
ber of limitations. For example, delay oriented optimization is not
yet in place and it is still not clear to what extent the logic folding
strategy may affect such optimizations. Nevertheless, we believe
FBDD has made a step forward towards the goal of scaling logic
synthesis algorithms. Based on our experience, we believe tremen-
dous opportunities exist along this direction. For example, folded
transformations manage to cut the runtime of decomposition and
sharing extraction by multiple orders of magnitude. The bottleneck
currently lies with elimination, which occupies 70% of the runtime.

The overall runtime of FBDD can be dramatically improved if this
last bottleneck can be scaled down by the same amount as other
transformations. It is our hope that a truly scalable synthesis sys-
tem can open the door for future research on integrating logic syn-
thesis downwards with physical synthesis, and upwards with high
level and system level synthesis.

References

[1] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanaha,
H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-Vincentelli. SIS: A
system for sequential circuits synthesis. Technical Report UCB/ERL M92/41,
Department of Electrical Engineering and Computer Science, University of Cal-
ifornia, Berkeley, CA 94720, 1992.

[2] C. Yang, M. Ciesielski, and V. Singhal. BDS: A BDD-based logic optimization
system. In Proceeding of the 37th Design Automation Conference, pages 92–97,
2000.

[3] R. Brayton and C. McMullen. The decomposition and factorization of boolean
expressions. In ISCAS Proceedings, pages 49–54, 1982.

[4] R. K. Brayton, R. L. Rudell, and A. L. Sangiovanni-Vincentelli. MIS: A
multiple-level logic optimization system. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 6(6):1062–1081, 1987.

[5] D. Chai, J.-H. Jiang, Y. Jiang, A. Mishchenko, and R. Brayton. MVSIS 2.0
user’s manual. Technical report, Department Electrical and Computer Science,
University of California, Berkeley, CA 94720, 2004.

[6] H. Sawada, S. Yamashita, and A. Nagoya. An efficient method for generating
kernels on implicit cube set representations. In International Workshop on Logic
Synthesis, 1999.

[7] N. Vemuri, P. Kalla, and R. Tessier. BDD-based logic synthesis for LUT-
based FPGAs. ACM Transactions on Design Automation of Electronic Systems,
7(4):501–525, October 2002.

[8] A. Mishchenko, B. Steinbach, and M. Perkowski. An algorithm for bi-
decomposition of logic functions. In Proceeding of the 38th Design Automation
Conference, pages 103–108, 2001.

[9] M. Sauerhoff and I. Wegener. On the complexity of minimizing the OBDD size
of incompletely specified functions. In IEEE Transactions on Computer Aided
Design, pages 1434–1437, 1996.

[10] O. Coudert, C. Berthet, and J. C. Madre. Verification of synchronous sequential
machines based on symbolic execution. In Automatic Verification Methods for
Finite State Systems, pages 365–373, 1989.

[11] Toronto Synthesis Group. FBDD Web Site. http://www.eecg.toronto.
edu/˜jzhu/fbdd.html.

[12] R. Rudell. Dynamic variable ordering for ordered binary decision diagrams. In
Proceedings of the International Conference on Computer-Aided Design, pages
42–47, 1993.

[13] Fabio Somenzi. Cudd: Cu decision diagram package release 2.3.1. Technical
report, Department of Electrical and Computer Engineering, University of Col-
orado at Boulder, 2001.

[14] Saeyang Yang. Logic synthesis and optimization benchmarks user guide version
3.0. Technical report, Microelectronics Center of North Carolina, P. O. Box
12889, Research Triangle Park, NC 27709, 1991.

[15] Berkeley CAD Group. SIS Website. http://www-cad.eecs.berkeley.
edu/software.html.

[16] University of Massachusetts at Amherst. BDS Website. http://www.ecs.
umass.edu/ece/labs/vlsicad/bds/bds.html.

[17] University of Massachusetts at Amherst. BDS-PGA Website. hhttp://www.
ecs.umass.edu/ece/tessier/rcg/bds-pga-2.0/.

[18] Xilinx. Xilinx Website. http://www.xilinx.com/products/design_
resources/design_tool/.

[19] Altera. Quartus Website. http://www.altera.com/support/
software/download/altera_design/quartus_w%e/
dnl-quartus_we.jsp.

[20] D. Wu and J. Zhu. FBDD: A folded logic synthesis system. Technical Report
TR-07-01-05, Department of Electrical and Computer Engineering, University
of Toronto, 2005.

