
FBDD: A Folded Logic Synthesis System
Dennis Wu and Jianwen Zhu

Electrical and Computer Engineering
10 King’s College Road

{wudenni, jzhu}@eecg.toronto.edu

Technical Report TR-07-01-05
July 2005

Abstract

Despite decades of efforts and successes in logic synthesis, algorithm runtime has rarely been taken as a first class objective
in research. As design complexity soars and million gate designs become common, as deep submicron effects dominate and
frequently invoking logic synthesis within a low-level physical design environment, or a high-level architectural exploration
environment become mandatory, it becomes necessary to revisit the fundamental logic synthesis infrastructure and algorithms.
In this paper, we demonstrate FBDD, an open sourced, Binary Decision Diagram (BDD) based logic synthesis package, which
employs several new techniques, including folded logic transformations and two-variable sharing extraction. Towards the goal
of scaling logic synthesis algorithms, we show that for standard benchmarks, and for field programmable gate array (FPGA)
technology, FBDD can produce circuits with comparable area with commercial tools, while running one order of magnitude
faster.

CONTENTS

I Introduction 1

II Related Works 2

III Sharing Extraction 2
III-A Functional Extraction . 3
III-B Disjunctive Extraction . 3

III-B.1 Extractor Types . 4
III-B.2 Enumerating Extractors . 4
III-B.3 Matching Extractors . 4
III-B.4 Analysis . 5

III-C Disjunctive Two Variable Extraction . 5
III-C.1 Extractor Types . 5
III-C.2 Computing Extractors . 6

III-D Incrementally Finding Extractors . 6
III-E Transitive Property of Extractors . 6

IV Folded Logic Transformations 7
IV-A Support Configurations . 8
IV-B Characteristic Function . 8
IV-C Folded Transformations . 8

V Open Sourced FBDD Package 9

VI Experimental Results 9
VI-A Sharing Extraction . 10

VI-A.1 Maximum Extractor Size . 10
VI-A.2 Fast Two Variable Extraction . 11
VI-A.3 Sharing Extraction vs. No Sharing Extraction . 11

VI-B Asymptotic Benefits of Logic Folding . 11
VI-C Realistic Benefits of Logic Folding . 13
VI-D Comparative Study . 14

VII Conclusions 15

References 15

Appendix 19

ii

LIST OF FIGURES

1 Conjunctive vs. Disjunctive Extraction. 3
2 Support Configuration Example. 8
3 Runtime vs. Maximum Extractor Size. 10
4 Area vs. Maximum Extractor Size. 11
5 Fast vs. Exact Two Variable Extraction. 11
6 Sharing Extraction vs. No Sharing Extraction [Area]. 11
7 Sharing Extraction vs. No Sharing Extraction [Runtime]. 12
8 ROT.blif - Elimination. 12
9 ROT.blif - Decomposition. 13
10 ROT.blif - Sharing Extraction. 13
11 Runtime Growth of ROT. 13
12 Folded vs. Regular Elimination. 13
13 Folded vs. Regular Decomposition. 14
14 Folded vs. Regular Extractor Enumeration. 14
15 Folded vs. Regular Remainder Computation. 14

LIST OF TABLES

I Cofactor Conditions for Two Variable, Disjunctive Extraction . 6
II Deriving Gate Types. 7
III Distribution of Shared Extractor Sizes. 10
IV Comparative Results for MCNC Benchmark (Academic). 16
V Comparative Results for MCNC Benchmark (Commercial). 17
VI Comparative Results for ITC Benchmark (Academic). 18
VII Comparative Results for ITC Benchmark (Commericial). 19

1

FBDD: A Folded Logic Synthesis System
Dennis Wu and Jianwen Zhu

Electrical and Computer Engineering
10 King’s College Road

{wudenni, jzhu}@eecg.toronto.edu

Abstract— Despite decades of efforts and successes in logic
synthesis, algorithm runtime has rarely been taken as a first class
objective in research. As design complexity soars and million gate
designs become common, as deep submicron effects dominate and
frequently invoking logic synthesis within a low-level physical
design environment, or a high-level architectural exploration
environment become mandatory, it becomes necessary to revisit
the fundamental logic synthesis infrastructure and algorithms.
In this paper, we demonstrate FBDD, an open sourced, Binary
Decision Diagram (BDD) based logic synthesis package, which
employs several new techniques, including folded logic transfor-
mations and two-variable sharing extraction. Towards the goal
of scaling logic synthesis algorithms, we show that for standard
benchmarks, and for field programmable gate array (FPGA)
technology, FBDD can produce circuits with comparable area
with commercial tools, while running one order of magnitude
faster.

I. INTRODUCTION

Logic synthesis, the task of optimizing gate level networks,
has been the corner stone of modern electronic design au-
tomation methodology since the 1990s. As the chip size grows
exponentially, and as the logic synthesis task increasingly be-
comes coupled with physical design, the synthesis runtime has
emerged as a new priority, in addition to the traditional metrics
of synthesis quality, including area, speed and power. To this
end, there is a growing interest in migrating from an algebraic
method, exemplified by SIS [1], to a Binary Decision Diagram
(BDD) based method, exemplified by BDS [2]. Compared with
the former, which uses cube set as the central data structure
for design optimization, the latter exploits the compactness and
canonicality of BDD so that Boolean decomposition, Boolean
matching and don’t care minimization can be performed in an
efficient way. Despite these advantages, our experiments on
publicly available packages show that BDD-based methods are
not yet competitive with cube set based methods in terms of
area quality. A major reason for this shortcoming is the lack of
a sharing extraction strategy. Sharing extraction is the process
of extracting common functions among gates in the Boolean
network to save area. Their usefulness have long been proven
in cube set based systems. One example implementation is
kernel extraction, which has been central in producing low
area designs in the SIS [1] synthesis package and commercial
tools. In contrast, BDD-based systems have provided relatively
low support for sharing extraction.

In this paper, we document the key techniques employed in
a recently released logic synthesis package, FBDD (acronym
for folded binary decision diagram), which achieved competi-
tive synthesis quality, and significantly outperformed publicly

available logic synthesis packages in runtime at the time of
release. In particular, it achieved one order of magnitude
speedup over commercial FPGA logic synthesis tool, while
maintaining comparable area measured in lookup table count
(LUT) on academic benchmarks.

Our first technique attempts to address synthesis quality: a
sharing extraction algorithm that directly exploits the structural
properties of BDDs. More specifically, we make the follow-
ing contributions. First, we demonstrate that by limiting our
attention to a specific class of extractors (similar to limiting to
kernels in the classic method), namely two-variable disjunctive
extractors, effective area reduction can be achieved. Second,
we show that an exact, polynomial time algorithm can be
developed for the full enumeration of such extractors. Third,
we show that just like the case of kernels, there are inherent
structures for the set of extractors contained in a logic function,
which we can use to make the algorithm incremental and
as such, further speed up the algorithm. Our experiments
indicate that an overhead of merely 6% is needed to run our
sharing extraction algorithm, whereas 25% area reduction can
be achieved.

Our second technique attempts to scale synthesis runtime:
a new logic transformation strategy, called logic folding,
that exploits the regularities commonly found in circuits.
Regularities, or the repetition of logic functions, are not only
abundant in array-based circuits such as arithmetic units, but
can also be found in random logic as well. Using the simple
metric of regularity, (# of gates) / (# of gate types), we
typically find the regularity of datapath circuits to be on
the order of several hundreds. The introduction of the BDD,
with its fast equivalence checking properties, has made fast
detection of regularity in circuits possible. On the BDD, the
equivalence of two functions can be confirmed in constant
time. Our logic synthesis system aggressively applies this
new capability throughout the entire synthesis flow. With
regularity information at hand, logic transformations applied
to one logic structure can be easily shared wherever the logic
structure is repeated. This dramatically reduces the number of
logic transformations required for synthesis, and as a result,
improves runtime.

The remainder of the paper is organized as follows. Sec-
tion II introduces related works. Section III describe our shar-
ing extraction technique. Section IV describes logic folding
technique. In Section V, we briefly describe the logic synthesis
software package within which the proposed techniques are
implemented. In Section VI, experimental results are presented
before we draw conclusions in Section VII.

2

II. RELATED WORKS

Two decades of literature makes it impossible to cover all
important works. In this section we only focus on those most
relevant to our proposed techniques.

It is important to distinguish two sharing extraction strate-
gies. Active sharing first enumerates all candidate extractors for
each gate, and then evaluates the extractors within the network
before the actual extractions are committed. Passive sharing
first performs decomposition, whose purpose, like sharing
extraction, is to break large gates down into smaller ones.
It differs in that decompositions are judged by area savings
with respect to a single gate, without considering external
opportunities for sharing. The passive sharing mechanism can
thus only save area only by removing existing, redundant gates
in the network after decomposition. Although active sharing is
preferred for better area result, BDD-based synthesis systems
often perform passive sharing due to the availability of efficient
decomposition algorithms.

The most widely used sharing extraction algorithm, the
cubeset based kernel extraction by Brayton and McMullen [3],
performs active sharing. This algorithm has been improved
in different generations of the Berkeley logic synthesis tools,
including MIS [4] and SIS [1]. Their latest tool, MVSIS [5],
generalizes the previous binary valued logic network opti-
mization framework into a multi-valued network optimization
framework. It has since served as a testbed for new logic
synthesis algorithms. In particular, it used hybrid data struc-
tures, including the traditional cube set, BDDs, and AND-
INVERTER graphs, to represent discrete functions under dif-
ferent contexts. The sharing extraction algorithm employed is
reportedly a fast implementation of the algebraic method used
in SIS [5]. Sawada et al [6] describe a BDD-based equivalent
for kernel extraction. While they use BDDs to represent logic
functions, they are represented in Zero-Suppressed Decision
Diagram (ZDD) form, which implicitly represents cubesets.
Essentially, the algorithm is cubeset based and cannot use the
advantages of the BDD as described earlier.

Yang and Ciesielski’s BDS [2] takes an approach to synthe-
sis that moves away from cubesets altogether. They identify
good decompositions by relying heavily on structural proper-
ties of BDDs. For example, 1, 0 and X dominators produce
algebraic AND, OR and XOR decompositions respectively.
They also describe structural methods for non-disjunctive
decomposition based on their concept of a generalized domina-
tor. They also perform other non-disjunctive decompositions,
such as variable and functional mux decompositions. After
performing a complete decomposition of the circuit, they
perform sharing extraction by computing BDDs for each node
in the Boolean network, in terms of the primary inputs.
Nodes with equivalent BDDs can be shared. Vemuri, Kalla
and Tessier [7] described an adaptation of BDS to the FPGA
technology by performing elimination in the unit of maximum
fanout free cones, and variable partitioning techniques for
k-LUT feasible decomposition. Mishchenko et al [8] devel-
oped a BDD-based synthesis system centered on the Bi-
decomposition of functions. They give a theory for when
strong or weak bi-decompositions exist and give expressions

for deriving their decomposition results. Their sharing extrac-
tion step is interleaved with decomposition so that sharing can
be found earlier, avoiding redundant computations. They also
retain don’t care information across network transformations
to increase flexibility in matching. For obvious reasons, the
passive form of sharing extraction employed in the above
systems produces area results inferior to kernel extraction.

The key observation exploited by our sharing extraction
algorithm is the cofactor structure of a Boolean function with
respect to a set of Boolean variables, commonly referred to as
the bound set. This is somewhat related to the line of work
on Boolean symmetries [9]–[14]. Recently efficient procedures
of Boolean symmetry detection have been devised [15]–[17].
However, Boolean symmetries are defined by the equivalence
of cofactor pairs. They have so far been used only for
finding support-reducing bi-decomposition, not for sharing
extraction [18]. On the other hand, we detect [19], as it
becomes apparent later, if the cardinality of the set of distinct
cofactors equals to two, a stronger condition than Boolean
symmetries.

First proposed in [20], our logic folding mechanism is
related to regularity extraction explored in datapath synthesis.
Odawara [21] pioneered a structural approach where the one
dimensional bit slice structure of the design is identified. This
effort was extended by Nijssen et al [22],Arikati et al [23],
and Kutzschebauch [24] to two dimensions. These efforts can
be characterized by a seed growth approach where initially
seeds, or slices, each containing a single gate with the same
gate type as other slices, are first selected. Adjacent gates are
then merged into the slice when their structural signatures, or
are found to match the signatures of other gates with respect
to the other slices.

Another method formulate regularity extraction as a cover-
ing problem. Like technology mapping similar to the one used
in technology mapping [25], early efforts [26], [27] assume the
availability of a template library. Later effort by Chowdhary
et al [28] extracts maximal templates automatically. Since the
number of the templates can be exponential, they use heuristics
that bound the template count to quadratic complexity. Has-
soun and McCreary [29] perform a preprocessing step before
the generation of templates, which decomposes the circuit
graph into a parse tree of structured subgraphs, called clans.

The majority of the regularity extraction efforts target to-
wards identifying and preserving regularity during the physical
synthesis phase. Only Kutzschebauch [24] explicitly used the
regularity information to improve logic synthesis. While he
was able to improve the post synthesis regularity of circuits
by on average 57%, the run time, on average, increased by
8%. Compared to the previous methods, all of which can be
considered some form of structural matching, our approach
exploits the canonical property of BDDs, which allows us
to track regularity at high speed throughout the synthesis
process.

III. SHARING EXTRACTION

Our sharing extraction algorithm shares similarities with
the well known kernel extraction algorithm, used in cube set

3

based systems. Like kernel extraction, our algorithm performs
sharing extraction in a two-step flow. In the first step, the
candidate extractors are enumerated for each gate in the
network. For practicality, not all extractors can be enumerated
because they are too numerous. In kernel extraction, extractors
are limited to those of the algebraic kind, because they can
be found efficiently on the cube set. Similarly, we limit our
extractors to disjunctive extractors because they can be found
efficiently on the BDD. Later the runtime of the algorithm is
improved by limiting extractors to two variables, which we
shall show, does not adversely affect the area quality.

In the second step, extractors that are shared by multiple
gates are selected for sharing. Committing some extractors
destroys others, so ordering is important in choosing the
extractors that have the most impact. One method that works
well, is to select the extractors greedily, based on the size of
the extractor and the number of times the extractor is repeated.
The remainder of this chapter will focus on the extractor
enumeration problem only.

We use the following convention for notations. Uppercase
letters F,G,H represent functions. Lowercase letters a,b,c
represent the variables of those functions. Supp(F) is the
support set of F. We call the function produced by taking
function F and setting its variable x to the constant 1, the
positive cofactor of F with respect to x and is denoted by
F |x. Similarly, the function produced by taking function F
and setting its variable x to the constant 0 is called the
negative cofactor of F with respect to x, and is denoted by
F |x. [F,C] represents an incompletely specified function with
F as its completely specified function, and C as its care
set. ⇓ represents the restrict binary operator. F ⇓ C tries to
compute a completely specified function of minimum size for
incompletely specified function [F,C].

A. Functional Extraction

Given two functions F and E, the extraction process breaks
F into two simpler functions, extractor E and remainder R.
The extractor is the portion of the function we hope to share.

F(X) = R(e,XR) (1)

R(e,XR) = e ·R1(XR)+ e ·R2(XR) (2)

e = E(XE) (3)

X is the support set of F. XE is the support set of E. XR is
the support set of R. XE

�
XR = X .

Our meaning for remainder is different from the common
meaning of remainder computed in division, and used by
Brayton and McMullen [3]. For them, remainder refers to
the part of the dividend that is left over when the dividend
is not evenly divisible by the divisor (F = D ·Q + R). In our
terminology, a remainder refers to the function remaining after
extraction, which produces the same signal as F .

Both R1 and R2 have multiple solutions. The range of
solutions can be characterized by an incompletely specified
function [F,C], where F is a completely specified solution and
C is the care set. One solution is R1 = F and R2 = F . The care
conditions are obtained by noting that the value of R1 is only

relevant when E is true and R2 is only relevant when E is
false.

R1 = [F,E] (4)

R2 = [F,E] (5)

We want a completely specified solution that minimizes the
complexity of R1 and R2. To do this, we assign the don’t care
conditions in a way that minimizes the resulting node count
for the BDDs of R1 and R2. This problem was found to be
NP complete [30] but a solution can be obtained using one of
several don’t care minimization heuristics. We use the restrict
operator to obtain completely specified functions for R1 and
R2.

R1 = F ⇓ E (6)

R2 = F ⇓ E (7)

The final equations for the remainder and extractor are
shown below:

R(e,XR) = e · (F ⇓ E)+ e · (F ⇓ E)

e = E(XE)

B. Disjunctive Extraction

The last section described how to compute the remainder
for an arbitrary function and extractor. In this section we de-
scribe a specialized extraction algorithm tailored to disjunctive
extractors.

An extractor is disjunctive if it does not share support
with its remainder. In contrast, an extractor is conjunctive
if it does share support with its remainder. Examples of
disjunctive and conjunctive extraction are shown in Figure
1. Disjunctive extractions are ideal for area, because they
form a perfect partition of the function, where the remainder
and extractor produced have no redundancies between them.
However, disjunctive extractors are not always available, in
which case, conjunctive extraction is required to break the
function down.

R

E

F

(a) Conjunctive Extraction.

R

E

F

(b) Disjunctive
Extraction.

Fig. 1. Conjunctive vs. Disjunctive Extraction.

It is important to note that by limiting the solution space
to disjunctive extractors, some sharing opportunities will be
missed. Restricting candidate extractors is necessary however,
because the generalized sharing extraction problem is NP

4

hard. Nevertheless, disjunctive extractors are good candidates
because they can be found and matched quickly. We show
experimentally that they are effective in reducing area.

1) Extractor Types: In addition to being disjunctive, the
extractor considered must satisfy additional properties to avoid
repeating redundant computations. The first restriction is that
extractors be prime, that is, an extractor of size N must not
be disjunctively extractable by a function of size less than
N. For example, abcd, can be extracted by abc, however,
since abc can also be extracted by ab, abc is not considered a
valid extractor. The motivation for this restriction is to reduce
processing and memory consumption. Without this restriction
a function may have on the order of O(NN) disjunctive
extractors, where N is the number of variables of the function.
With the restriction, the number of disjunctive extractors is
limited to O(N2). Prime extractors can be shared recursively
to find larger, non-prime, extractors.

Another condition that must be satisfied, is that the extractor
must evaluate to 0 when the input vector is 0. An extractor
and its complement produce the same extraction; computing
both is redundant. The condition ensures that only one polarity
of the extractor is considered. Forcing extractors to satisfy
E(0) = 0, ensures that E is not considered, since E(0) = 1.

In total, three properties must be satisfied for an extractor
of size N to be valid.

Condition 1: The extractor forms a disjunctive extraction.
Condition 2: The extractor cannot be extracted by a
function of less than N variables.
Condition 3: The extractor evaluates to ’0’ when all inputs
are false.

2) Enumerating Extractors: The enumeration step identi-
fies all disjunctive extractors for every gate in the Boolean
network. Once enumerated, the extractors are matched to find
extractors that are shared by multiple gates. The enumeration
algorithm works by considering all combinations of variables.
For each combination of variables, the algorithm determines
whether the set of variables can form a disjunctive extractor.
An example of a function and its valid extractors is shown
below.

Example 1: The valid extractors of F = abc + d + e are
Φ(F) = {ab,bc,ac,d + e}.

The disjunctive extractors in Example 2 are more difficult
to find by inspection.

Example 2: The valid extractors of F = abe+abe+ab f +
ab f + ce f are Φ(F) = {a⊕b,e f}.

It turns out, E = a⊕ b is a disjunctive extractor with R =
Ee+E f +ce f as the corresponding remainder. And E = e f is
a disjunctive extractor with R = abE +cE as the corresponding
remainder. While identifying extractors by inspection may
seem difficult, there is a relatively efficient algorithm to
find disjunctive extractors on the BDD. The answer may be
efficiently computed on the BDD by checking for equivalence
between certain cofactors of F .

Theorem 1: Let E be an N variable disjunctive extractor of
F . Let S = {S0, · · · ,S2N−1} be the set of all minterms of E.
Then E is a disjunctive extractor of F iff all cofactors of F
with respect to the minterms in S map to exactly two functions
(R1 and R2).

The cofactor condition can be checked fairly quickly. Cofac-
tors with respect to a cube can be determined in O(|G|) time.
And cofactors can be compared, on the BDD, in constant time.
For fixed N, the overall complexity of determining if a set of
variables can be disjunctively extracted is O(|G|).

The algorithm for determining if a set of variables form a
valid, disjunctive extractor works as follows: All 2N cofactors
of F with respect to the N variables considered for extraction,
are computed. If all cofactors map to exactly two functions,
and the extractor satisfies the three conditions for valid ex-
tractors, then the set of variables form a valid, disjunctive ex-
tractor. Condition 1 is met by construction. To meet Condition
2, extractors of smaller size are enumerated before extractors
of larger size. Variables that belong to extractors of smaller
size will not be considered when finding extractors of larger
size. For example, all two variable extractors are found first.
Those variables that belong to a two variable extractor are not
considered when enumerating three variable extractors. This
ensures no three variable extractor contains a two variable
extractor. Finally, functions are inverted if they do not meet
the 3rd condition.

Once a set of variables XE is determined to have a valid,
disjunctive extraction, the exact function to be extracted is
computed. The cofactors of F with respect to the minterms of
XE , map to exactly two functions, R1 and R2. The extractor
is computed by setting the on-set of the extractor to be the
sum of those minterms c where F |c = R1. It follows that the
off-set is composed of those minterms c where F |c = R2. The
extractor is then complemented, if required, to satisfy the third
condition of valid extractors, E(0) = 0. The algorithm to find
disjunctive extractors is shown in Figure 1.

The enumeration algorithm is now applied to the difficult
function in Example 2. For XE = {a,b}, the four cofactors of
F with respect to these two variables are listed below:

F |ab = ce f (8)

F |ab = e+ f + ce f (9)

F |ab = e+ f + ce f (10)

F |ab = ce f (11)

(12)

All cofactors map to exactly two functions, so we know
from Theorem 1 that {a,b} can be extracted disjunctively.
The two cofactors are R1 = e + f + ce f and R2 = ce f . Two
minterms produce cofactor R1. They are the cofactors with
respect to minterms ab and ab. These two minterms form the
on-set of the extractor. Hence the extractor is E = a⊕b. The
Remainder is R = E(ce f) + E(e + f + ce f). Computing the
cofactors with respect to variables {e, f} determines that e f is
also a disjunctive extractor. All other combinations of variables
result in a mapping to more than two cofactors of F , and
hence those variable combinations do not produce disjunctive
extractors.

3) Matching Extractors: Once the extractors are enumer-
ated, the extractors are matched to determine if there is
sharing. The candidate extractors are matched by computing
an integer signature for the extractors. The signature is a bit

5

Algorithm 1: Finding Disjunctive Extractors

findExtractors(F) { 1
L = �; 2
forall(variable combinations XE of F) { 3

R1 = �; 4
R2 = �; 5
E = ′0′; 6
isDis junctive = TRUE; 7
forall(minterms C of XE) { 8

if(R1 6= F|C ∧R2 6= F|C) { 9
if(R1 = �) 10

R1 = F|C; 11
else if(R2 = �) 12

R2 = F|C; 13
else{ 14

isDis junctive = FALSE; 15
break; 16

} 17
18

if(R2 = F|C) 19
E = Or(E, C); 20

} 21
if(isDis junctive = FALSE) 22

break; 23
} 24
if(E(0) = 1) 25

E = E; 26
27

L = L +E; 28
} 29
return L ; 30

} 31

vector, where each bit represents a minterm of the extractor.
The bit is a ’1’ if the minterm belongs to the on-set of the
extractor, ’0’ if it belongs to the off-set. Because extractors
are limited to support of size 5, at most 32 bits are required
to represent a function. Comparing extractors for equivalence
amounts to comparing the signatures (an integer comparison)
and the support of the extractors.

The value of the signature depends on the ordering of the
support variables. For example, the signature for function F =
abc+d, with variable order {a,b,c,d} is 1110101010101010,
while the signature for F with variable order {d,c,b,a} is
1111111110000000. To ensure that the variable orders are
consistent, the support is sorted by the address location of
the variables before the signature is computed.

Each extractor is rated by a cost function based on the size
of the extractor and number of instances in the circuit. At each
step, the extractor with the lowest cost is accepted in a greedy
fashion. The cost function is computed as C = N−(N−1)∗M,
where N is the support size and M is the number of matches
found.

4) Analysis: The sharing extraction algorithm just de-
scribed presents a novel BDD based method for finding
extractors actively; a task that previously was not available
for BDD based systems. It differs from traditional sharing
extraction techniques in two major ways. First it allows the
entire synthesis flow to be BDD based. The compactness and

efficiency with which Boolean operation can be performed on
the BDD, ultimately translates into faster runtimes than could
be achieved with cube sets. Second, this algorithm is able to
extract Boolean gates such as XOR gates, which was difficult
to do on cube sets.

Although the algorithm described is well suited for BDDs,
it can not be as efficiently performed on cube sets. While
computing cofactors on the cube sets is also a linear time
operation with respect to the size of the logic function, there
is difficulty in comparing cofactors for equivalence. Unlike
in the BDD, the cube set representation of logic functions
are not canonical and comparison of logic functions cannot
be performed in constant time. Even if this difficulty could
be overcome, the runtime benefits of using BDDs would be
lost when performing the sharing extraction technique on cube
sets.

While the sharing extraction algorithm described can the-
oretically handle extractors of arbitrary size, for practical
purposes, the size of extractors considered must be restricted.
Large extractors present a difficulty in computational com-
plexity because the number of variable combinations that
need to be considered grows exponentially with the size of
the extractor. There are O(NM/MM) variable combinations to
consider for extractors of size M and functions of size N. The
complexity becomes unmanageable fairly quickly for values
of M greater than 5. In the next section we show that the
algorithm works well for small values of M and give further
improvements to reduce runtime.

C. Disjunctive Two Variable Extraction

Sharing Extraction with large extractors is slow because the
number of variable combinations that need to be considered
grows exponentially with the size of the extractor. In this
section, the extractor size is limited to two variables. In
addition to reducing the number of variable combinations
considered for extraction, two variables extractors have some
added properties that make their extraction incremental and
fast. It will be shown experimentally that only a negligible
area penalty is experienced when ignoring large extractors.

1) Extractor Types: All two variable functions are consid-
ered potential extractors. A two variable function has four
unique input values. Each of these input values have two
possible output values. That makes 42 = 16 unique, two
variable, functions. The one and zero constants and the single
variable functions (F = a, F = a, F = b and F = b) make
six trivial functions. These functions cannot produce useful
extractions. The ten remaining functions are listed below:

F = ab

F = a+b

F = a⊕b

F = ab

F = ab

F = a+b

F = ab

F = a⊕b

F = a+b

F = a+b

The right five functions are complements of the left five.
Because both polarities of the extractor are used in the
remainder, extracting a function in its regular or complemented

6

TABLE I

COFACTOR CONDITIONS FOR TWO VARIABLE, DISJUNCTIVE

EXTRACTION

Condition Extractor Remainder
F|ab = F|ab = F |ab AND R = eF |ab + eF|ab
F|ab = F|ab = F |ab OR R = eF |ab + eF|ab
F|ab = F|ab = F |ab AND10 R = eF |ab + eF|ab
F|ab = F|ab = F |ab AND01 R = eF |ab + eF|ab
F|ab = F|ab XOR R = eF |ab + eF|ab
& F|ab = F|ab

form will produce exactly the same extraction. Therefore, we
only need to consider one half of the ten extractors. In total,
there are five, two variable, functions to consider.

2) Computing Extractors: Theorem 1 describes conditions
required for the existence of disjunctive extractors of arbitrary
size. It follows that the theorem also applies for extractors of
size 2. Here we show how extractors are computed for the
specific case of two variable, AND extractors. The procedure
shown here can be applied to derive extractions for all other
two variable extractors.

Theorem 2: E = ab is a disjunctive extractor of F iff F|ab =
F |ab = F|ab.

Similarly, cofactor conditions for the other four, two variable
extractors exist as well. These cofactor conditions are listed
in Table I.

In order to determine if two variables (a,b) form a disjunc-
tive extractor, four cofactors of F with respect to a and b are
computed. The cofactors are computed once and reused in the
detection of each of the five extractor types. On the BDD,
with it’s recursive cofactoring structure, single cube cofactors
are computed in O(|G|) time, where G is the number of BDD
nodes.

The complete extraction search algorithm is shown in Al-
gorithm 2. The for loop iterates O(N2) times, where N is the
number of variables, and each time performs a O(|G|) cofactor
operation. Thus the total worst case complexity for finding the
disjunctive, two variable extractors of a function is O(N2 · |G|).

D. Incrementally Finding Extractors

In this section we discuss techniques that speed up the
extraction algorithm further. The first improvement uses the
property that disjunctive, two variable extractors of a function
continue to be disjunctive, two variable extractors in their
remainders. Instead of rediscovering these extractors, they can
be copied over.

Theorem 3: Let E1 and E2 be disjunctive, two variable
extractors of F . Supp(E1) = {a,b}, Supp(E2) = {c,d} and
Supp(E1) � Supp(E2) = �. If R is the remainder of F
extracted by E1, then E2 is a disjunctive, two variable extractor
of R.

Thus we can obtain some disjunctive, two variable extrac-
tors of R by copying them from F . We call these extractors
“copy” extractors. Copy extractors do not account for all
disjunctive, two variable extractors of R. The extractors missed
are those formed with substitute variable e. To find these
extractors, cofactor conditions between e and every other

Algorithm 2: Finding Disjunctive, Two Variable Extractors

findExtractors(F) {
forall(pairs of variables (a,b)) { 32

A = F|ab; 33
B = Fab; 34
C = F|ab; 35
D = F|ab; 36

37
if(B = C = D) 38

return disjunctive AND (ab) extractor ; 39
else if(A = B = C) 40

return disjunctive OR (a+b) extractor ; 41
else if(A = B = D) 42

return disjunctive ab extractor ; 43
else if(A = C = D) 44

return disjunctive ab extractor ; 45
else if(A = D and B = C) 46

return disjunctive XOR (a⊕b) extractor ; 47
} 48

} 49

variables of R must be checked. Extractors found in this way
are called “new e” extractors. These two types of extractors,
in fact, account for all disjunctive, two variable extractors of
R. The benefit is that extractors of R can be obtained through
“copy” and “new e” extractors. This is faster than computing
the extractors directly.

Theorem 4: Let R be the remainder of F disjunctively
extracted by two variable function E1. E is a disjunctive, two
variable extractor of R iff E is a “copy” extractor or “new e”
extractor.

The complexity of transferring extractors from F to R is
O(N2). The complexity for finding new extractors involving
variable e is O(N|G|). The total complexity for finding ex-
tractors for a remainder is O(N2 + N|G|). The incremental
algorithm only applies when finding extractors for remainders.
When finding extractors for functions whose parent extractors
have not been computed, the O(N2|G|) complexity still ap-
plies.

E. Transitive Property of Extractors

The O(N2|G|) complexity required to find the initial set
of extractors can be reduced if we are willing to relax the
condition that all disjunctive, two variable extractors be found.

Theorem 5: E1(a,b) and E2(b,c) are disjunctive, two vari-
able extractors of F ⇒ ∃ E3(a,c) such that E3(a,c) is a
disjunctive, two variable extractor of F .

Given two disjunctive extractors E1(a,b) and E2(b,c), the
gate type for extractor E3(a,c) can be derived from the gate
types of E1 and E2. Essentially, the polarity of the common
variable (b) must be the same. The rules are shown in Table II.
Any combinations of gate types not listed in Table II are illegal
because both cannot be disjunctive extractors of a function.

The significance of the transitive property is that it is
cheaper to discover a disjunctive extractor using the transitive
property than it is to compute the extractor directly. Using
the transitive property, a fast heuristic can be used to find

7

Source Gate 1 Source Gate 2 Derived Gate
ab bc ac
a+b b+ c a+ c
a⊕b b⊕ c a⊕ c
ab bc ac
ab bc ac
ab bc a+ c
ab bc ac
a+b bc ac
ab b+ c ac

TABLE II

DERIVING GATE TYPES.

disjunctive extractors. In our previous algorithm, the O(N2|G|)
complexity arose from the need to explicitly find extractors
between every pair of variables. Using the transitive property
of extractors, we only look for extractors between variables
that are adjacent in the BDD order. This reduces the number of
pairs we consider from O(N2) to O(N). The transitive property
then, is applied across successively adjacent extractors to find
additional extractors. The new algorithm relies on a heuristic:
If two variables a and b form a disjunctive extractor, then they
are likely to satisfy one of two conditions:

Condition 1: They are adjacent in the BDD variable order.
Condition 2: They are separated by variables that form
disjunctive extractors with their adjacent variables.

This is not a rule, however, as disjunctive, two variable ex-
tractors can be formed that do not satisfy the above conditions.
The heuristic works well however, because variables that form
disjunctive extractors are likely clustered together in the BDD
variable order because it reduces node count. What we have
is a trade off between finding all extractors, and finding them
quickly. In our experimental results however, the tradeoff in
using this heuristic is minimal, degrading area quality by only
0.1%.

IV. FOLDED LOGIC TRANSFORMATIONS

In the design of large circuits, design reuse through hierar-
chy or repetition of logic structures is often applied to reduce
design effort. This theme can be used to speed up synthesis
speed. In this section we exploit the inherent regularity in
logic circuits to share the transformation results between
equivalent logic structures, called logic folding, with the focus
of improving runtime.

Since logic transformations typically operate on one or
two gates at a time, we use a simpler form of regularity
that only considers equivalence between single gates, or pairs
of gates. When matching single gates, we are interested in
whether a gate is functionally equivalent to other gates in
the network. When dealing with pairs of gates, we are also
interested in how the pair is interconnected. Capturing this
regularity information enables us to detect instances in the
circuit where the same logic transformation is applied more
than once. Noting that many circuits exhibit a fair amount of
regularity, and noting that many logic transformations depend
solely on the logic functions of the gates, we propose to use

logic folding to identify regularities in the circuit, to share the
logic transformations and improve runtime.

Prior to the BDD, equivalence checking between two
Boolean functions was expensive. The cube set representation,
faced two hurdles when performing equivalence checking.
First, cube sets are not canonical and the cost of putting them
in a canonical form is expensive. Second, even if cube sets
could be made canonical, they still required the comparison of
the cubes in order to confirm equivalence. This is much slower
than the constant time requirement for equivalence checking
with the BDD. Because logical equivalence between gates
could not be determined easily, each gate stored it’s own copy
the logic function, and no attempt to share the logic function
representations was made.

In our circuit representation, we take advantage of the
canonical property of BDDs by separating gates from their
logic functions. The logic functions are stored in a global
function manager where the N variables of a function are
mapped to the bottom N generic variables of the function
manager. When a new gate is constructed, its logic function
is constructed in the global function manager. If the BDD for
the logic function finds a match, then the function is shared
and the gates are grouped together into an equivalent class.
Otherwise a new function is added to the global manager.

BDD based matching has its limitations. For example, logic
functions can still be equivalent under input permutations.
This limitation can be removed by Boolean matching methods
reported in [31]–[33]. Our finding is that the further gain
of Boolean matching is rather minimal. Another potential
limitation is the amount of regularity found is dependent on
how the circuit is decomposed. Take the eight input AND gate
for example. A balanced decomposition will result in a total of
two (folded) decompositions, while a one-sided decomposition
requires six decompositions. A similar problem occurs during
the elimination stage, where a highly regular circuit may have
its regularity collapsed away.

Despite the limitations described above, the potential benefit
of logic folding is significant. Gates can be grouped by
logical equivalence and logic transformations performed on
one gate can be shared among all members of the group. If a
match is found early on, there are savings on the immediate
logic transformation, as well as on all downstream logic
transformations. Folding is essentially free. The cost of folding
is to copy BDDs to and from the global BDD manager, but
this copying is required anyways when isolating a BDD for
variable reordering.

There are also logic transformations however that work on
two gates at a time. For example, elimination collapses one
gate into its fanout. In this section we describe how sharing
transformations can be extend to pairs of gates. Two gate pairs
P1 and P2, have the same logic transformation result when the
gate pairs meet two requirements. First, the Boolean function
for each of the two gates in P1 must match with the corre-
sponding gates in P2. (i.e. P1.gate1.bool = P2.gate1.bool and
P1.gate2.bool = P2.gate2.bool). With the Boolean functions
of the gates already matched in the shared function manager
(described earlier) this problem is easily solved by using a
hash table with the two Boolean functions of gate pair as

8

the hash key. Secondly, we need to match how the gates
of a gate pair are interconnected. In particular, we need to
identify which variables are shared, and the positions that
the shared variables take in the support sets. This information
is called support configuration. When the Boolean functions
and support configurations of two gate pairs match, their
transformation results will be the same.

A. Support Configurations

Support configuration tells us how variables are shared
between the two gates. It does not record information about
where the support comes from, but rather what position that
shared variable takes in the support sets. Therefore, two gate
pairs can have very different support sets but identical support
configurations. Before explaining how support configuration
is computed, we make a few assumptions that are required
of the gates. First, no gate has repeating input variables in
its support. And second, no gate has constant values in its
support. Both conditions can be met by sweeping the circuit
for these instances, and simplifying a gate whenever repeated
or constant variables are found in its support.

Let S1 and S2 be two support sets. A support configuration
is an unordered set of pairs where each pair corresponds to a
shared variable. The first element of each pair represents the
position of the shared variable in S1 and the second element
of each pair represents the position of the shared variable in
S2. The support configuration can be computed in linear time
with respect to the size of the support sets.

Example 3: Let S1 = {a,d,b,c} and S2 = {c,d,e, f ,g} . The
arrangement is shown in Figure 2. Their support configuration
is C(S1,S2) = {(1,1),(3,0)}.

1 2 3 1 2 3 4

a b c d e f g

m n

gate1 gate2

0 0

Fig. 2. Support Configuration Example.

The purpose of computing support configurations is to
find matching with support configurations in other gate pairs.
Support configuration matching is performed very frequently.
Whenever a gate pair is created, its support configuration must
be compared with all other existing gates pairs for equivalence.
A simple way to compare two support configurations is to do
a linear traversal of their lists. However, this is a significantly
slower than the constant time, pointer comparison done with
Boolean matching.

B. Characteristic Function

We present a faster way to compare support configurations
by computing a characteristic function. In our formulation

of the characteristic function, we use BDDs to represent the
elements of a set. An element is represented as a Boolean
function of log2(N) variables, where N is the number of
elements in the set. Let x0, · · · ,xK−1, be the K variables of
the characteristic functions. Then the elements of the set are
assigned as follows:

P(0,X) = xK−1 · · ·x1 · x0 (13)

P(1,X) = xK−1 · · ·x1 · x0 (14)

P(2,X) = xK−1 · · ·x1 · x0 (15)

P(3,X) = xK−1 · · ·x1 · x0 (16)

etc · · · (17)

P(i,X) is used to denote the characteristic function for ith
element using the variables X = x0, · · · ,xK−1. This representa-
tion grows logarithmically with the size of the set, and each
element is represented by a single cube. The characteristic
functions for the elements are combined to form a support
configuration characteristic function.

Let S1 be a support set of size |S1|. Let S2 be a support set
of size |S2|. Let C(S1,S2) = {(x1,y1),(x2,y2), · · · ,(xK ,yK)} be
their support configuration, where K is the number of shared
variables. Let X be a set of log2(|S1|) variables. Let Y be a
set of log2(|S2|) variables (independent of X).

Then the support configuration characteristic function is
computed as,

Q = P(x1,X)P(y1,Y)+P(x2,X)P(y2,Y)

+ · · ·+P(xK−1,X)P(yK−1,Y)

The memory requirements for this representation are quite
modest; the number of variables of the characteristic function
is log2(|S1|)+ log2(|S2|). The major advantage with the char-
acteristic function representation, however, comes from the
fact that when stored as a BDD, equivalence between support
configurations can be confirmed in constant time.

C. Folded Transformations

A logic expression can be expressed in a number of ways,
with some expressions being more compact than others. The
goal of simplification is to minimize the complexity of a logic
function in an effort to reduce area. In BDD based logic
synthesis, one measure of the complexity is the size of its
BDD. This size is very sensitive to the variable order chosen
and many techniques have been devised to select a variable
order that minimizes the node count. BDD based simplification
amounts to applying variable reordering on a logic function
of a gate, and remapping its support set accordingly. Using
the property that two logically equivalent gates have the same
result after simplification, folded simplification is performed
on one logic function and the result applied to all instances of
that function.

Likewise, the folded decomposition algorithm works as
follows. Each decomposition is performed one equivalent class
at a time. The BDD for the equivalent class is decomposed into
two or more smaller BDDs. If these BDDs are not found in the

9

global BDD manager, new equivalent classes are created for
them. Otherwise, the existing equivalent classes are used. The
gates are updated to reflect the changes. If the new equivalent
classes can be decomposed further, they are added to the heap,
used to order the decompositions in non-increasing size of
their support set. Decomposing BDD’s in this order ensures
that no decompositions are repeated.

Elimination is the process of merging nodes on the Boolean
network with the goal of removing inter-gate redundancies. An
adjacent pair of gates form an elimination pair 〈G1,G2, pos〉,
which consists of a parent gate G1, child gate G2 and a
position pos. pos is the position of the variable in the parent
gate that is to be substituted by the child function.

Two elimination pairs, P1 and P2, produce the same elim-
ination result if the logic functions of its gates are the same,
the position where they connect is the same, and their support
configurations are the same. i.e. P1.G1 = P2.G1, P1.G2 = P2.G2,
P1.pos = P2.pos and C(P1.G1,P1.G2) = C(P2.G1,P2.G2). A
hash table is used to identify elimination pairs with the same
gate functions, position pos and support configuration. When
an elimination pair is created, it is matched against the hash
table. Eliminations pairs that match are grouped together.
Therefore, the elimination result can be computed only once
and shared to achieve folded elimination.

Folded sharing extraction is more involved: There are two
separate computations that can take advantage of regular-
ity. The first computation is the enumeration of extractors.
Equivalent functions will produce the same list of disjunc-
tive extractors which can be shared by all instances of the
function. This is the cost of computing cofactors between all
adjacent variables of the function, to determine if they can
be disjunctively extracted. The extractors found are written in
terms of generic variables, not in terms of absolute support.
This computation is done only once. Then the extractor list is
enumerated in terms of absolute support for each instance of
the function.

Consider the functions F = ab + cd and G = lm + ad. In
terms of generic variables, the logic functions are identical,
H = x0x1 + x2x3. The extractors are enumerated on the logic
function to produce the following extractors (x0x1,x2x3). At
this point, the expensive process of computing the cofactor
conditions has been completed. The extractors for F and G
are then enumerated by remapping the generic variables to
actual support. F has extractors ab,cd and G has extractors
lm,ad.

The second computation where regularity can be taken
advantage of is the computation of remainders. When an
extractor is selected for sharing, it must be extracted from
it’s parent function to produce a remainder. This requires
the expensive process of computing the extractor, and then
simplifying the function through variable reordering. For an
extraction that breaks F down into remainder R and extractor
E, extractions that involve the same F and use the same
relative positions of the variables of E in F, produce the same
remainders. In the example given earlier, the remainder for
F when extracting (a,b) is the same as the remainder for G
when extracting (l,m) because the logic functions for F and
G are the same, and the relative position of the variables of

their extractors are the same (using variables (x0,x1)). Thus
the remainder R = e+v2v3 is computed once only, and shared
by both instances F and G.

V. OPEN SOURCED FBDD PACKAGE

The proposed techniques are implemented in a complete,
BDD-based logic synthesis system, called FBDD, that targets
combinational circuit optimization. Its complete source code
can be downloaded at [34]. FBDD takes as input a gate level
description of a circuit in the Berkeley Logic Interchange
Format (BLIF) [1]. FBDD then applies a set of algorithms
to minimize area while also breaking the circuit down into
basic gates in preparation for technology mapping. The output
produced, is an area optimized, technology independent circuit
in BLIF or structural Verilog format. The BLIF output enables
a path from FBDD to academic, standard cell or FPGA
technology mappers. The industry standard Verilog output
allows for integration with a wider array of tools, including
commercial tools.

In addition to the new optimization techniques described
in this paper, and a comprehensive set of decomposition
algorithms reported in BDS [2], FBDD performs many of the
steps present in a typical BDD-based synthesis flow. Logic
minimization is performed through BDD variable reordering
using the sifting heuristic [35]. The sifting heuristic, like
bubble sort, swaps adjacent variables in search of the min-
imum BDD size. The sweep stage, further simplifies gates
by propagating constant values, and merging support that is
repeated more than once within a single gate. In the elimi-
nation stage, gates of the network are selectively collapsed
in an attempt to remove inter-gate redundancies. Finally, the
sharing extraction and decomposition steps are interleaved.
Sharing extraction is applied first to find as much disjunctive
sharing as possible. Decomposition then breaks down gates
where sharing extraction cannot, such as where conjunctive
decompositions are required. As decompositions are applied,
new good extractors may be created and sharing extraction is
re-applied.

FBDD contains over 31000 lines of code, written in the C
programming language. Low level BDD storage and manip-
ulation are handled with the CUDD package [36], developed
by Fabio Somenzi at the University of Colorado at Boulder.
Automated scripts that drive the standard cell and technology
mappers, and collect result statistics, are also provided.

VI. EXPERIMENTAL RESULTS

We perform four sets of experiments. In Section VI-A, we
describe experiments to justify and quantify the benefits of our
sharing extraction algorithm. In Section VI-B, we demonstrate
the asymptotic gains of logic folding on a set of synthetic
benchmarks. In Section VI-C, we demonstrate more realistic
gains of logic folding on standard benchmarks. In Section VI-
D, we perform a comprehensive comparative study on area
and runtime against academic and commercial logic synthesis
packages.

Two standard benchmark suites are used in the experiments.
We use the MCNC benchmarks [37], whic are highly reported

10

in academic publications, to enable comparison with other
works. We use only the combinational, multi-level examples
with approximate gate counts of 500 or more for testing. Even
so, the circuits obtained from MCNC are relatively small by
today’s standards. To complement them, we also report results
on the ITC99 benchmarks [38], which include a set of large
processor cores. For example, it includes subsets of the Viper
and 80386 processor cores which offer test cases that are 13
times larger than those found in the MCNC benchmarks.

The area of synthesized circuits is reported as sum of the
areas of the gates in the circuit, after technology mapping. For
standard cell technology, the SIS Mapper is used to perform
technology mapping to the lib2.genlib standard cell library
from the MCNC benchmark. Another common measure of
area is literal count, however, we use the area after technology
mapping as our metric because the tools (FBDD, SIS, BDS)
target different levels of decomposition, which has an effect on
literal count. For FPGA technology, we use the area-oriented
Praetor mapper in the UCLA RASP package [39], and map
the designs to LUTs of size four.

A. Sharing Extraction

To justify our restriction to only extractors of two variables,
we analyze the computational effort required to find extractors
of various sizes, in Section VI-A.1, and compare that to their
area improvement. In Section VI-A.2 we compare exhaustive,
all pairs, two variable, extractor enumeration to fast adjacent
pairs of variables enumeration. Finally, a comparison of FBDD
with sharing extraction versus FBDD without sharing extrac-
tion is given in Section VI-A.3.

1) Maximum Extractor Size: The runtime of sharing ex-
traction grows exponentially with the size of the extractors
considered. We stated that the runtime could be improved by
limiting extractors to two variables without much sacrifice in
area. In this section we give empirical evidence to support that
claim.

The large examples of the MCNC benchmark were synthe-
sized using varying maximum extractor sizes of two to five.
The exact algorithm, which enumerates all variable combina-
tions, is used. The runtimes spent on sharing extraction are
summed together and shown in Figure 3. From the figure, a
steep trade off between maximum extractor size and runtime
can be seen. Sharing extraction with extractors of five variables
is over nine times slower than with extractors of two variables.
With such large runtimes, sharing extraction dominates the
overall runtime of synthesis.

To determine the effect that maximum extractor size has on
area, we performed logic synthesis with a maximum extractor
size of 5, and collected information on the distribution of
extractor sizes found. The number of shared extractors found
for circuits in the MCNC benchmark are collected and reported
in Table III. Each number in the table indicates the number of
prime extractors found, for a given size. An extractor of size
K is prime if it cannot be disjunctively extracted by a function
of size less than K.

The data shows that two variable extractors clearly make
up the majority. On average, extractors of size three through

Runtime vs. Maximum Extractor Size

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2 Var
 3 Var
 4 Var
 5 Var

Extractor Size

R
u

n
ti

m
e

[s
]

Fig. 3. Runtime vs. Maximum Extractor Size.

TABLE III

DISTRIBUTION OF SHARED EXTRACTOR SIZES.

Circuit 2 Var 3 Var 4 Var 5 Var
C1355 12 0 0 0
C1908 176 0 0 0
C2670 163 9 0 1
C3540 198 0 0 0
C5315 502 2 3 0
C6288 0 0 0 0
C7552 492 2 0 0
alu4 70 7 4 0
dalu 707 10 0 0
des 1697 0 0 0
frg2 619 0 0 0
i10 785 0 0 0
i8 2096 0 0 0
i9 566 0 0 0
k2 1911 0 0 0
pair 116 6 0 0
rot 73 3 0 0
t481 2733 0 0 0
too large 359 0 0 0
vda 888 0 0 0
x3 234 0 0 0

Total 14397 39 7 1

five make up only 0.33% of the shared extractors found,
with two variable extractions making up the rest. This is not
an entirely obvious result. The number of prime extractors
with N variables grows super exponentially with respect to N.
As analyzed earlier, there are 5 two variable valid extractors
(prime extractors of positive polarity). This number grows to
52 three variable valid extractors and 28620 four variable valid
extractors. If circuits were composed of random circuits, the
proportion of two variable extractors would be much less. In
practice, circuits are typically composed of highly structured
logic, such as AND, OR and XOR gates, which can be
disjunctively extracted using two variable extractors.

The area results produced using the varying maximum
extractor sizes are shown in Figure 4. With relatively few large
extractors available for sharing, the effort put into their detec-
tion has little effect on area results. Since the computational
cost of finding large extractors is high, and the area gain almost
non-existent, the runtime of sharing extraction can safely be
improved by ignoring large extractors, without significantly

11

Area vs. Maximum Extractor Size

0

5000

10000

15000

20000

25000

30000

2 Var
 3 Var
 4 Var
 5 Var

T
h

o
u

sa
n

d
s

Extractor Size

A
re

a

Fig. 4. Area vs. Maximum Extractor Size.

Fast vs. Exact [Area]

0

5000

10000

15000

20000

25000

30000

Fast
 Exact

T
h

o
u

sa
n

d
s

A
re

a

(a) Area

Fast vs. Exact [Runtime]

0

50

100

150

200

250

300

350

400

Fast
 Exact

R
u

n
ti

m
e

[s
]

(b) Runtime

Fig. 5. Fast vs. Exact Two Variable Extraction.

affecting area.
2) Fast Two Variable Extraction: Further improvements

in runtime are possible when the extractor size is fixed at
two. Extractors can be found incrementally and transitively
which alleviate the need to process extractors between all pairs
of variables. While algorithmically faster, the fast extraction
algorithm is inexact and may miss some sharing opportunities,
however the loss was found to be minimal. In total, the
fast extraction algorithm runs 2.5 times faster than the exact
algorithm, while inflating area by merely 0.08%.

3) Sharing Extraction vs. No Sharing Extraction: Finally,
to determine the impact that sharing extraction has on area,
we obtain area results produced using FBDD both with and

Sharing Extraction vs. No Sharing Extraction

[Area]

0
 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

C1355

C1908

C2670

C3540

C5315

C6288

C7552

alu4

dalu

des

frg2

i10

i8

i9

k2

pair

rot

t481

too_large

vda

x3

Thousands

C
ir

cu
it

Area

NSE

SE

Fig. 6. Sharing Extraction vs. No Sharing Extraction [Area].

without sharing extraction enabled. For the best area and run-
time balance, we use the fast, two variable sharing extraction
algorithm in these tests. The area results are shown in Figure
6. The benefit experienced from sharing extraction is highly
dependent on the circuit type. Circuits k2 and vda experiencing
savings of over 100%, while a few circuits do not benefit from
sharing extraction at all. Overall however, most circuits do
experience benefit from sharing extraction, with the average
area savings found to be a substantial 28%.

As an added benefit, our sharing extraction algorithm also
improves the overall runtime of logic synthesis. The runtime
results for FBDD with and without sharing extraction is shown
in Figure 7. Adding sharing extraction capabilities to logic
synthesis has resulted in a runtime improvement of 82%!
This is possible because sharing extraction is interleaved with
decomposition, which work together in breaking the circuit
down into basic gates. Each transformation that is handled
with sharing extraction means that one less decomposition is
required. Our findings indicate that the computational cost
of performing sharing extraction is less than the cost of
decomposition. The result, is a synthesis system with both
substantially improved area and runtime.

B. Asymptotic Benefits of Logic Folding

Logic folding shares logic transformations to reduce run-
time. But the effectiveness of this method depends on the
proportion of sharable to non-sharable costs. We report the
number of transformations performed, and the number of
transformations that could be shared. In order to measure the
effectiveness of the method on individual transformations, we
perform this study on each of the major synthesis stages -
decomposition, elimination and sharing extraction.

12

Sharing Extraction vs. No Sharing Extraction

[Runtime]

0
 50000
 100000
 150000
 200000

C1355

C1908

C2670

C3540

C5315

C6288

C7552

alu4

dalu

des

frg2

i10

i8

i9

k2

pair

rot

t481

too_large

vda

x3

C
ir

cu
it

Runtime [ms]

NSE

SE

Fig. 7. Sharing Extraction vs. No Sharing Extraction [Runtime].

In this section we are interested in seeing how folded
synthesis performs in the best case. To do this we generate
benchmark circuits by instantiating varying number of copies
of a template circuit. For the template circuit we use rot.blif
from the MCNC benchmark. In this way, regularity is in-
creased while the logic content of the circuit remains the same.
In total, there are ten benchmark circuits with the number
of instances of rot varying from one to ten. We report the
runtime growth for the elimination, decomposition and sharing
extraction stages against this synthetic benchmark.

The runtime growth of elimination is shown in Figure 8.
The “Time” and “# of Folded Elims” plots show normalized
values, which emphasize growth instead of absolute value, to
enable their comparison. The normalized values are computed
as V (N)normalized = V (N)/V (1), where N is the number of
instances. A “Reference” line reflects the total time required
for elimination if each instance of rot were processed indi-
vidually. From the graph, it shows that “# of Folded Elims.”
remains constant for all circuits repetitions, due to the fact that
additional instances can share the eliminations computed for
the first.

The total runtime of elimination can be broken down into
sharable and non-sharable components. In elimination, the
sharable components consist of collapsing BDDs with the
compose operation, and the simplification of the composed
function that follows. The shared components are computed
once, and the result shared with all compatible elimination
pairs. The non-shared parts consist of computing the charac-
teristic functions for the support configurations, and updating
the gate instances in the Boolean network as eliminations are
committed. As regularity is increased with each added repe-
tition, the cost of computing the sharable components remain

ROT - Runtime Growth of Elimination

0

2

4

6

8

10

12

1
 2
 3
 4
 5
 6
 7
 8
 9
 10

of Repetitions

Reference

Folded Elims.

Time

Fig. 8. ROT.blif - Elimination.

unchanged while the cost of the non-sharable components
grows linearly. In practice, the sharable costs may grow as
well because the sequence in which transformations take place
in each template instance cannot be guaranteed to be the same.
But in practice, any increase in the sharable costs are minimal.

The normalized values for the actual time, plotted in Figure
8, closely follows the “# of Folded Elims.”. At 10 repetitions,
the actual time has grown to a mere 1.36, illustrating that
the sharable costs dominate the overall cost of elimination.
The cost of the non-sharable component, while not negligible,
grows far more slowly than if regularity were not used.

The runtime growth for decomposition, as shown in Figure 9
has characteristics similar to the growth for elimination. Again,
the count for the number of folded transformations remains
relatively constant for all numbers of repetitions. Although
this time, the plot is not perfectly constant, due to differences
in the way each instance is synthesized. For decomposition,
the sharable portion consists of computing the various BDD
decomposition algorithms. The non-sharable portion consists
of updating the gates for each instance as decompositions are
applied. The non-sharable costs makes up an even smaller
fraction of the total cost when compared to elimination where
support configurations were computed. As a result, the growth
rate for actual time spent on decomposition grows even slower
than that of elimination. At 10 repetitions, only an 18%
increase in the runtime of decomposition is experienced.

Sharing extraction has two separate, sharable computations.
The first sharable computation, called SE1 for reference, is
the enumeration of disjunctive extractors. Equivalent functions
will produce the same list of disjunctive extractors which can
be shared by all instances of the function. This is the cost
of computing cofactors between all adjacent variables of the
function to determine if they can be disjunctively extracted. It
does not include, however, enumerating the extractors in terms
of absolute support, which must be performed for each gate
individually.

The second sharable component, called SE2 for reference, is
the computation of remainders. When an extractor is selected
for sharing, it must be extracted from its parent function to
produce a remainder, which requires the expensive process

13

ROT - Runtime Growth of Decomposition

0

2

4

6

8

10

12

1
 2
 3
 4
 5
 6
 7
 8
 9
 10

of Repetitions

Reference

Folded Decomp.

Time

Fig. 9. ROT.blif - Decomposition.

ROT - Runtime Growth of Sharing Extraction

0

2

4

6

8

10

12

1
 2
 3
 4
 5
 6
 7
 8
 9
 10

of Repetitions

Reference

NFSE1

NFSE2

Time

Fig. 10. ROT.blif - Sharing Extraction.

of simplification through variable reordering. For an extrac-
tion that breaks F down into remainder R and extractor
E, extractions that involve the same F and use the same
relative positions of the variables of E in F, produce the same
remainders.

The growth for the number of folded computations for each
of SE1 and SE2 are shown in Figure 10. The number of
folded computations remains virtually flat for both plots. At
10 repetitions, only 10% more folded SE1 computations and
11% more folded SE2 computations are required. Due to the
high non-sharable cost of manipulating large lists of extractors,
the actual runtime grows quite noticeably. The run time of the
sharing extraction component is doubled when synthesizing
10 instances. However, the overall growth is still far smaller
than if each computation were performed individually.

The total, overall runtime, is shown in Fig. 11. It has
growth similar with the three major synthesis steps described
earlier. 2403 ms were required to synthesize a circuit with
10 repetitions of rot.blif where 12800 ms would have been
required if each instance were synthesized individually; a
runtime savings of 81%.

Runtime Growth of ROT

0

2

4

6

8

10

12

1
 2
 3
 4
 5
 6
 7
 8
 9
 10

of Repetitions

Reference

Total

Fig. 11. Runtime Growth of ROT.

Folded vs. Regular Elimination

0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

C1355

C1908

C2670

C3540

C5315

C6288

C7552

alu4

dalu

des

frg2

i10

i8

i9

k2

pair

rot

t481

too_large

vda

x3

C
ir

cu
it

of Eliminations

Folded

Regular

Fig. 12. Folded vs. Regular Elimination.

C. Realistic Benefits of Logic Folding

Now we look at how folded synthesis performs under a set
of comprehensive benchmarks, which are more representative
of realistic circuits. We run the benchmarks through FBDD
and count the number of folded and regular transformations
performed. Dividing the number of regular transformations by
the number of folded transformations gives an indication of the
runtime improvement that can be expected. It is essentially an
upper bound on the achievable speedup.

Figure 12 shows the number of regular versus folded elimi-
nations counted. On average, the folded approach requires 3.85
times less eliminations than the regular approach. Reductions
varied between 1.07 times in alu4 to 136.25 times in circuit
C6288.

Figure 13 shows the number of regular versus folded decom-

14

Folded vs. Regular Decomposition

0
 200
 400
 600
 800
 1000
 1200

C1355

C1908

C2670

C3540

C5315

C6288

C7552

alu4

dalu

des

frg2

i10

i8

i9

k2

pair

rot

t481

too_large

vda

x3

C

ir
cu

it

of Decompositions

Folded

Regular

Fig. 13. Folded vs. Regular Decomposition.

positions counted. On average, the folded approach requires
4.35 times less decompositions than the regular approach.
Reductions varied between 1.73 times in circuit alu4 to 30
times in circuit C6288.

The number of regular and folded extractor enumerations
are shown in Figure 14. On average, 11 extractor enumerations
share one computation. The number of regular and folded
remainder computations are shown in Figure 15. On average,
3 remainders share one computation.

D. Comparative Study

In this section, we study the area and runtime performance
of FBDD against publicly available logic synthesis packages,
including SIS (version 1.2 [40]), BDS (version 1.2 [41]), BDS-
PGA (version 2.0 [42]), as well as commercial logic synthesis
tools, Xilinx ISE ver. 7.1.01i [43] and Altera Quartus ver. 5.0
sp1 [44]1.

A word of caution is needed in interpretting the presented
results correctly and fairly. It is well known that a logic
synthesis technique may work well on some benchmarks but
not so well on others. For that reason many packages provide
command line options, or synthesis scripting capabilities to
allow the user to customize their optimization strategies. In this
study we use only the standard script, or the default command
line options that target area minimization. For ISE, default
options are used with the optimization goal is set to area,
and effort level set to high. The Spartan3 device (xc3s1500-
4-fg676) is selected as the target device. For Altera Quartus,

1The latest version of MVSIS at the time of our study, MVSIS 2.0, still
hangs on some benchmarks and was not included in the study for fairness. It
was suggested [5] that MVSIS produces area comparable to SIS and around
3-5 times faster than SIS.

Folded vs. Regular Sharing Extraction 1

0
 2000
 4000
 6000
 8000
 10000
 12000

C1355

C1908

C2670

C3540

C5315

C6288

C7552

alu4

dalu

des

frg2

i10

i8

i9

k2

pair

rot

t481

too_large

vda

x3

C
ir

cu
it

of TVE Computations

Folded

Regular

Fig. 14. Folded vs. Regular Extractor Enumeration.

Folded vs. Regular Sharing Extraction 2

0
 500
 1000
 1500
 2000
 2500
 3000
 3500

C1355

C1908

C2670

C3540

C5315

C6288

C7552

alu4

dalu

des

frg2

i10

i8

i9

k2

pair

rot

t481

too_large

vda

x3

C
ir

cu
it

of Extractions

Folded

Regular

Fig. 15. Folded vs. Regular Remainder Computation.

15

default options are selected with the optimization goal set to
area. The target device is a Cyclone II (EP2C70F896I8). When
comparing area and runtime, those benchmarks that fail or do
not terminate within four hours are discarded from the final
statistics.

Table IV gives results on the MCNC benchmark suite for
academic tools. For SIS, we used the script.rugged script,
which is commonly used for area minimization. FBDD man-
ages to run 59.8X, 1.8X and 3.8X faster than SIS, BDS, BDS-
PGA respectively.

Table V gives results on the MCNC benchmark suite for
commercial tools. Since technology mapping cannot be sep-
arated from logic synthesis in ISE and Quartus, the runtimes
reported include time for technology mapping. In FBDD’s
case, the runtime includes the time used by Praetor. FBDD
manages to run 19X and 33X times faster than ISE and
Quartus respectively. It also uses 19.4% less LUTs than ISE
and 1.7% less LUTs Quartus.

Table VI shows the ITC benchmark results for academic
tools. Since BDS and BDS-PGA do not process sequential
circuits, their results on this suite cannot be included. Also,
since the script.rugged script takes excessively long for the ITC
benchmark, we used script.algebraic instead. It is interesting
to compare FBDD against SIS on these larger benchmarks:
FBDD achieves similar area as SIS for standard cells, and
slightly better area on FPGAs. However, the runtime is 31.7
times faster.

Table VII compares ITC benchmark results for FBDD and
commercial tools. For the ITC benchmark, FBDD is 50.1X
faster than ISE and 4.9X faster than Quartus. FBDD uses 2.8%
less LUTs than ISE and 2.4% more LUTs than Quartus.

VII. CONCLUSIONS

From our study, we observe that compared to the classic,
cubeset based logic synthesis targeting standard cells, FBDD
produces inferior area results on the smaller MCNC bench-
mark suite, but comparable results on the much larger ITC
benchmark suite. FBDD however runs orders of magnitude
faster. This discrepancy of area performance on MCNC disap-
peared on FPGAs, suggesting that FBDD might be spending
the right amount of effort on sharing extraction. Compared
with other BDD-based logic synthesis systems, FBDD has
consistently improved on both area and runtime, for both
standard cells and FPGAs.

Still at the early stage of research, FBDD suffers from a
number of limitations. For example, delay oriented optimiza-
tion is not yet in place and it is still not clear to what extent
the logic folding strategy may affect such optimizations. Nev-
ertheless, we believe FBDD has made a step forward towards
the goal of scaling logic synthesis algorithms. Based on our
experience, we believe tremendous opportunities exist along
this direction. For example, folded transformations manage to
cut the runtime of decomposition and sharing extraction by
multiple orders of magnitude. The bottleneck currently lies
with elimination, which occupies 70% of the runtime. The
overall runtime of FBDD can be dramatically improved if
this last bottleneck can be scaled down by the same amount

as other transformations. It is our hope that a truly scalable
synthesis system can open the door for future research on
integrating logic synthesis downwards with physical synthesis,
and upwards with high level and system level synthesis.

REFERENCES

[1] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Sal-
danaha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-
Vincentelli, “SIS: A system for sequential circuits synthesis,” Tech. Rep.
UCB/ERL M92/41, Department of Electrical Engineering and Computer
Science, University of California, Berkeley, CA 94720, 1992.

[2] C. Yang, M. Ciesielski, and V. Singhal, “BDS: A BDD-based logic
optimization system,” in Proceeding of the 37th Design Automation
Conference, 2000, pp. 92–97.

[3] R. Brayton and C. McMullen, “The decomposition and factorization of
boolean expressions,” in ISCAS Proceedings, 1982, pp. 49–54.

[4] R. K. Brayton, R. L. Rudell, and A. L. Sangiovanni-Vincentelli, “MIS:
A multiple-level logic optimization system,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 6, no.
6, pp. 1062–1081, 1987.

[5] D. Chai, J.-H. Jiang, Y. Jiang, A. Mishchenko, and R. Brayton, “MVSIS
2.0 user’s manual,” Tech. Rep., Department Electrical and Computer
Science, University of California, Berkeley, CA 94720, 2004.

[6] H. Sawada, S. Yamashita, and A. Nagoya, “An efficient method for
generating kernels on implicit cube set representations,” in International
Workshop on Logic Synthesis, 1999.

[7] N. Vemuri, P. Kalla, and R. Tessier, “BDD-based logic synthesis for
LUT-based FPGAs,” ACM Transactions on Design Automation of
Electronic Systems, vol. 7, no. 4, pp. 501–525, October 2002.

[8] A. Mishchenko, B. Steinbach, and M. Perkowski, “An algorithm for
bi-decomposition of logic functions,” in Proceeding of the 38th Design
Automation Conference, 2001, pp. 103–108.

[9] C. R. Edwards and S. L. Hurst, “A digital synthesis procedure under
function symmetries and mapping methods,” IEEE Transactions on
Computer, vol. C-27, no. 11, pp. 985–997, 1978.

[10] B.-G. Kim and D. L. Dietmeyer, “Multilevel logic synthesis of
symmetric switching functions,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 10, no. 4, pp. 436–446,
April 1991.

[11] M. Chrzanowska-Jeska, W. Wang, J. Xia, and M. Jeske, “Disjunctive
decomposition of switching functions using symmetry information,” in
Proceedings of IEEE SBCCI2000 International Symposium on Inte-
grated Circuits and System Design, Manaus, Brazil, September 2000,
p. 67.

[12] V. N. Kravets and K. A. Sakallah, “Generalized symmetries in boolean
functions,” in Proceedings of the International Conference on Computer-
Aided Design, San Jose, November 2000, pp. 526–532.

[13] Y.-T. Lai, S. Sastry, and M. Pedram, “Boolean matching using binary
decision diagrams with applications to logic synthesis and verification,”
in Proceedings of the International Conference on Computer-Aided
Design, San Jose, November 1992, pp. 452–458.

[14] F. Mailhot and G. De Micheli, “Technology mapping using boolean
matching and don’t care sets,” in Proceedings of the European Design
Automation Conference, 1990, pp. 212–216.

[15] D. Moller, J. Mohnke, and M. Weber, “Detection of symmetry of
boolean functions represented by robdds,” in Proceedings of the Inter-
national Conference on Computer-Aided Design, San Jose, November
1993, pp. 680–684.

[16] S. Panda, F. Somenzi, and B. F. Plessier, “Symmetry detection and
dynamic variable ordering of decision diagrams,” in Proceedings of
the International Conference on Computer-Aided Design, San Jose,
November 1994, pp. 628–631.

[17] A. Mishchenko, “Fast computation of symmetries in boolean functions,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 22, no. 11, pp. 1588–1593, November 2003.

[18] J. S. Zhang, M. Chrzanowska-Jeske, A. Mishchenko, and J. R. Burch,
“Detecting support-reducing bound sets using two-cofactor symmetries,”
in Proceedings of the Asia and South Pacific Design Automation
Conference, Shanghai, China, January 2005.

[19] D. Wu and J. Zhu, “BDD-based two-variable sharing extraction,” in Pro-
ceedings of the Asia and South Pacific Design Automation Conference,
Shanghai, China, January 2005.

[20] D. Wu and J. Zhu, “Folded logic decomposition,” in International
Workshop on Logic and Synthesis, Laguna Beach, California, June 2003.

16

TABLE IV

COMPARATIVE RESULTS FOR MCNC BENCHMARK (ACADEMIC).

SIS script.rugged BDS 1.2 BDS-pga 2.0 FBDD 1.0
Circuit Runtime ASIC FPGA Runtime ASIC FPGA Runtime ASIC FPGA Runtime ASIC FPGA

Area Area Area Area Area Area Area Area

9symml 3900 158 62 240 345 110 240 294 98 219 57 15
C1355 3000 420 78 650 441 76 620 446 79 190 431 79
C17 0 7 2 0 8 2 0 8 2 15 11 2
C1908 4000 434 111 1300 450 122 1290 468 131 765 415 110
C2670 2900 584 182 - - - - - - 1377 591 171
C3540 8300 1062 388 1510 1101 350 2400 1065 343 17176 1123 336
C432 31700 177 67 250 222 77 1490 329 97 300 289 71
C499 3000 420 78 1480 434 81 1450 433 78 146 427 79
C5315 4400 1341 455 - - - - - - 2046 1384 456
C6288 13600 2809 509 2800 3066 601 2230 2994 538 480 3106 494
C7552 29900 1794 451 4710 2103 474 5450 2020 511 4350 1918 477
C880 1100 356 119 1070 352 107 1060 392 119 400 371 100
alu2 9800 302 126 340 344 99 360 318 78 3615 494 151
alu4 43700 599 230 2630 957 269 2310 994 297 6708 1036 312
apex6 1100 620 200 970 823 250 530 757 255 771 755 241
apex7 300 205 66 280 271 76 140 244 90 219 270 79
b1 0 7 3 0 8 3 0 10 3 13 6 3
b9 100 116 44 110 113 44 70 116 48 133 118 40
c8 200 104 39 110 162 40 50 107 36 158 131 41
cc 100 55 19 70 64 23 30 62 25 38 57 19
cht 100 142 39 130 165 39 60 147 38 21 149 38
cm138a 100 25 9 10 34 9 0 36 9 18 36 9
cm150a 100 45 13 3300 37 13 3320 37 13 99 38 13
cm151a 0 19 8 0 35 8 0 19 7 38 20 8
cm152a 0 16 6 240 21 7 10 16 6 31 16 6
cm162a 100 38 13 20 42 12 0 45 14 29 39 12
cm163a 0 35 10 10 39 12 10 43 12 24 38 12
cm42a 100 30 10 10 38 10 10 38 10 19 37 10
cm82a 0 17 4 0 23 4 0 20 4 15 19 4
cm85a 100 41 14 20 45 12 10 45 12 52 44 14
cmb 0 46 17 30 51 16 10 54 19 39 60 16
comp 200 105 33 28070 141 30 27970 141 31 156 116 31
cordic 100 51 14 60 75 20 90 79 19 168 66 16
count 100 111 45 100 133 45 50 133 39 36 136 45
cu 100 51 18 40 58 20 10 62 20 55 54 18
dalu 29000 751 277 - - - - - - 1769 1240 355
decod 100 44 18 30 52 18 20 44 18 18 44 18
des 38800 2851 1130 - - - 6100 4014 1340 7848 3569 1137
example2 700 280 106 320 364 119 150 331 122 181 325 113
f51m 200 88 23 40 86 27 30 99 23 62 107 25
frg1 1000 125 49 280 109 37 230 110 40 208 48 19
frg2 5800 637 250 1870 1065 395 1070 1162 445 1338 804 290
i1 200 46 16 30 50 18 10 50 17 29 47 16
i10 139000 1928 682 4210 2581 787 3110 2495 849 4366 2211 712
i2 1800 170 72 4550 180 71 1510 205 72 4056 171 69
i3 300 106 46 170 106 46 120 103 46 108 106 46
i4 61500 180 70 240 183 71 410 199 74 842 180 70
i5 300 210 66 180 260 73 180 237 75 101 213 67
i6 700 345 113 560 525 145 320 461 144 91 381 107
i7 1000 559 173 1670 683 222 520 680 201 140 473 169
i8 5700 886 338 3130 1295 457 2420 1296 534 2333 1012 367
i9 1700 502 193 2030 729 280 660 682 276 337 621 194
k2 16400 1012 403 - - - - - - 9462 1002 382
lal 300 90 30 110 101 35 50 109 42 102 94 32
majority 0 10 2 0 12 3 0 10 3 19 10 2
mux 100 38 13 3000 37 13 3030 37 13 98 37 13
my adder 300 165 32 4090 212 42 2010 177 32 36 141 32
pair 5400 1376 440 4110 1527 476 3420 1482 478 1390 1581 488
parity 100 44 5 0 40 5 0 40 5 24 44 5
pcle 100 63 20 40 67 20 10 67 20 31 64 20
pcler8 100 87 29 60 90 30 20 90 30 37 87 29
pm1 100 42 18 30 50 18 20 50 21 40 50 20
rot 1900 595 213 10360 738 248 9850 642 225 679 632 222
sct 300 68 17 80 96 29 40 90 32 82 90 23
t 100 7 244 0 10 2 0 7 2 13 7 2
t481 24400 611 244 1130 32 5 - - - 15021 34 5
tcon 0 18 8 10 45 8 10 18 8 11 18 8
term1 1400 151 40 360 203 66 200 179 60 1122 278 89
too large 5397100 264 105 41300 2034 760 174390 1813 695 3840 1684 507
ttt2 500 193 67 180 235 66 100 216 68 253 238 70
unreg 100 73 33 80 103 32 50 99 32 20 97 32
vda 9800 525 226 1660 689 270 590 865 366 1248 549 220
x1 700 266 113 720 355 141 400 335 137 608 384 133
x2 100 42 16 40 46 17 20 57 16 54 67 17
x3 1600 650 220 1020 691 209 670 753 232 553 702 217
x4 800 346 131 630 526 161 300 492 175 318 399 129
z4ml 100 33 9 0 30 6 10 39 8 26 31 6
Total 5911800 28858 9782 98833 33768 10005
BDS Total 138880 28474 8489 76331 25980 7504
BDS-pga Total 263320 31838 10057 69158 29514 8636
Norm 59.8X 85.5% 97.8% 1.8X 109.6% 113.1% 3.8X 107.9% 116.5% 1.0X 100.0% 100.0%

17

TABLE V

COMPARATIVE RESULTS FOR MCNC BENCHMARK (COMMERCIAL).

Xilinx ISE Altera Quartus FBDD 1.0
Circuit Runtime FPGA Runtime FPGA Runtime FPGA

Area Area Area

9symml 16955 82 7777 9 219 15
C1355 16533 78 5555 74 290 79
C17 12122 2 2222 2 15 2
C1908 21666 129 8888 103 865 110
C2670 27844 234 12222 132 1677 171
C3540 37755 396 25555 323 17676 336
C432 16411 89 6666 73 400 71
C499 14755 78 5555 74 246 79
C5315 49133 477 32222 395 2746 456
C6288 82011 696 38888 507 1680 494
C7552 83000 494 38888 459 5250 477
C880 16322 109 10000 114 600 100
alu2 19411 157 21111 121 3815 151
alu4 30488 292 28888 252 7208 312
apex6 23055 322 23333 222 1071 241
apex7 17800 82 15555 77 319 79
b1 12188 2 7777 2 13 3
b9 14566 47 10000 36 133 40
c8 14200 52 12222 35 258 41
cc 13266 20 10000 17 38 19
cht 13177 46 11111 38 121 38
cm138a 12711 10 11111 9 18 9
cm150a 12900 14 12222 11 99 13
cm151a 12444 7 11111 5 38 8
cm152a 12433 6 12222 6 31 6
cm162a 12966 14 13333 14 29 12
cm163a 12566 11 13333 11 24 12
cm42a 12466 10 14444 10 19 10
cm82a 12288 6 13333 4 15 4
cm85a 12955 11 15555 12 52 14
cmb 13077 15 16666 16 39 16
comp 15655 30 16666 31 156 31
cordic 13711 21 16666 20 168 16
count 13588 43 16666 39 136 45
cu 13055 19 17777 16 55 18
dalu 46211 366 60000 406 2269 355
decod 12744 25 18888 18 18 18
des 81333 1524 112222 1156 9548 1137
example2 16611 115 31111 110 481 113
f51m 13333 25 28888 41 162 25
frg1 16477 43 30000 41 208 19
frg2 28922 339 58888 273 1738 290
i1 12844 16 33333 16 129 16
i10 81855 777 85555 683 5466 712
i2 15955 79 36666 69 4256 69
i3 13388 54 35555 46 208 46
i4 16233 75 37777 94 942 70
i5 14600 75 40000 110 201 67
i6 15577 144 41111 129 291 107
i7 16422 195 50000 167 440 169
i8 31733 371 76666 350 2833 367
i9 18555 212 55555 197 637 194
k2 50222 764 98888 437 9862 382
lal 14777 40 61111 28 202 32
majority 12222 2 57777 2 19 2
mux 12588 16 58888 11 98 13
my adder 13177 32 60000 32 136 32
pair 34311 508 100000 507 2090 488
parity 12288 5 58888 5 124 5
pcle 13022 20 61111 19 31 20
pcler8 13522 29 62222 30 37 29
pm1 13433 18 65555 14 40 20
rot 24533 237 93333 208 979 222
sct 14633 39 78888 21 182 23
t 12400 2 80000 2 13 2
t481 46011 73 123333 357 15021 5
tcon 12377 8 77777 8 11 8
term1 21477 130 98888 82 1222 89
too large 508155 277 152222 407 4540 507
ttt2 16855 77 106666 53 353 70
unreg 12955 48 91111 33 120 32
vda 30955 377 126666 253 1448 220
x1 21422 141 117777 135 808 133
x2 13155 17 122222 15 54 17
x3 25155 347 151111 215 853 217
x4 20933 192 150000 116 518 129
z4ml 13033 12 138888 9 26 6
Total 2171911 11947 3761111 10174 114133 10005
Norm 19.0X 119.4% 33.0X 101.69% 1.0X 100.0%

18

TABLE VI

COMPARATIVE RESULTS FOR ITC BENCHMARK (ACADEMIC).

SIS script.algebraic FBDD 1.0
Circuit Runtime ASIC FPGA Runtime ASIC. FPGA

Area Area Area Area
b01blif 0 67744 13 49 50576 13
b02blif 0 41296 4 25 26448 4
b03blif 100 266336 52 108 136416 52
b04blif 800 885312 174 935 619904 162
b05blif 1200 861648 220 1249 806432 222
b06blif 100 82592 10 40 65888 10
b07blif 400 636144 140 312 437552 132
b08blif 200 266800 48 269 219008 56
b09blif 100 264944 48 119 163328 49
b10blif 200 283968 78 243 228288 67
b11blif 800 740544 174 944 762816 169
b12blif 2700 1659728 402 4984 1201760 383
b13blif 400 540096 97 252 353104 88
b14blif 77900 6895504 1931 37014 5959616 1816
b14 1blif 50800 6057520 1626 18294 5189840 1622
b15blif 11553500 10691488 3185 43882 9205760 2901
b15 1blif 261200 10607040 3094 44739 8549664 2779
b17blif - - - 161595 28667776 9222
b17 1blif - - - 122957 26631744 8529
b20blif 502600 13910720 3887 69114 12431024 3695
b20 1blif 351300 12562800 3295 52185 11405120 3298
b21blif 542200 14544544 4159 81417 13083872 3946
b21 1blif 379100 12728448 3364 53043 11097488 3334
b22blif 1739700 21203408 5890 66777 18879232 5694
b22 1blif 1234600 19035136 5029 51099 17011168 4897
Total 811645 173183824 53140
SIS Total 16699900 134833760 36920 527093 117884304 35389
Norm 31.7X 114.4% 104.3% 1.0X 100.0% 100.0%

[21] G. Odawara, T. Hiraide, and O. Nishina, “Partitioning and placement
technique for cmos gate arrays,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 6, no. 3, pp. 355–363,
May 1987.

[22] R. Nijssen and J. Jess, “Two-dimensional datapath regularity extraction,”
in Proceeding of the International Symposium on Physical Design, 1996.

[23] S. R. Arikati and R. Varadarajan, “A signature based approach to
regularity extraction,” in Proceedings of the International Conference
on Computer Design, San Jose, 1997.

[24] T. Kutzschebauch and L. Stok, “Regularity driven logic synthesis,” in
Proceedings of the International Conference on Computer-Aided Design,
San Jose, 2000, pp. 439–446.

[25] K. Keutzer, “Dagon: Technology binding and local optimization by
DAG matching,” in Proceeding of the Design Automation Conference,
June 1987.

[26] D. Rao and F. Kurdahi, “On clustering for maximal regularity ex-
traction,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 12, no. 8, pp. 1198–1208, August 1993.

[27] M. Corazao, M. Khalaf, L. Guerra, M. Potkonjak, and J. Rabey, “Per-
formance optimization using template mapping for datapath-intensive
high-level synthesis,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 15, no. 8, August 1996.

[28] A. Chowdhary, S. Kale, P. Saripella, N. Sehgal, and R. Gupta, “A general
approach for regularity extraction in datapath circuits,” in Proceedings
of the International Conference on Computer-Aided Design, 1998, pp.
332–339.

[29] S. Hassoun and C. McCreary, “Regularity extraction via clan-based
structural circuit decomposition,” in Proceedings of the International
Conference on Computer-Aided Design, 1999, pp. 414–419.

[30] M. Sauerhoff and I. Wegener, “On the complexity of minimizing the
OBDD size of incompletely specified functions,” in IEEE Transactions
on Computer Aided Design, 1996, pp. 1434–1437.

[31] D. Debnath and T. Sasao, “Fast boolean matching under permutation

using representative,” in Asia and South Pacific Design Automation
Conference, ASP-DAC’992001 IEEE/ACM, 1999, pp. 359–362.

[32] Jovanka Ciric and Carl Sechen, “Efficient canonical form for boolean
matching of complex functions in large libraries,” in 2001 IEEE/ACM
International Conference on Computer Aided Design, 2001.

[33] J. Mohnke, P. Molitor, and S. Malik, “Application of bdds in boolean
matching techniques for formal logic combinational verification,” in
International Journal on Software Tools for Technology Transfer, 2001,
pp. 48–53.

[34] Toronto Synthesis Group, FBDD Web Site, http://www.eecg.
toronto.edu/˜jzhu/fbdd.html.

[35] R. Rudell, “Dynamic variable ordering for ordered binary decision
diagrams,” in Proceedings of the International Conference on Computer-
Aided Design, 1993, pp. 42–47.

[36] Fabio Somenzi, “Cudd: Cu decision diagram package release 2.3.1,”
Tech. Rep., Department of Electrical and Computer Engineering, Uni-
versity of Colorado at Boulder, 2001.

[37] Saeyang Yang, “Logic synthesis and optimization benchmarks user
guide version 3.0,” Tech. Rep., Microelectronics Center of North
Carolina, P. O. Box 12889, Research Triangle Park, NC 27709, 1991.

[38] F. Corno, M. Sonza Reorda, and G. Squillero, “RT-level ITC 99
benchmarks and first atpg results,” in IEEE Design & Test of Computers,
2000, pp. 44–53.

[39] UCLA VLSI CAD LAB, RASP Website, http://ballade.cs.
ucla.edu/software_release/rasp/htdocs/.

[40] Berkeley CAD Group, SIS Website, http://www-cad.eecs.
berkeley.edu/software.html.

[41] University of Massachusetts at Amherst, BDS Website, http://www.
ecs.umass.edu/ece/labs/vlsicad/bds/bds.html.

[42] University of Massachusetts at Amherst, BDS-PGA Website, hhttp:
//www.ecs.umass.edu/ece/tessier/rcg/bds-pga-2.0/.

[43] Xilinx, Xilinx Website, http://www.xilinx.com/products/
design_resources/design_tool/.

[44] Altera, Quartus Website, http://www.altera.com/support/

19

TABLE VII

COMPARATIVE RESULTS FOR ITC BENCHMARK (COMMERICIAL).

Xilinx ISE Altera Quartus FBDD 1.0
Circuit Runtime FPGA Runtime FPGA Runtime FPGA

Area Area Area
b01blif 12722 12 8888 9 49 13
b02blif 12344 4 8888 4 25 4
b03blif 13766 29 8888 49 208 52
b04blif 21444 189 15555 165 1135 162
b05blif 29133 216 30000 186 1549 222
b06blif 12566 9 7777 9 40 10
b07blif 20933 146 14444 133 512 132
b08blif 14311 52 11111 43 369 56
b09blif 15400 63 8888 46 219 49
b10blif 15466 64 11111 62 343 67
b11blif 27011 205 20000 156 1244 169
b12blif 32755 399 26666 354 5484 383
b13blif 16233 93 10000 84 452 88
b14blif 409100 1912 157777 1830 41114 1816
b14 1blif 229688 1509 115555 1465 22094 1622
b15blif 431733 3274 235555 2995 54182 2901
b15 1blif 586844 3030 221111 2709 51939 2779
b17blif 36963422 9635 925555 9374 211195 9222
b17 1blif 4634011 9330 901111 8297 157157 8529
b20blif 1396422 3803 400000 3677 94414 3695
b20 1blif 860333 3189 266666 3052 70085 3298
b21blif 1463033 3941 413333 3837 101517 3946
b21 1blif 834822 3112 270000 3134 69843 3334
b22blif 2886644 5682 642222 5606 90177 5694
b22 1blif 1698111 4741 465555 4613 74599 4897
Total 52638255 54639 5196666 51889 1049945 53140
Norm 50.1X 102.8% 4.9X 97.6% 1.0X 100%

software/download/altera_design/quartus_w%e/
dnl-quartus_we.jsp.

APPENDIX

Theorem 1: Let E be an N variable disjunctive extractor of F.
Let S = {S0, · · · ,S2N−1} be the set of all minterms of E. Then E is
a disjunctive extractor of F iff all cofactors of F with respect to the
minterms in S map to exactly two functions (R1 and R2).

CASE: ⇐
1.

F = S0 ·F|S0 + · · ·+S2N−1 ·F|S2N−1 By Shannon’s expansion

Let U = {U0, · · · ,UJ−1} be the minterms of S such that F|Ui = R1,
0 ≤ i ≤ J−1.
Let V = {V0, · · · ,VK−1} be the minterms of S such that F|Vi = R2,
0 ≤ i ≤ K −1.
And U and V form a partition of S; U ∩V = �, U ∪V = S

F = (U0 + · · ·+UJ−1) ·R1 +(V0 + · · ·+VK−1) ·R2

Since U and V form a partition of S, U0 + · · ·+UJ−1 = (V0 + · · ·+
VK−1)

′.
A disjunctive extraction is possible by setting e = U0 + · · ·+UJ−1
and F = e ·R1 + e ·R2.

CASE: ⇒
2. E is a disjunctive extractor of F ⇒ F can be written as

F(X) = H(XE ,e),e = E(XE), where X is the support of F , XE is
the support of E, and XE = X −XE .

F = H(XE ,e)

= e ·H(XE ,e)|e + e ·H(XE ,e)|e By Shannon’s expansion

= E(XE) ·H(XE ,e)|e +E(XE) ·H(XE ,e)|e
Let U = {U0, · · · ,UJ−1} be the minterms that make up the on-set
of E(XE).
Let V = {V0, · · · ,VK−1} be the minterms that make up the off-set
of E(XE).
U ∪V , enumerate all the minterms of variables in XE .
F = (U0 + · · ·+UJ−1) ·H(XE ,e)|e +(V0 + · · ·+VK−1) ·H(XE ,e)|e
Enumerating the cofactors of F with respect to the minterms
of XE , we have, F|U0 = · · · = F|UJ−1 = H(XE ,e)|e and F|V0 =
· · · = F|VK−1 = H(XE ,e)|e. The cofactors of F with respect to the
minterms of E map to exactly two functions.

3. Q.E.D.

Theorem 2: E = ab is a disjunctive extractor of F iff F|ab =
F|ab = F|ab.

PROVE: If E = ab is a disjunctive extractor of F then F|ab = F|ab =
F|ab.

1.
F = R1ab+R2ab

= R1ab+R2ab+R2ab +R2ab
2.

F|ab = R2

F|ab = R2

F|ab = R2

PROVE: If F|ab = F|ab = F|ab then E = ab is a disjunctive extractor
of F .

20

3.
R1 = [F,ab], from Equation 4.

F|ab, F|ab, F|ab are don’t cares. Set them to zero.
R1 ⇒ F|ab

R1 does not contain a or b.
4.

R2 = [F,ab]

= [F|abab +F |abab+Fabab,ab]
Given F|ab = F|ab = F|ab,

R2 = [F|ab(ab +ab+ab),ab]

= [F|abab,ab]

⇒ F|ab
R2 does not contain a or b.

5.
R = eR1 + eR2

= eF|ab + eF|ab
The remainder contains neither a or b.

6. Q.E.D.

Theorem 3: Let E1 and E2 be disjunctive, two variable
extractors of F . Supp(E1) = {a,b}, Supp(E2) = {c,d} and
Supp(E1) � Supp(E2) = �. If R is the remainder of F extracted by
E1, then E2 is a disjunctive, two variable extractor of R.

NOTE: Here we show this is true for the case where E1 = ab and
E2 = a + b. The same analysis can be applied to show the theorem
is true for other combinations of disjunctive, two variable extractors.
CASE: E1 = ab and E2 = a+b
1. E1 is a disjunctive, two variable AND extractor ⇒ F|ab = F|ab =

F|ab
E2 is a disjunctive, two variable OR extractor ⇒ F|cd = F|cd =
F|cd

2.
R|cd = (eF|ab + eF|ab)|cd

= eF|abcd + eF|abcd
3.

R|cd = (eF|ab + eF|ab)|cd

= eF|abcd + eF|abcd , Using Fcd = Fcd ,

= eF|abcd + eF|abcd
4.

R|cd = (eF |ab + eF|ab)|cd

= eF |abcd + eF|abcd Using Fcd = Fcd ,

= eF |abcd + eF|abcd
5. R|cd = R|cd = R|cd ⇒ c+d is a disjunctive extractor of R.
6. Q.E.D.

Theorem 4: Let R be the remainder of F disjunctively extracted
by two variable function E1. E is a disjunctive, two variable extractor
of R iff E is a “copy” extractor or “new e” extractor.

PROVE: If E is a “copy” extractor or “new e” extractor of R, then
E is a disjunctive, two variable extractor of R.

1. Theorem 3 says “copy” extractors are disjunctive, two variable ex-
tractors. “new e” extractors are disjunctive, two variable extractors
by construction.

PROVE: If E is a disjunctive, two variable extractor of R then E
is a “copy” extractor or “new e” extractor.

NOTE: Again, for compactness, we only prove this for the case where
E1 = ab and E2 = c+d.
2. F|ab = F|ab = F|ab

R = eF |ab + eF|ab
R|cd = R|cd = R|cd

3.
R|cd = R|cd = R|cd

e(F|ab)|cd + e(F|ab)|cd

= e(F|ab)|cd + e(F|ab)|cd

= e(F|ab)|cd + e(F|ab)|cd *

⇒ (F|ab)|cd = (F|ab)|cd = (F|ab)|cd

(F|ab)|cd = (F|ab)|cd = (F|ab)|cd

⇒ (F|a)|cd = (F|a)|cd = (F|a)|cd

4. From *, we have
(F|ab)|cd = (F|ab)|cd = (F|ab)|cd

(F|ab)|cd = (F|ab)|cd = (F|ab)|cd

⇒ (F|a)|cd = (F|a)|cd = (F|a)|cd

5. F|cd = F|cd = F|cd
CASE: Both c and d are elements of F .
Then c + d is a disjunctive, two variable extractor of F so c + d
is a “copy” extractor.
CASE: One of c or d is the e variable.
Then c+d is a “new e” extractor.

6. Therefore, an OR extractor must be either a “copy” or “new e”
extractor.

7. Q.E.D.

Theorem 5: E1(a,b) and E2(b,c) are disjunctive, two variable
extractors of F ⇒ ∃ E3(a,c) such that E3(a,c) is a disjunctive, two
variable extractor of F .

Here we only consider the case where E1(a,b) = ab (an AND extrac-
tor). The analysis presented can be applied to prove the proposition
is true for all functions of a and b.
Function E2(b,c) can be one of 5 extractor functions.
CASE: E2 = bc
E1 is a disjunctive AND extractor ⇒ F|ab = F|ab = F|ab (1)
E2 is a disjunctive AND extractor ⇒ F|bc = F|bc = F|bc (2)
1.

F|ac = (F|ac)|bb+(F |ac)|bb

= F|abcb+F |abcb using (1)

= F|abcb+F |abcb

= F|abc
2.

Fac = (F|ac)|bb+(F |ac)|bb

= F|abcb+F |abcb, using (1)

= F|abcb+F |abcb using (2)

= F|abcb+F |abcb

= F|abc
3. Similarly,

F|ac = F|abc

⇒ F|ac = F|ac = F|ac

⇒ E3(a,c) = ac is a disjunctive AND extractor of F.
Similarly, if E2 = bc, then F|ab = F|ab = F|ab which implies
E3(a,c) = ac is a disjunctive extractor of F.
CASE: E2 = b+ c
Here we show that b+c cannot be a disjunctive extractor. Assuming
that both ab and b + c are disjunctive extractors results in the
contradiction that F is independent of a.
E1 is a disjunctive AND extractor ⇒ F|ab = F|ab = F|ab (1)
E2 is a disjunctive OR extractor ⇒ F|bc = F|bc = F|bc (2)
4.

F|bc = (F|bc)|a)a+(F |bc)|a)a

= F|abca+F |abca, using (1)

= F|abca+F |abca

= F|abc

= (F|bc)|a
5.

F|bc = (F|bc)|a

⇒ F|bc is not dependent on a.
6. Since F|bc = F|bc = F|bc, F|bc and F|bc also do not depend on a.

21

7.
F|bc = (F|bc)|aa+(F |bc)|aa

= F|abca+F |abca, using (1)

= F|abca+F |abca

= F|abc

= (F|bc)|a

⇒ F|bcdoes not depend on a
8. F|bc, F|bc, F|bc, F|bc all do not depend on a ⇒ F does not depend

on a, a contradiction. Therefore, b + c cannot be a disjunctive
extractor of F when ab is a disjunctive extractor of F .

Similarly, E2 = bc and E2 = b⊕c cannot be disjunctive extractors of
F when E1 = ab is a disjunctive extractor of F .
We have shown that for the two valid functions of E2 ∃ E3(a,b) that
is a disjunctive extractor of F .
9. Q.E.D.

