TECHNOLOGY MIGRATION FORHARD IPs

Fang Fang

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science
Graduate Department of Electrical and Computer Engineering
University of Toronto

Copyright(© 2003 by Fang Fang

Abstract

Technology Migration for Hard IPs

Fang Fang
Master of Applied Science
Graduate Department of Electrical and Computer Engineering
University of Toronto

2003

As the foundries accelerate their update of advanced processes with increasingly complex de-
sign rules, the cost of hard intellectual property (IP) development becomes prohibitively high.
A technology migration tool that can port hard IPs from old technology to new technology is
presented in the thesis. The thesis makes four primary contributions: First, it proposes a new
fast design rule constraint generation algorithm that further limits the searcing spaces. Second,
it introduces a dual-pass strategy to solve the high level layout architecture constraints for mi-
grating all the library leaf cells. Third, it proposes a new optimization metric, called geometric
closessness, that can help retain advanced design intention. Finally, soft constraints method
is proposed to trace the conflicting constraints specified by the users. We test our migration
tool by successfully migrating Berkeley low power libraries, originally developed for 1.2um

MOSIS process to TSMC 0.25um and 0.18um technologies.

Acknowledgements

Contents

1 Introduction 1
1.1 Motivation e e 3
1.2 Contribution e 3

1.3 Organizationofthesis 4

2 Background 5
2.1 Virtual Grid Compaction and Shear-line Compaction 5
2.2 Constraint Graph Compaction 7
2.3 Hierarchical Layout Compaction. 11

2.4 OtherDevelopments 12

3 Migration Engine 15
3.1 Background e e 15
3.2 MigrationEngine 28
3.3 Design Rule ConstraintGeneration 30
3.4 Objectivefunction. 46

3.5 Integer Linear Programming Solver, 51

4 Migration for datapath and standard cell libraries 52
4.1 Datapath library migration o 52
4.2 Standard Cell Library Migration. 61

5 Experiments and Conclusion 67

5.1 Experimental Setup e 67
5.2 ExperimentalResult. 68
5.3 Limiation 76
54 Conclusion 78
55 Futurework 79
6 Appendix 80
Bibliography 96

List of Tables

5.1
5.2
5.3

6.1
6.2

Layout architecture characteristics 71
Layout structure characteristics 75
User specified layout architecture requirements for cellhafOOL 78

Experiment results of datpath library migration. 82
Experiment results for standard cell library migration.. 84

Vi

List of Figures

11

2.1
2.2
2.3
2.4

2.5

2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6
3.7

A general architectureof SoC. 2

Before virtual grid compaction. 6
After virtual grid compaction. e 6
A spacing constraint is presented by an edge in the directed graph.. . . . 7
As shadow is blocked by B. So there is no edge between A ad C in the con-
straintgraph. 8
Each circuit element is expanded by D/2 in both positive and negative X direc-

tions. The elements that stay within the same slot in scanning bar are recorded

inthe same X coordinate bin. 9
The constraint graph for a cell to be pitch matched. 11
Port abstraction method. 12
Wire jogging. o e e e 13
A layout is composed of severalplanes. 16
The tile structureinmetall plane 18
The process to find right neighortiles. 21
The process to locate the tile that containsa givenpoint 23
Tileenumeration. e 26
Each edge rule can be applied in any of the four directions. 26
Anexampleofedgerule. 27

vii

3.8 Tilesarealignedingrids 29

3.9 Each tile has new position and shape after migration with no design rule viola-

3.10 Design rule checker looks for non-OKType tiles within constraint region. . . . 31
3.11 (a) An example layout in active plane. The shaded rectangles 1, 3, 5, 6 and 10
represent poly tiles. Rectangle 8 is diffusion tile. Other rectangles are all space
tiles. (b) The constraint graph generated from poly spacing rule.. 32
3.12 (a) A fraction of a layout plane. Tile 1 is the source tile that is being pro-

cessed for edge rule constraint generation. (b) Depth-K shadowing neighbor-

hood graphfortilel. 34
3.13 The best case for Depth-K searching algorithm 37
3.14 The maximum number of tiles to be visited fortiles 38
3.15 Aleafcellmuxf201. 38
3.16 The constraint graph for IntraPlane constraints. 39
3.17 Corner constraintregionchecking 39

3.18 (@) In the old layout, tile 3 doesn’t overlap with tile s in X direction. (b) After
X direction migration and Y direction migration, tile 3 moves into shadow area

of tile 1. (c) Interpass Constraint graph for tile s (d) Interpass constraints for

3.19 N-well tile stays on well plane while diffusion tile stays on active plane. 42
3.20 (a)The Depth-K shadowing neighborhood graph for interplane edge rule (b)
InterPlane edge rule constraint between source@ed tile3. 43
3.21 InterPlane constraints generated for cell muxf201. 44
3.22 A contact has different tile types on the planes it connects. The poly contact in
this figure hagcontactttile (tile 1) on active plane angcontact/metalltile
(tile2)onmetallplane. 45

3.23 Connect constraints generated for cell muxf201. 46

viii

3.24

3.25

3.26

4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8
4.9
4.10
411

5.1
5.2
5.3
5.4
5.5
5.6
5.7

Tilel is the leftmost tile in a layout ang is the X coordinate of its left edge.

Tile 2 is the rightmost tile in the layout and. is the X coordinate of its right

edge. . . . e 47
The old layout and migrated layout with minimum perturbation objective func-

tON. . . . 49
The old layout and migrated layout with geometric closeness objective function. 50
An 8-bit adder block diagram.o 53
An 8-bit adder constructed by abutting 8 adder bitslices and 1 control slice. . . 54
An example of datapath librarycell. 54
Port matching of leafcells. 55
Dual-pass migration strategy. e 57
Cell with routing track fordatasignals. 58
The width of each power net has to be equaktayiven by the designer in the
specificationfile. 59
Standard cellsdesign 62
Layout architecture for a standard cell libracy. 63
Alll/O portsstay infixedgrids 64
Therequirementsonpowerrails 65
The run time of design rule constraint generation 69
Theruntimeof ILPsolver. 70
The leafcells for ripple carryadder 71
The floorplane ofan N bitadder. 72
Migration of a four-bitadder oo 73
Two old standard cells based on standard MAOSt&m technology. 74
Migrated cells based on TSMC 0,48 technology. 74

5.8 The migration results under geometric closeness objective function and mini-

mum perturbation objective function. o L oL 76
5.9 Cell haf001 before migration 76
5.10 Cell haf001 after migrated towards TSMC Qu&8technology. 77
5.11 The design rule requirementsonpowerrail. 77

Chapter 1

Introduction

The ASIC technology has evolved from a chip-set philosophy to system-on-chip (SoC) con-
cept. SoC is generally defined as IC designed by stitching multiple stand-alone VLSI de-
signes to provide full functionality for an applicatig@l]. A general architecure of today’s

SoC is shown in Figure 1.1. The definition of SoC implies that the complexity of SoC is
greatly increased compared to ASIC. And with the time-to-market pressure, the SoC desingers
are tuning to block-based design approach that emphasis on design reuse in order to achieve
fast development. The macros, also called intellectual-properties (IPs), usually come in tow
forms: soft IPs delivered in the form of synthesizable RTL code, &add IPs delivered in the

form of fully placed and routed netlist and fixed layout layout mapped to a specific technology.
There are some trade-offs between choosing hard IPs and choosing soft IPs for block reuse.
Since the soft IPs can be re-synthesised by the SoC integrators for their chosen technology,
they are favored in terms of their portablitity and re-usability. On the other hand, the hard IPs
have a physical representation, and are delivered in the form of layout file such as GDSII file.
The SoC is essentially a combination of these hard IPs that implement function blocks such as
memories, microprocessors in Figure 1.1. Therefore, they are more predictable than soft IPs in
terms of timing, power and area and result in less effor during SoC integration.

The primary bottleneck that prevents wide adoption of hard IPs is the dependency of layout

CHAPTER 1. INTRODUCTION 2

Memor

Memory PLL y
Microprocess -

core

Glue logic
Memory vemory
i Function

Eecii” | [specific
core A core B A/D, DIA

Figure 1.1: A general architecture of SoC.

on process. In standard ASIC design, a library with a rich selection of gates with different
drive strengths, buffer sizes and dual polarities for functions must be provided to IC design-
ers. Today’s standard cell library contains hundreds of leaf cells with different functions and
different drive lengths. There are many unique design considerations such as porosity, apsect
ration, power distribution, etc., related to physical design of these libraries. It takes great de-
sign effort to create such libraries from scratch. Therefore most fabless companies choose to
use libraries offered by hard IP companies to avoid the high cost associated with library devel-
opment. To make things worse, manufacturing processes are updated every 18 months, each
time using a different set of design rules. This makes the development cost of hard IPs too
high even for hard IP vendors, since they have to offer different versions for different foundries
as well. Automatic layout migration technology, which can port libraries from old technology

to new technology and thus amortize the high development cost associated with custom de-
sign across different foundries and processes, is therefore crucial for the sustained growth of

IP-based design.

CHAPTER 1. INTRODUCTION 3
1.1 Motivation

Layout migration tools available today cannot cope with all the challenges involved. First,
most migration tools are based on layout compaction, a technology developed a decade ago,
when the layout area is the primary concern. Layout compaction tends to compress space
between polygons recklessly as long as design rules are not violated. In modern design us-
ing aggressive circuit styles in deep submicron processes, space is often among the first class
citizens ofadvanced layout consideratiorfer example, to combat signal integrity. Other spe-
cializedadvanced circuit considerationsuch as new transistor sizes, device matching, are
rarely considered in an integrated fashion. Second, most techniques reported in the literature
are designed to migrate a specific circuit that uses a library of cells, rather than the library
itself. Without considering theverall library architecturesuch as power/ground net width,
routing track number and port matching, the cell layouts migrated under this circuit-driven
strategy work only for the specific circuits, so there is no guarantee that they work under all
occasions, and each time a new circuit is migrated, all the leaf cells in the whole library need

to be migrated again.

1.2 Contribution

An integer linear programming (ILP) based migration framework which is customized for dat-

apath IP and standard cell IP migration is presented in this thesis. New libraries based on new
technologies can be generated when given the libraries of the old process and new library ar-
chitecture specifications. Several innovations that help solve the difficult problems discussed

earlier are listed below:

¢ A new design rule generation algorithBepth-K searching algorithpwhich takes less
searching effort than the shadow propagation method currently employed for constraint

generation [18], is used in this project.

CHAPTER 1. INTRODUCTION 4

e A new optimization objective, callegeometric closenes$o reward geometric resem-
blance of migrated layout to the original layout is introduced in this project. Under this
metric, space is explicitly represented. Preservation of space and non-space polygons is
given equal priority. This ensures that the original layout design considerations are not

corrupted

¢ In order to address the overall library architecture requiremerdaakpass strategis
employed in the migration tool that helps meet high level layout architecture constraints.
This is in contrast to the top-down constraint propagation strategy employed by tradi-

tional hierarchical compactors, which are limited only to area minimization.

e Since the library architecture is specified by users, they may conflict with design rules,
which will lead to an infeasible solution. A new concept, cakbedt constraintsis pro-
posed in order to obtain a best-effort solution. A concrete feedback is provided where ar-
chitecture requirements fail, which thereby helps the user interactively define the proper

library architecture.

1.3 Organization of thesis

The rest of the thesis is organized as follows: First a review of previous work is given in chapter

2. Then a detailed discussion of the basic migration engine implementation is presented in
chapter 3. Chapter 4 talks about what are the specific layout architecture requirements for
datapath library and standard cell library and how the requirements are solved with the dual-
path approach. The experimental results are given in Chapter 5. Finally, Chapter 6 gives the

conclusion and summarizes the future work.

Chapter 2

Background

Automatic layout migration was among the oldest CAD problems investigated and a large
body of research was carried out under the layout compaction problem. Surveys of layout
compaction can be found in [6] and [9]. Early compactors are performed on symbolic layout
in which circuit elements are presented by simple lines or rectangles, knostitlkes The

symbolic layout compaction methodologies include shear-line approach, virtual grid approach

and constraint graph approach, which will be discussed in the following sections.

2.1 Virtual Grid Compaction and Shear-line Compaction

Commercial layout systems suchM&JLGA [25] use the virtual grid compaction approach
to compress the layout. Once the symbolic layout is generated, the virtual grid compaction

method compresses space by moving objects. The procedure includes two main steps:
e search for movable objects by consultation with layout topology and design rules;
e perform the compaction by moving these objects.

In order to identify the movable objects and the moving distance, the layout is represented
by am x n matrix as shown in Figure 2.1. Each entry of the matrix represents a mask element

marked as a shaded cell or space marked as a blank cell. The size of the grid unit is determined

CHAPTER 2. BACKGROUND 6

by design rules. Objects are restricted to one unit move usually. The movable objects are
decided by searching for a path of blank cells across the matrix. The path could be a straight
line or a union of straight lines connected as shown in Figure 2.1. Therefore, the compaction is
proceeded by repeatedly removing paths along X and Y direction until no path could be found.

The migrated layout is shown in Figure 2.2.

compression compression
line line

Figure 2.1: Before virtual grid compaction.

Figure 2.2: After virtual grid compaction.

CHAPTER 2. BACKGROUND 7

The shear-line approach is very similar to virtual grid compaction except that the grid spac-
ing is fixed to the worst case design rule [8] [1].

The compaction is made easy with the matrix representation of the layout. However, the
grid size must be carefully decided because coarse grid results in smaller matrix and thus less
run time, but the compaction may not be efficient. On the other hand, high grid resolution will
lead to large matrix and thus slow down the run time. Another disadvantage of this compaction
method is that the optimization goal can only be the minimization of the layout area. With this

approach, no other optimization goals can be achieved.

2.2 Constraint Graph Compaction

The constraint graph compaction was first discussed by Hsueh and Pederson [18]. Many other
compaction tools such d@LOSS [5], CABBAGE [18] and SLIM [1], use this strategy to
compact layouts. In this approach, the topology constraints and design rule requirements are
presented with a weighted directed graph, cattedstraint graph Each vertex represents a
circuit element. For each spacing constraint between two elements, there is(ary pvath

weightd,;.

X1 X2

X2 — X1>=d12

(@ (b)

Figure 2.3: A spacing constraint is presented by an edge in the directed graph.

The new position of each element can be obtained either by running longest path algorithm

or by using linear programming solver depending on the optimization goal the user chooses.

Because of its flexibility, we adopt this approach in our migration tool.

CHAPTER 2. BACKGROUND 8

2.2.1 Constraint Generation

The key part of constraint graph compaction is design rule constraint generation, which is used
to identify the spacing relationship among all the elements according to design rules and lay-
out topology. The constraint generation process is very similar to design rule checking except
that the circuit elements outside of checking region need to be considered as well because they
may be pushed into the checking region after compaction. One of the most often used meth-
ods to generate constraints is called “shadow-propagation” method used in CABBAGE [18].
This approach trims the searching area by shining an imaginary light from the element being
checked as shown in Figure 2.4. Based on the assumption that the relative positions between
two elements will not be changed, which means that the element C will not move to the shadow
of element A in Figure 2.4, only the constraints between the given element and the elements
that the shadow first meet are generated. The worst case complexity for shadow-propagation
method is proven to b&(N'°), where N is the total number of elements in the symbolic

layout. With the experimental result, the experimental complexity is found @(B&-?).

Figure 2.4: As shadow is blocked by B. So there is no edge between A ad C in the constraint

graph.

Another approach to generate constraints come from a design rule checking method called
scan line approacii20], which is demonstrated in Figure 2.5. The circuit elements that stay
too far from the checking element are filtered out by the scanning bar of \lidtlhich is
the worst-case design rule distance. The X coordinate bins record all the circuit elements for

design rule checking. There are two key issues related with this approach. First, the number

CHAPTER 2. BACKGROUND 9

of bins in the X direction must be carefully decided. Too few bins may cause the missing of
constraints. On the other hand, too many bins results in redundant constraints as the same pair
of elements may occupy many bins. The scan line approach sets the bin number according to
statistical analysis of element density so that each pin cavg2selements on average. The
other key issue is that interative sorting of the shape record buffer when adding or deleting
elements. The experimental data indicate that witblements in the layout, the expected time
complexity required i$)(Nlog(N)) [20].

B i et i e Al I

|
Il

Scanning bar

of width D

L
|

|

r

|
[N
|

|

r

|

X coorditae bins

Figure 2.5: Each circuit element is expanded by D/2 in both positive and negative X direc-
tions. The elements that stay within the same slot in scanning bar are recorded in the same X

coordinate bin.

With constraint graph generated, some techniques are used to reduce the redundant edges
and thus reduce the complexity of solving the constraint graph. The intervening group method
incrementally generates the the constraint graph by effectively avoiding adding vertices when a
pair of vertices are constrained to be far enough [12]. A combination of shadowing-propagation
and binning is proposed with worst case complexity claimed t@b&!5). All these tech-
niques are based on the shadowing-propagation method to build constraint graph and remove

the unnecessary edges after the constraint graph is generated.

CHAPTER 2. BACKGROUND 10

The constraint generation methods discussed above are all performed on sybmolic layout.
In symbolic layout, the circuit elements such as transistor, contact and wire are modelled as
sticks snapped to virtual grids. At symbolic layout level, circuit elements do not have detailed
mask information. The positions of circuit elements are decided by respecting the high level
design rules such as minimum spacing rules and minimum width rule, etc. In order to generate
real mask layout, another process to transform symbolic layout to mask layout is needed after
symbolic layout compaction. In this thesis, we directly migrate the mask layout without taking
the symbolic layout transfromation step. A new constraint generation method applied directly
on mask layout represented in corner stitching data structure, &dipth-K searching algo-
rithm, is proposed in this thesis that can further reduce the searching area by limiting the depth
it traverses than the shadowing-propagation algorithm. And with corner stitching layout repre-
sentation, it avoids the iterative sorting of shape buffers in scan line approach. The data in the

Appendix show that the experimental run time is proportionab tdv*-).

2.2.2 Objective Function

After the constraint graph is built, there are two ways to solve the graph. One is to decide each
vertex’s longest path length from the boundary vertex, which amounts to finding the shortest
path algorithm in a directed graph with arc weight negated. Most of early compaction tools
are based on this approach. However, the implied compaction goal of this approach is to min-
imize the layout area. In order to accommodate more compaction goals such as minimization
of power or perturbation, the constraint graph is solved by dumping constraints to linear pro-
gramming solver and obtaining the result under the user specified compaction goal.
Theminimum perturbation objective functigoroposed in [10] was the first work that de-

parted from the traditional area minimization optimization goal and argued the importance of
rewarding geometric similarity between the migrated layout and the original layout. However,
the quantitative measure that they develop for geometric similarity is asymmetrical and penal-

izes both right edges in the X direction and upper edges in the Y direction. In our migration

CHAPTER 2. BACKGROUND 11

tool, we slightly modify the minimum perturbation objective function by minimizing the size

change of each rectangle in the layout.

2.3 Hierarchical Layout Compaction

The majority of the hierarchical layout compactors reported in literature focus on solving the

pitch matching problem, which means that certain elements among different cells must match
in size and position when cells are abutted. The method described in [11] first compacts leaf-
cells and then locates the abutting ports to fixed grids. After that, the compacted cells are
assembled and compacted at the higher level of hierarchy as shown in Figure 2.6 [9]. In this

method, routing is needed to guarantee the connection.

N[

LL

UR

A

leaf cell 1 leafcell 2

Figure 2.6: The constraint graph for a cell to be pitch matched.

The pitch matching method introduced in [15] matches the abutting ports by directly adding
abutting constraints between cells to the constraint graph. This method assumes that hierarchi-
cal layout is given. The constraints for all leafcells have to be dumped to linear programming
solver so that port matching constraints can be solved. As the number of leafcells increases,
this method will be limited by the capability of linear programming solver.

A powerful pitch matching algorithm is reported in [13] based on port abstraction method.

The port abstraction graph can be considered as a simplification of the constraint graph for each

CHAPTER 2. BACKGROUND 12

cell, where constraints unrelated to the ports are removed as shown in Figure 2.7. The longest
path between ports are computed and the port locations of each cell are then solved by solving
the combined port abstraction graph of the circuit that uses the cell to be migrated. The result
is then set as constraints to drive the migration of each leaf cell. The port abstraction method
is very powerful in solving pitch matching problem. However, the main problem related is that
the port position is decided by the longest path algorithm, which means that the ports will be
placed as close as possible to each other. It implies that the total layout area will be minimized
and it is not suitable to handle other objective functions. So our migration tool takes another
approach calle®ual-pass strategyhat can decide port locations with considerations of both

design rules and the objective function.

N1l N1 1l
00

LL UR LL LR

1
I

U 0 U 0

(a) Constraint graph for a leafcell. (b) Ports identified. (c) Port abstraction graph

Figure 2.7: Port abstraction method.

2.4 Other Developments

The automatic jogging wires and wire length minimization are the two problems that have been
investigated together with compaction problem. One of the first approach for wire jogging was
presented in [18]. In this approach, the wire is bended at the “torque” points on a straight wire
as shown in Figure 2.8.

The usage of wire jogging is limited because it could reduce the layout size in one direction
but potentially, increasing the size in another direction [9]. In our project, we introduce the
geometric closeness objective function to keep the original shape of the layout to a maximum

extent. The wire jogging will introduce big changes to the layout, therefore, it is not considered

CHAPTER 2. BACKGROUND 13

[]
]

(a) Before wire jogging. (b)After wire jogging.

Figure 2.8: Wire jogging.

in our tool.

Another effort has been spent on minimizing the wire length on critical path. This is
achieved by uniformly distributing spaces among circuit elements [18] or by “pulling” circuit
elements back so that the length of connection wire is not increased drastically. As our migra-
tion tool could minimize the wire length by migrating layouts under minimum area objective
function, we will not include this step in our tool.

As fabrication technology in the IC industry advances, some foundries are demanding the
use of more complicated rules such as conditional design rules. For example, some condi-
tional rules require that the spacing of two edges depend on the context in which edges are
situated [4]. Finding the optimal solution under contditonal rule has been proven to be NP-
complete. However, some heuristic method has been reported that can solve compaction under
simplified conditional rules: bridge rules [4]. This algorithm has some potential applications.
On the other hand, solving the conditional rule depends on the correct design rule modelling.
The edge rule system we use currently has accomadated conditional rules. So our tool does not
taken this issue into account.

All the compaction methods discussed above are one-dimentionall compaction. Several
techniques have been proposed for simulatneous two-dimentional compaction [17] [26]. The
methodologies mainly include two steps. First, the compact layouts without respecting mini-
mum distance requirements. Then select each pair of elements and add spacing constraints that
could be in the X direction or in the Y direction. Compared to one-dimentional compaction,

two-dimentional compaction methodology has not been widely used. The main reason is that

CHAPTER 2. BACKGROUND 14

two-dimentional compaction is proven to be NP-complete [17] [6]. The effctiveness of these
heuristic algorithms needs to be further verified. And with the X compaction and Y compaction
peformed together, the layouts have more freedom for topology changes. Therefore, we still

adopt the traditional one-dimentional compaction appraoch for our migration tool.

Chapter 3

Migration Engine

3.1 Background

Layout and design rules are the objects that a migration tool processes. This section reviews
the layout representation methodology and design rule modeling methodology. In the text
that follows, we use théormal algorithm notation(FAN) to state definitions and describe
algorithms [27]. FAN relies on a type system, where each type is presented by a set, to present
the algorithm in a formal, precise manner. For example, we use the notafida represent

the power set of A, therefore, any value of tyf)é will be a set of values of type A. Readers

are expected to find this notation very similar to any strongly-typed programming languages

and hence be translated into implementation.

3.1.1 Layout Representation

A layout is a drawing of a set of polygons, each associated with a different layer, such as metal,
poly, or diffusion, given by the fabrication technology. For simplification, polygons are often
constrained to be rectangular, callednhattan layoutand polygons related by their layers

are organized in logical layers, callpthnes as shown in Figure 3.1.

15

CHAPTER 3. MIGRATION ENGINE 16

3.1.2 Corner stitching

/D [T / Metall plane
YA .
/ 7 [/ Active plane
T e

Figure 3.1: A layout is composed of several planes.

Choosing a good layout representation is a key to producing fast geometric operations for
migration tools. In this project, a data structure calbedner stitchingwhich can provide fast
operations such as neighbor finding is used to represent the layout [19]. A brief discussion of
the corner stitching algorithm is given in this section.

We first defineTechnologyand the data structure to represent it.

Definition 1 Technologydefines the information that are related to the fabrication technology.
It includesLayerType which is a set of mask typeBlaneTypewhich is a set of plane types
and a mapping from LayerType to PlaneTyplaneMap which is used to identify the plane
that a polygon with certain mask type can stay on BesignRuleBasevhich is used to store

all the design rules specified by fabrication technology and will be discussed in more detail in

Section 3.1.4.

CHAPTER 3. MIGRATION ENGINE 17

Technology =tuple { 1
LayerType ={space, ndiff, pdiff, poly, m1, m2,2 }... 3
PlaneType ={active, m1, m2, poly, }.. 4
PlaneMap : LayerType— PlaneType; 5
DesignRuleBase : LayerTypex LayerType— ()FdgeRule, 6
} 7

Each polygon, also calledtie, is associated with a specific mask type as defined in Line 2.
Tiles are linked by four pointers callesbrner stitchesFigure 3.2 gives an example of the tile
structure inmetallplane. The pointerat the lower left corner of a tile points to the direct left
neighbor at the lower left corner of the tile. Pointeat the lower left corner of a tile points
to the direct bottom neighbor at the lower left corner of the tile. Similarly, poirttersdr
at the upper right corner of a tile point to the upper neighbor and right neighbor of the tile,
respectively. The coordinate,y} is the position of the tile’s lower left corner. The tile data
structure is given in Definition 2. With the data structure for tile, the geometrical and physical
characteristics of each tile can be fully determined frfoka. For example, given a tile, the
upper right coordinate(u.r.z, u.t.y), is decided by its right neighbar.r and top neighbor
u.t because the X coordinate of tiles right edge is also the X coordinate of the left edge of
right neighboru.r and Y coordinate of tile/’s upper edge is also the Y coordinate of lower
edge of top neighbou.t. Through tile u's mask type.type, the plane that: stays on can be
obtained from functiorPlaneMap(u.type). Thus the location and shape of each tile can be

fully decided from Tile data structure.

Definition 2 Tile

CHAPTER 3. MIGRATION ENGINE 18

top (+ co .+ cO)

A hr

\

i e
-

[—

|
\
. \
\ X, | ri
eft | (xy) | right
| space |
\ tile |
| |
(-0 ,-) btm

Figure 3.2: The tile structure in metall plane

Tile = tuple { 8
type : LayerType; 9
I, b, t,r : Tile; 10
Xy D Z; 11
} 12

Each plane is associated with a plane type as defined in Definition 1. A plane is composed
of an ordered set of tiles. It extends from negative infinity to positive infinity. Four pseudo tiles
top, btm left, right are located at four boundaries of a layout. Any of these four pseudo tiles
can be used as the starting tile for traversing a layout. The algorithms for traversing layout will

be discussed in Section 3.1.3. The data structure for a plane is given in Definition 3.

Definition 3 Plane

CHAPTER 3. MIGRATION ENGINE 19

Plane =tuple { 13
type . PlaneType; 14
tiles . () Tile, 15
top, btm : Tile; 16
left, right : Tile; 17
} 18

Other than tiles and planes, layout designers tend to attach labels to certain signals. The

data structure for label is given in Definition 4.

Definition 4 Label

Label =tuple { 19
name . string; 20
tile : Tile; 21
} 22

With the definitions for tile and plane, a layout can be formulated as a structure which

includes a mapping from PlaneType to Plane and a set of labels as shown in Definition 5.

Definition 5 Layout

Layout =tuple { 23
planes : PlaneType— Plane; 24
labels . (yLabel 25

} 26

CHAPTER 3. MIGRATION ENGINE 20

3.1.3 Algorithms

There are many algorithms used for processing tiles using corner stitching representation
methodology defined in the previous section, such as neighbor tile finding, locating and enu-
merating tiles, searching area, etc [19]. This section gives a discussion of three algorithms

often used in our migration engine.

Algorithm 1 Find all the right neighbor tiles of given a tile

rightNeighborFind =func(27
pl: Plane, 28
s: Tile 29
): []Tie | 30
var nbr : Tile; 31
var nbrSet :[]7%e; 32

33

nbrSet =o); 34
nbr = ti.r; 35
if (nbr £ pl.right) 36
do{ 37
nbrSet = nbrSetup {nbr}; 38

nbr = nbr.b; 39

} while(nbry > s.y) 40

return nbrSet ; 41
} 42

Example 1

Figure 3.3 shows an example to demonstrate this algorithm. The searching prcoess is as fol-

lows:

CHAPTER 3. MIGRATION ENGINE 21

1. First, it visits the top right neighbor of tilethrough itsr pointer. If s.r is not the right

pseudo tile, add it into the neighbor tiles set.

2. Check if the bottom edge of the neighbor tile is still above the bottom edge of tife
this is true, move downward until it finds a tile whole bottom edge is lower than that of

S.

3. Otherwise, return the neighbor tiles set.

T

-+—

Figure 3.3: The process to find right neighor tiles.

Algorithm 2 Find the tile that contains a given (x,y) location on a given plane.

CHAPTER 3. MIGRATION ENGINE 22

searchTiles =func(43
layout : Layout, 44
pl : Plane, 45
X:Z, 46
y. Z 47
) : Tile { 48
var ti: Tile; 49

50

ti = pl.top; 51
if(y<tiy) 52
doti =ti.b; while(y < ti.y); 53
else returnti ; 54
if(y < pl.btm.u.y)return ti; 55
if(x > ti.rx) do{ 56
ti = ti.r; 57
while(ti.y > y) ti =ti.b; 58

} while(x > ti.r.x) 59
return ti; 60
} 61

Here is an example to illustrate the process of finding the tile.
Example 2

Considering a simple layout in Figure 3.4, to find a tile that contains the point), the

algorithm starts from theoptile (tile 1) in the layout. The searching procedure is as follows:

1. Firstit checks whether y coordinate of the given point is beyond scope dbthele or

btm tile. If this is true, the tile that contains the given point is setap tile or btm tile.

CHAPTER 3. MIGRATION ENGINE 23

2. Otherwise, the search moves downward, until it finds the tile whose vertical range covers

the desired point (For example, this occurs when tile 5 is found).

3. Select the right neighbor whose horizontal range contains the desired point and then trace
rightward(For example, tile 6 has three neighbors: tile 7, tile 8 and tile 9. The lower
bound of tile 7 and tile 8 is upper to the desired point, so it traces downward until tile 9 is
found and from tile 9, trace goes rightward). The rightward trace keeps on until it finds

the tile that contains the point (tile 10).

Figure 3.4: The process to locate the tile that contains a given point

Algorithm 3 Enumerate all tiles on a given plane. In this algorithm, each tile is visited only

after all tiles above it and to its left have been visited.

CHAPTER 3. MIGRATION ENGINE

enumerateTiles func(pl : Plane):[]7ie { 62
var tiles : []Tie; 63
var start : Tile; 64
65

tiles = ©; 66
start = pl.top.b; 67
while(start.b+# pl.btm) { 68
tiles = eachTile(pl,tiles, start) ; 69
start = start.b; 70

} 71
return tiles ; 72

} 73
74

eachTile =func(75
pl : Plane, tiles:[|7, ti: Tile 76
): (17 | 77
var right : Tile; 78
79

tiles = tilesU {ti}; 80
if(ti.r == NULL) ; return tiles ; 81
else{ 82

right = ti.r; 83
while(right.y >=ti.y) { 84
tiles = eachTile(pl, tiles, right); 85

right = right.b; 86

} 87

} 88

} 89

90

24

CHAPTER 3. MIGRATION ENGINE 25
Example 3

Figure 3.5 illustrates the algorithm. The process is as follows:

1. Start from the left most neighbor of the top tile at its bottom side in a given plane. Then
step down through all the tiles at the left most side of the plane (the tiles with arrows

inside in the figure).

2. For each tile in step 1, enumerate it recursively usingetnehTile procedure given in

lines from 1) to 4).

1) Enumerate the tile.

2) Ifther stitch of the tile points to NULL, return fromachTileprocedure (for example,
when tile 2 is the current tile, tile 3 is its neighbor. But as tile 3 doesn’'t have any

right neighbor, the procedure returns to the state when tile 2 is the current tile).

3) Otherwise, visit all the tiles that touch the right side of the current tile (for example,

when tile 13 is the current tile, visit tile 14 and tile 16).

4) For each of these neighbors, if thstitch points to the current tile, then cakchTile
procedure to enumerate the neighbor recursively (for example, this occurs when

tile 1 is the current tile and tile 2 is the neighbor).

3. The enumeration algorithm stops when it comes to the bottom tile of the plane.

3.1.4 Design Rule Modeling

The second input to migration tool is design rules. For IC designers, design rules are usually
provided by manufacturers in the technology file. Each rule is explained by a simple English
sentence with graphs illustrations to show the conditions in which the rule is applied. However,
in order to be codified for use by migration tool, design rules need to be specified in an acces-

sible and unambiguous format. There are two major methodologies for representing design

CHAPTER 3. MIGRATION ENGINE 26

Figure 3.5: Tile enumeration.

rules. One is callethask-basedesign rule which is the basis of commercial design rule check
packageDracula[2]; the other is callecedge-basedesign rule model which is the basis of
layout edit tool Magic [2]. In this project, thedge-basedesign rule model is used because

of its ability to translate the high level design rules such as minimum spacing rule, minimum
width rule, etc, into a set of edge rules and thus we can represent the design rules as constraints
between individual edges. This section will briefly introduce this model and its data structure.

For detailed discussion, please refer to [24].

typel | type2 type2 [typel
—

typel

type2 type2

typel

Figure 3.6: Each edge rule can be applied in any of the four directions.

The edge rule is applied on an edge between two tiles of different LayerType in any of
four directions as shown by arrows in Figure 3.6. Without loss of generality, in the following
discussion, we assume that the edge rule is applied towards the east. A dikséacd certain

mask layers calledkTypesarea are specified so that only tilesoidTypesare permitted within

CHAPTER 3.

MIGRATION ENGINE 27

corner ‘ B coner extension
‘ cdist

type s

type2 <—— OKtypes
A
1

typel

-
dist

Figure 3.7: An example of edge rule.

the area A callea¢onstraint regionas shown in Figure 3.7. In the corner region B, if the tile

of type cornerTypess just above and on the left of the edge, oakfypediles are allowed in

area B. For si

tiles for each

mplicity, we call those tiles whose mask types do not belarigliigpes forbidden

edge rule. The constraint region can be on the same plane as the plane that tiles

of typel and type2 stay on, or any different planes as indicated in each edge rule.

The following data structure is used for modeling edge rules in the migration tool.

Definition 6 Edge rule.

EdgeRule tuple { oL
okTypes . ()LayerType. 0
dist . Z: o
cornerTypes : <>Laye’rType; iy
cdist . Z o
flag : <>{area,rect,...}; o
plane . PlaneType; o

} 98

Given a pair of LayerType, a set of edge rules can be accessed tHbasignRuleBase

defined inTechnology

CHAPTER 3. MIGRATION ENGINE 28
3.2 Migration Engine

As the layout is composed of a set of tiles, the migration engine can generate a new layout by
determining new positions of horizontal and vertical edges of all tiles. It employs the traditional
1-D compaction strategy by first migrating along the X direction, i.e. determining positions of
vertical edges, and then the Y direction. Without loss of generality, in the discussion that
follows, we assume migration in the X direction only.

The basic strategy for migration is to abstract all the requirements or constraints among
all the edges in a layout, such as design rules and other practical consideration. And then
with respect to all these constraints, new edge positions are decided under certain optimization
goal. With the corner stitching data structure discussed in Chapter 2, tile shapes and design
rules are specified in the Mead and Conway’based methodology [16], which means that
the positions of tiles are all specified in terms)ofTake the layout in Figure 3.8, tiles are all
aligned in grids whose minimum spacinglis, which implies that the coordinates of all edges
are integers. At the same time, design rules are specified in terkrasd. And all design rules
can be expressed as inequalities when they are applied to the layout. For example, suppose the
minimum width requirement for tile 1 i\ in Figure 3.8 and this rule can be translated into an

inequality as:

Thus, the layout migration problem can be formulated as an integer linear programming

(ILP) problem:

minimaize olx
subject to Ax > b

x>0

Herex is a vector of variables to be determined, and in the simplest case would just be

CHAPTER 3. MIGRATION ENGINE 29

|
4|_
—r-
—1
|
—r-
_4|__
T
—1]
|
—r-
1
|

|

_

|
Lo
.

|

1T
T
T

]

|

-

|
[~
T T
L1

ST TTITT T

Y R (R I
|

Figure 3.8: Tiles are aligned in grids

coordinates for all vertical edges. In this projecis a vector of coordinates for all tiles’ left
vertical edges. Vectorsrepresent the coefficients ofin the objective function of optimiza-
tion. Each row of arrayd represents coefficients afin an inequality. We call this type of
migration asconstraint-based migration

Suppose we want to migrate the layout in Figure 3.8 so that the new layout does not have
design rule violations and the layout area is minimum. For simplicity, we only consider the
minimum width rule and minimum spacing rule for tile 1 and tile 2. The minimum width for
tile 1 and tile is4\ and minimum distance between tile 1 and tile Zis This problem is

formulated as:

mintmize Ty — T
subject to x9 —x1 > 4

Ty — T3 >4

After solving this ILP problem, we can get the value for eachnd new positions of each

CHAPTER 3. MIGRATION ENGINE 30

edge can be obtained as shown in Figure 3.9.

-t 11 1T 7T 17 17 17T 1T 17 17711
B REEE
T T T
L “§§&] B

| || |
TR T T T T
RN IR
CTTAT T T T
| T N

oo B

Figure 3.9: Each tile has new position and shape after migration with no design rule violations.

Section 3.3 will discuss how to translate the design rules requirements into inequalities in
3.2, so called constraints, so that the generated layout is design rule clean. In addition, three
goals to optimize the migrated layout are compared in section 3.4 and a brief discussion of ILP

solver is also provided at the end of this chapter.

3.3 Design Rule Constraint Generation

The design rule constraint generation is used to generate the distance requirements of every
pair of edges according to design rules so that the migrated layout does not have design rule
violations. This section will discuss how to generate these constraints according to the edge

rules specified by the technology.

3.3.1 Design Rule Checking

The design rule constraint generation process is very similar to design rule checking. Before the
discussion of design rule constraint generation, we can first look at how design rule checking
works.

To check a region, the design rule checker first searches all tiles in the plane. For each

tile, the checker examines all the neighbors along one side. As the tile may have more than

CHAPTER 3. MIGRATION ENGINE 31

one neighbor that are of different mask types. A design rule checker divides the tile’s side into
several edges that has only one with one material on each side. When processing the edge,
checker uses the mask types of tiles at each side of the edge as the index into the design rule
database to find the edge rule EdgeRule that can be applied on that edge. Then, design
rule checker searches within the constraint region for tiles whose mask type don't belong to
r.okTypes as shown in Figure 3.10. The plane that a constraint region stays on can be on
either the plane that the edge being processed stays on or another plane which is decided by
r.plane. In the next section, we will look at théntraPlane checking process where the
constraint region stays on the same plane as the tile processed. Section 3.3.5 will discuss
the Inter Planechecking process where checker needs to jump to another plane to look for
forbidden tiles.

non-OKType tile

constraint region

Figure 3.10: Design rule checker looks for non-OKType tiles within constraint region.

3.3.2 IntraPlane Design Rule Constraint Generation

Design rule constraint generation can take similar procedure as design rule checking discussed
in previous section, except that the searching region should go beyond constraint region spec-
ified by design rules. The reason is that migration assumes that every tile has the potential to
move, which means those forbidden tiles that are not inside constraint region in the original

layout may move into constraint region after migration. An intuitive way to avoid missing con-

CHAPTER 3. MIGRATION ENGINE 32

straints is to extend the constraint region to the boundary of layout as the checking region in
Figure 3.11(a) and generate constraints between all necessary pair of edges. Take poly spacing
rule as an example, the TSMC 0:2b technology specifies that the spacing of poly should be
greater than 3, which can be translated into edge rule as the following:

edgepoly poly 3 poly 3

checking region

— L

(@ (b)

Figure 3.11: (a) An example layout in active plane. The shaded rectangles 1, 3, 5, 6 and 10
represent poly tiles. Rectangle 8 is diffusion tile. Other rectangles are all space tiles. (b) The

constraint graph generated from poly spacing rule.

Given a simple layout as Figure 3.11(a), according to this rule, four constraints need to be
generated to guarantee enough spacing between poly when processing the edge between tile 1

and tile 2 (corner region checking is not considered at this moment). They are:
e 13 — x5 > 3 The left edge of tile 3 should be at least &wvay from left edge of tile 2.
e 15 — x5 > 3 The left edge of tile 5 should be at least &wvay from left edge of tile 2.
e 15 — x3 > 3 The left edge of tile 5 should be at least &wvay from left edge of tile 3.
e 119 — x7 > 3 The left edge of tile 10 should be at least @wvay from left edge of tile 7.

These constraints can be visualized using a directed graph (V, £') as shown in Fig-
ure 3.11(b). Each vertex represents the X coordinate of a tile’s left edge. For each inequality

of the formz; — z; > d,;, there is an argv;, v;) with weightd;;.

CHAPTER 3. MIGRATION ENGINE 33

Note that with constraint-based migration methodology, the width and height of tiles may
be changed after migration in order to satisfy the constraints. However, migration must main-
tain that the given circuit topology keep the same functionality of the circuit, i.e., the corner
stitching representation of the layout is kept unchanged. So after migration, the four pointers
of each tile must point to the same tiles as in the old layout. The relative position of tiles are
not changed. For example, the tile 5 in Figure 3.11 is on the right side of tile 3 in the old layout
and after migration tile 5 cannot move to the left side of tile 3. Therefore, thévares) in
Figure 3.11(b) is redundant because the tile 5 is always on the right side of tile 3 and the dis-
tance constraint between left edge of tile 2 and tile 3 (agcv;)) guarantees that the distance
between left edge of tile 2 and tile 5 cannot be less than In other words, if an edge of
forbidden tile (tile 5) stays behind another forbidden tile (tile 3), it will not generate constraint
between the edge that is being processed and the edge in the “shadow” of forbidden tiles.

Another redundant arc in Figure 3.11(b) is arg, v10). As discussed before, the tile struc-
ture will not be changed after migration, which implies that tiles cannot be eliminated after
migration. We can assume that the minimum tile width should be greater than or equal to
So the minimum separation between the left edge of tile 7 and tile 10 should be greater or equal
than the sum of minimum width requirement of tile 7, 8 and 9, which is greater than or equal
to the minimum spacing)\. This makes the ar(-, v1o) redundant for migration.

A new design rule constraint generation metipth-K searchinglgorithm is proposed
in this project which greatly reduces the checking region and reduces the redundant constraints.

A detailed discussion of this algorithm follows.

3.3.3 The Depth-K searching algorithm

To gain more insight into the problem, we first build a grapladowing neighborhood graph
that captures the neighboring relation. As we can observe from Figure 3.11 that constraints
should be generated only for tiles that overlap with the checking edge verticalgdowing

neighborhood graplklefined in Definition 7 is used to limit the searching space.

CHAPTER 3. MIGRATION ENGINE 34

Definition 7 Given a tile called source tile in a plane, its shadowing neighborhood graph
N = (V, EV) is a directed graph whose vertices correspond to the tiles that overlap with the

source tile in the Y direction, and an edge v) € EV iff tile v andv share a common edge.

While the shadowing neighborhood graph is effective limiting the search space in the Y
direction, we propose a new strategy to further limit the searching space in X direction. We
observe that as we explore along the X direction, each tile has a minimum width requirement
dictated by the design rule or by topology keeping requirement. This can be summed up along
the path and be used as the bottom bound estimate of the distance between the source tile and
the current tile. Let's assum®@ is the maximumdist value among all the edge rules. If the

lower bound exceeds the constraint distangeurther exploration of the current tile can be

stopped.

b Depth 1 Depth 2 Depth 3
- > neighbor neighbor neighbor
—r— —— = 10 .
) | \ L | |
1 5 | } } ‘ 13 | d3 }
: ool e L]

\ \ \

9 \
6 \
—— 5L _L,l9|d9’:’J_L.J7|d7|>F

(@ (b)

Figure 3.12: (a) A fraction of a layout plane. Tile 1 is the source tile that is being processed for

edge rule constraint generation. (b) Depth-K shadowing neighborhood graph for tile 1.

Example 4 Consider the layout example in Figure 3.12 (a). The shadow is indicated by the
dashed line. A fraction of the neighborhood graph is shown in Figure 3.12(b), where each tile
is labeled with its minimum width requirementdif, d2 etc. Suppose the constraint distance is
D, anddl + d2+ d3 < D, dl +d2 + d3 + d4 > D, then tile 10 and tile 11 will be pruned

from the searching space.

CHAPTER 3. MIGRATION ENGINE 35

As such, it is guaranteed that there exists an upper bound of the depth we have to search.
We denote the maximum number of depths as K, which is totally decided by the design rules.
Given K, the definition of Depth-K shadowing neighborhood graph is given in Definition 8 and

Algorithm 4 shows how it is built.

Definition 8 Given a shadowing neighborhood graph= (V, EV), its Depth-K shadowing
neighborhood graphis a directed graphV = (V, EV) such that(u,v) € EN iff 3p € u ~~

v.|p| < K andw.y, u.t.y]N[v.y, v.ty| # @.

Algorithm 4 Depth-K searching algorithm.

CHAPTER 3. MIGRATION ENGINE 36

input: s : Tlile; 99
pl : Plane; 100

r : EdgeRule; 101
output: N = (V, EN); 102
func depthKShadowingClosure) 103
V={s} 104
EN = g; 105
forall (u € rightNeighobr Find(pl,s)) { 106
explore@, u, 1); 107

} 108

} 109
func explore:, v, depth) { 110
if([s.y, st.y]N vy, viy] =0 Vdepth+ + > K) 111
return; 112
EN = EN U (u,v); 113
V=V uU{v} 114
if (v.type ¢ r.okType) 115
return; 116
forall (w € right Neighbor Find(pl,v)) 117
exploreg, w, depth); 118

} 119

After Depth-K shadowing neighborhood graph is built, design rule constraints for source
tile s can be added to constraint graph = (V, E) by traversing its Depth-K shadowing
neighborhood grapv = (V, EN). Algorithm 5 shows how the design rule constraint are

generated when given the Depth-K shadowing neighborhood graph.

Algorithm 5 Edge rule constraint generation.

CHAPTER 3. MIGRATION ENGINE 37

input: s : Tile; 120
N = (V,EN); 121

R : EdgeRule; 122
output: G = (V, E); 123
func addEdgeConstraints() 124
forall(u € V') 125
if(u.type ¢ ROKType) { 126
E=FEU/ (s, u); 127
weight((s,u)) = R.dist; 128

} 129

} 130
131

To analyze the complexity depth-K searchinglgorithm, we assume that the total num-
ber of tiles in a layout igV. For any source tilg, the best case for thBepth-K searching
algorithm is for a row of tiles to sit besideas shown in Figure 3.13. In this case, this algo-
rithm would processx tiles for s. The worst case is shown in Figure 3.14 whereasN — 1
neighbors andV — 1 tiles need to be processed far From the experimental result given
in Section 5.2.1, the expected time complexity of the whole design rule constraint generation
process i€)(N'1), which includes both time cost for tile enumeration algorithm Begth-K

searchingalgorithm.

)
Y

Figure 3.13: The best case for Depth-K searching algorithm

CHAPTER 3. MIGRATION ENGINE 38

_IJL

Figure 3.14: The maximum number of tiles to be visited for tile s

Figure 3.15 and 3.16 gives an example of IntraPlane design rule constraints generated for

leaf cellmuz f201. The constraint graph is visualized in Figure 3.16.

Figure 3.15: A leaf cell muxf201.

3.3.4 Corner checking and Interpass constraint generation

In addition to the design rule constraints in the constraint region, edge rule also specifies the
corner region of an edge that needs to be examined as shown in Figure 3.17(a). The shape of
corner region is adist x dist rectangle. As every tile has the potential to move, the constraint

generation should also search beyond the corner constraint region. The Depth-K searching

CHAPTER 3. MIGRATION ENGINE 39

?A"ﬁ — T
Y \\\/ N
Y K&
% <L /\\ ‘\\. \]
- SRk
"‘ N T I(\1\
| 147 ~
7 "’ = S
| ’i ﬂ.J T2\
Y |§‘§;4'41 -
il \llr s

4%

Figure 3.16: The constraint graph for IntraPlane constraints.

algorithm can be applied to constraint generation in the corner region also. The only difference
is that in the Y direction, the searching should proceed taifHencighbor tile as shown in
Figure 3.17(b). As this algorithm is very similar to the Depth-K searching algorithm, we will

not give a detailed description of it.

: Y
okTypes dist
\ — [R coner extension K
corner | cdist
type s
\ K
\
typel type2 |
A
] X
(@) (b)

Figure 3.17: Corner constraint region checking

CHAPTER 3. MIGRATION ENGINE 40

As we employ the traditional 1-D migration, X migration and Y migration are independent

of each other, which may give rise to missing constraints for both X migration and Y migration.

Example 5 Considering the layout in Figure 3.18, let's suppose that tile 3 is located above
the constraint searching region and it is not included in the Depth-K shadowing neighborhood
graph. So, during X direction migration no constraint is generated between left edge of tile 1
and left edge of tile 3. After X direction migration and Y direction migration, it is possible that
tile 3 moves into area A. A design rule violation may occur if the distance between left edge of

tile 3 and left edge of tile 1 is less than the distance requirement from edge rule.

|
|
%é:l 5

N
[$)]

|
|
|
__ |
]
1 2 1] 2
| |
I
S | |
| I
(a) (b)

Xs = X1 =2 0

X, = Xs >0

Xs—= X4 =20

X5~ Xs =0

© (d)

Figure 3.18: (a) In the old layout, tile 3 doesn’t overlap with tile s in X direction. (b) After
X direction migration and Y direction migration, tile 3 moves into shadow area of tile 1. (c)

Interpass Constraint graph for tile s (d) Interpass constraints for tile s.

To solve this problem, additional constraints calietrpass constraintisieed to be gen-

erated to prevent the arbitrary movement of tiles during X and Y direction migration. Take the

CHAPTER 3. MIGRATION ENGINE 41

layout in Figure 3.18(a) for example, given a source 4jléor each tile that overlaps the left
boundary of tiles in the X direction such as tilé and tile4, we generate constraints between
the left edge of tiles and both vertical edges of tile 1 and tile 4 to guarantee that the left edge
of s stays within tilel and tile4 as illustrated in Figure 3.18(c,d). With interpass constraints,
those tiles that do not overlap source tile in the original layout will always be kept away from

checking area, thus no new design rule violations will occur after migration.

Algorithm 6 Interpass Constraint Generation

input: s : Tlile; 132
N = (V,EN); 133
output: G = (V, E); 134
func InterpassConstraints(} 135
forall(u € V') 136
if(s.z € [uz, urz]) { 137
E=FEU/u,s); 138
weight({u,s)) = 0; 139
E=FEU((s,u.r); 140
weight({(s,u.r)) = 0; 141

} 142

} 143

3.3.5 InterPlane Constraint generation

Other than the constraints between tiles on the same plane, edge rules also specify the distance
requirements between tiles on different planes, indicated by the valulef in each edge
rule. For example, the minimum spacing requirement between N-well and pdiffusion in TSMC

0.25:m technology is 8. However, Well tiles and active tiles are in different planes in the

CHAPTER 3. MIGRATION ENGINE 42

corner stitching layout representation as shown in Figure 3.21. So the vatlerefin this

edge rule given in is set tative as shown below:

edgespace N —well pdiff 6 pdiff 6 active

p o active plane

Figure 3.19: N-well tile stays on well plane while diffusion tile stays on active plane.

The Depth-K searching algorithm is modified slightly to be applied for interplane constraint
generation. For intraplane constraint generation, the Depth-K shadowing neighborhood graph
is built on the same plane as the plane that the source sil@ys on and the constraint region
starts from the edge of tile. However, for interplane constraint generation, the Depth-K
shadowing neighborhood graph is built on checking plane as indicated in the edge rule. We
first map the edge being processed to an imaginary edge on the checking plane as shown
in Figure 3.21. The imaginary edge has exactly the same length and location as the edge
being processed. Then the Depth-K shadowing neighborhood graph can be built with Depth-
K searching algorithm on the checking plane. The Depth-K shadowing neighborhood graph
for layout in Figure 3.21 and the corresponding interplane edge rule constraint are given in
Figure 3.20.

However, for interplane edge rules, the constraints generated above are not enough to guar-
antee that validity of the migrated layout. The main reason is that the movement of tiles in
different plane are independent if no further constraints are generated, which may cause design
rule violations in the migrated layout. For example, if no constraints between the left edge of
tile 1 in Figure 3.21 and that of source tite the tile 7 which is also a P-diffusion tile may

move to the right of edge and the distance may be wiéinwhich will cause design rule

CHAPTER 3. MIGRATION ENGINE 43

Depth 1 Depth 2
neighbor neighbor
\ \ |
2|d2 ‘ | e
} I 3la3| | 6)
s 4 \ =
.m | \ | @ @
\ \ |
6] d6] | | ‘
\
SR S (o)
(@ (b)

Figure 3.20: (a)The Depth-K shadowing neighborhood graph for interplane edge rule (b) In-

terPlane edge rule constraint between source tlied tile3.

errors. Also, tile4 may also move outside of the constraint region which makes constraints
between tiles and tile3 unnecessary. So two more types of constraints need to be generated

with the interplane design rule.

e InterPass constraints in the X direction for interPlane edge rule. This set of constraints
is used to guarantee that the imaginary edge of source siid overlap’s with the same

tiles in the old layout. Given the layout in Figure 3.21, we will generate constraints:

T, —x1 >0 Ty —Xo <0
T, — x5 > 0 T, — 1y <0
:L'S—ZL'6§O (3-2)

With these constraints, the relative position in the X direction of those tiles in different
planes will be kept unchanged. Therefore, forbidden tiles such &s ditethe left side

of the imaginary edge will not move to the right side of it after migration and vice versa.
Otherwise, the new layout may have design rule violations between the source tile and

forbidden tile that were not considered in Depth-K shadowing neighborhood graph.

¢ InterPass constraints in the Y direction for interPlane edge rule. It is very similar to

interpass constraints for intraPlane edge rule, except that source tile is in different plane.

CHAPTER 3. MIGRATION ENGINE 44

For the layout in Figure 3.21, we need to generate constraints for the bottom edge of tile
s to guarantee that after migration, the bottom edge ofstdéll overlaps with tiles that

overlapped with it in the original layout:

ys_y520 ys_y1§0

ys_y620 ys_y4§0

The constraints for top edge of tikkcan be built in the same way. With this set of
constraints, the forbidden tiles in the checking plane will still stay within the constraint
region after migration. Other forbidden tiles that were above or below the constraint
region will be kept away from the constraint region so that no new violation will occur

after migration.

Figure 3.21 shows a real example of InterPlane constraints generated for leaf cell muxf201

given in Figure 3.15.

Figure 3.21: InterPlane constraints generated for cell muxf201.

3.3.6 Connect Constraints Generation

Connect constraints are generated to guarantee the correct presentation of contact tiles after
migration. As we know from Chapter 2, corner-stitching partitions the mask layers into sepa-
rate planes. Layers that overlap may cause electrical constructs to be partitioned into the same
plane. Those layers that overlap with little electrical significance will be partitioned into differ-
ent planes [22]. For example, polysilicon, diffusion, and their overlaps (transistors) are stored
in active plane, while metall that does not interact with these layers is stored in a different

plane,metall plane.

CHAPTER 3. MIGRATION ENGINE 45

However, because tlentact mask type connects layers in different planes, it is a special
case. It has to be represented in all planes that it connects. In the technology file, contact is
specified in a Contact section with specialized syntax. An example of polycontact is shown

below:

contact

pcontact poly metall

end
The contact declaration begins with a contact type cdikse typeln this example, pcon-

tact is a base type for polycontact. The remainder of this declaration is a list of non-contact
mask types (poly and metall in the example) that are connected by this contact. These types
are referred to asomponentype of the contact. The home plane of the first component type
will be the home plane for contact and contact also hasagetile type on the planes where

other component type tiles stay. For example, pcontact’s home plane is active plane which is
also the home plane for poly. A pcontact has a image tile pgmontact/metalthat is stored

in metall plane as illustrated in Figure 3.22.

,— pcontact/metall
metall plane

(x2r , Yar)

X

(X2y Yop)

P
active plane
|— pcontact

Figure 3.22: A contact has different tile types on the planes it connects. The poly contact in

(Xl,l) ylyh)

this figure hagpcontacttile (tile 1) on active plane angdcontact/metalltile (tile 2) on metall

plane.

CHAPTER 3. MIGRATION ENGINE 46

Although a contact has two tile copies using the corner stitching representation, the contact
still representone via hole in physics. So, the base tile and image tile of a contact should
have exactly the same shape and stay at the same location on the component planes. Given
a layout for migration, the corner stitching data structure itself has no mechanism to grantee
this requirement. Therefore, we generate four equalities calbadect constraintfor this
requirement to guarantee that base type tile and image type tile of a contact are exactly the

same after migration. For example, for the poly contact in Figure 3.22, we will generate:

Ty, = T
T1r = Topr
Yib = Y20
Y1t = Yot

Figure 3.23 shows a real example of Connect constraints generated for leaf cell muxf201

given in Figure 3.15.
0 e 0 00 0 e 7 0 0 e e

Figure 3.23: Connect constraints generated for cell muxf201.

3.4 Objective function

After constraints are generated, the migration engine needs to build an objective function ac-
cording to the kind of optimization goal the user wants to achieve and dump both the constraints
and objective function to the ILP solver. The new positions of each tile will be determined from
the ILP solver. The performance of the migrated layout is largely influenced by the choice of
objective function. In this section, we discuss three objective functions and their impacts on

layout.

CHAPTER 3. MIGRATION ENGINE 47

3.4.1 Minimum area objective function

The traditional minimum layout area objective function takes the layout area as the criteria
and shrinks area to a maximum extent. Given a layout in Figure 3.24, the minimum layout

objective function will be formulated as:

MINIMizZe X, — X

(3.3)

X1 Xr

Figure 3.24: Tilel is the leftmost tile in a layout and is the X coordinate of its left edge. Tile

2 is the rightmost tile in the layout and is the X coordinate of its right edge.

However, one of the disadvantages of the minimum area objective function is that this crite-
rion tends to shrink the layout recklessly without considering layout design issues. There exist
some circumstances that increasing the layout area a little bit would be beneficial to circuit
performance and chip yield. For example, power lines in the layout are usually designed to be
wide instead of narrow to minimize the electromigration and resistance effects. Also, layout
designers tend to make space between two important signals to minimize the coupling between
them. As the minimum area objective function cannot take care of these issues, we intro-
duce theminimum perturbatiormndgeometric closenessbjective functions in the following

sections.

CHAPTER 3. MIGRATION ENGINE 48

3.4.2 Minimum perturbation objective function

In order to take full advantage of the original design and make minimum changes to the mi-

grated layout, thélinimum perturbatiorobjective is proposed in [10], which is defined as:
minimize Z |z — 2| (3.4)

wherez is the vector of variables that determine X coordinates of all vertical edges°dnd

is the vector of constants that are the original X coordinates of all vertical edges in the layout.

The minimum perturbation function minimizes the position changes of all edges and snaps

the edges to their original positions as much as possible. However, the disadvantage of this
function is that it minimizes the absolute coordinates of edges and will penalize more on the

movement of edges on the right side of the layout.

Example 6 Consider a simple layout given in Figure 3.25 with two tiles of metal2 type. Be-
cause of technology change, the minimum width requirement of tile 1 is changet)ftoriA

and the distance requirement between tile 1 and tile 2 is changed4fkam5)\ too. Based on
minimum perturbation objective function, the layout will be migrated to the one on the lower
part of Figure 3.25. The right edge of tile 1 will be stretched rightward hyand left edge of

tile 2 will be moved rightward bg\. However, the right edge of tile 2 stays at the old posi-
tion because without change of its position, its widthAswvhich satisfies the new design rule.

Otherwise, the objective function value will be greater than the oneayitinchanged.

It can been seen from this example that the movement of edges on the left side will add
penalties on the edges on the right side if we want to preserve the original shape of tiles on the

right.

CHAPTER 3. MIGRATION ENGINE 49

tile 1 tile 2

before migration

|
)
|
I
|

|
|
|
} after migration
|
|

| | |
0 4 5 8 10 15 X
x1 x1 X2 x2'

Figure 3.25: The old layout and migrated layout with minimum perturbation objective function.

3.4.3 Geometric closeness objective function

To remove this penalty, a new objective functiggometric closenessbjective function is

introduced which is defined as :

Minimize Z |(2rs — 213) — ($Old - »’Uloild)’ (3.5)

T

Here,z,; andz;; are the X coordinates of the right and left edges of each tile in the layout.
The constants®? andz{/? are the X coordinates of the right and left edges of the corresponding
tile in the original layout. Instead of minimizing the absolute coordinate changes of edges, this
function minimizes the shape changes of all tiles so that each tile change will not add penalty
to other tiles.

To linearize, or to remove the absolute value computation in Equation (3.5), we use a
method similar to [10] by introducing two variablég and L; for each tile, such that Equa-

tion (3.6) are introduced as constraints,

> Ty — Ty

S,

old old
> Ty — Xy

IN

Tri — Ty

~

SIS

<L

IN
8

old qud (36)

i I

CHAPTER 3. MIGRATION ENGINE 50
and the objective function is replaced by Equation (3.7):
Minimize Z(R, - L;) (3.7)

Equation (3.7) and Equation (3.5) is equivalent for this ILP problem and the proof is given
in the following:

Proof:

From constraints : R; > x.; —x;; and R; > 2% — ﬂffild

we get R; > max{(z,; — zu:), (x%d - xfild)}
Similarly, Li < min{(x,; — xy;), (224 — ap/%)}

Because for any, (R; — L;) has the minimum value only whe®y, = maz{(z,; — z1;), (224 —

T

2} andL; = min{ (@, — ay), (22 — x7)}, we get:

1

min{ Y (R — Li)}
= min{ Y (maz{(zy; — xi), (@0 — 279} — min{(z, — @), (2 — 27/)})}

= min{ 32 |(2; — 2i5) — (a3 — 2f{*)[}

Example 7 With the geometric closeness objective function, the example given in Figure 3.25
will be migrated into the layout in Figure 3.26. It can be seen that the width of tile 2 is set to

the original value and the topology of the old layout is preserved to a maximum extent.

tile 1 tile 2
before migration
| | |
] | T
|

| } after migration
[| |
|| | | | |

0 4 5 8 10 15 17 x

x1 x1 X2 x2'

Figure 3.26: The old layout and migrated layout with geometric closeness objective function.

CHAPTER 3. MIGRATION ENGINE 51
3.5 Integer Linear Programming Solver

With all the constraints and the objective function generated, an integer linear programming
solver is needed to get the optimized solution for each variable. For all the test libraries, in-
cluding the datapath library and the standard cell library, there will be up to 2,000 variables
and 40,000 constraints (shown in Appendix A and B). We use the free ILP solver, called
Ip_solve by Michel Berkelaar from Northwestern University and Argonne National Labora-
tory. (http://lwww.cs.sunysbh.edu/ algorith/implement/Ipsolve/implement.shtml). The program
can solve the ILP problem with as many as 30,000 variables and 50,000 constraints, which fits
our requirement. We can get a design rule clean layout after we assign the new position of each

tile from the result generated by ILP solver.

Chapter 4

Migration for datapath and standard cell

libraries

The migration engine described in Chapter 3 can migrate a layout to new technology without
design rule violations. However, it is nhot enough to handle migrating a library of leaf cells.
Today’s ASIC design flow prerequires the existence of library of cells that can be used for
synthesis or place & route tools. The total design is built from assembling these leaf cells in
the library. The design of leaf cells has more issues to consider so that they are compatible
with the synthesis or Place & Route tools. In this chapter, we will explor@veeall library
architecturerequirements for datapath and standard cell libraries and how these requirements

are solved using our migration engine.

4.1 Datapath library migration

In digital signal processing (DSP) ICs and microprocessors, the datapath is the core where all
computations are performed. A system’s performance is largely determined by the design and
implementation of its datapath. A datapath consists of interconnection of basic combinational

functions, such as logic (AND, OR) or arithmetic operators (addition, multiplication, com-

52

CHAPTER 4. MIGRATION FOR DATAPATH AND STANDARD CELL LIBRARIES 53

parison). In this project, we call these functions or operditanstion blocks One of the most
important characteristics of datapath cells is that there are several buses of data flowing through
the function block at the same time. An example circuit given in Figure 4.1 shows two 8-bit
signals flowing through an 8-bit adder and produce the output O.

A[7:0]

adder 0O[7:0]

Yy

i

B[7:0] control

Figure 4.1: An 8-bit adder block diagram.

As we can see from Figure 4.1, the adder for each signal bit is identical. In order to re-
duce wire lengths and increase the layout density, designers catrusiired custom design
and build an N-bit function block by abutting predesigned leaf cells as shown in Figure 4.2.
However this design approach is based on the fact that leaf cells must be carefully designed
to fit into this structure. For example, the control signals in the 8-bit adder in 4.2 must align
vertically, so that when the leaf cells are tiled, these lines are contiguous.

Figure 4.3 shows the leaf cell layout structure of the one bit cell in datapath library [3].
This is considered a typical datapath leaf cell.

We can observe from Figure 4.3 some important characteristics about a datapath leaf cell:

e Power rails run vertically in metall and cover the entire cell in the Y direction so that
power lines are contiguous when cells are abutted. The width of power line is specified

by the designer and the spacing is variable.

e There are signal ports other than power rails to allow abutment. Mostly, these signals are

control signals for each bit cell. The width and spacing of these signal ports are variable.

CHAPTER 4. MIGRATION FOR DATAPATH AND STANDARD CELL LIBRARIES 54

B[7] B CcouT Ny
Al7] A CIN (e}
couT
o
A CIN N
bitslices
| \
B[O] B couT
(e}
A[0] A CIN
co X
control slice

Figure 4.2: An 8-bit adder constructed by abutting 8 adder bitslices and 1 control slice.

W is variable

_— Offset =1

A

I spacing =5

M1 power other /
rails ~a signal port

width =3

v
(unit: lamda)

Figure 4.3: An example of datapath library cell.

e There are horizontal feedthroughs implemented on metal2 for connection of I/O ports
between different function blocks. The width, spacing and offset of feedthroughs are

decided by designers.

The following section will discuss how we model each of these function block architecture
requirements into constraints so that the migrated leaf cells can be used the same way before

migration.

CHAPTER 4. MIGRATION FOR DATAPATH AND STANDARD CELL LIBRARIES 55

4.1.1 Port matching

As we can see from Figure 4.2, the area efficiency in the datapath is achievedibggretrat-
egy where important signals, such as Vdd/Gnd and controls, are implicitly routed by abutment.

This requires the ports of different cellsimatchexactly in position and size.

leafcell A
1 2 n
XAL XA2,L XA2,R XAnL XAnR XAR
XBL XB2,L XB2,R XBn,L XBn,R XBR
1 2 n
leafcell B

Figure 4.4: Port matching of leaf cells.

One naive way of translating the port matching constraints is to make the port spacings and

port widths equal for all matching cells. The constraints result from Figure 4.4 are then:

TAL — LA (i—-1)R — IBiL — TB,(i—1)R (4-1)

TAGR —XAiL = XB4iR — TB,L (4-2)
and relative port positions on the cell boundary are also set to equal:

TAIL —TAL = IB1L — TBL (4-3)
TAR — TAnR — TAR — TAnR (4-4)
The problem of this approach is that the constraints bind variables from different cells
together. Therefore they have to be migrated simultaneously. This may increase the number of

variables in the underlying ILP solver substantially. With large datpath library, this approach

quickly becomes infeasible.

CHAPTER 4. MIGRATION FOR DATAPATH AND STANDARD CELL LIBRARIES 56

We instead introduce a pair of constamtandw to break the dependency between different

cells:

TAL — LA(i—-1)R = d TBiL — TB,(i—1)R = d (4-5)

TAR — TA4L —W TBiR — TRB4L — W (4.6)

Becaused andw are constants, with constraints in Equation 4.5 and 4.6 leaf cells can
still be migrated separately. However, the valuel @ndw must be carefully selected so that
constraints in Equation 4.5 and 4.6 do not conflict with design rule constraints described in

Chapter 3. To address this problem, we employ a dual-pass strategy that is elaborated below:

¢ In the first pass, it analyzes the layout of each leaf cell, generates the design rule con-
straints, and drives an ILP solver under the objective function that the designer needs to
arrive at a temporary migration solution of each cell as shown in Figure 4.5. Note that

the ILP problems are solved separately for different cells.

¢ In the second pass, the different architectural and circuit requirements are translated
into linear constraints, such as the port matching constraints in Equation 4.5. Here, the
temporary solution obtained in the first pass is exploited so that the new constraints relate
variables originating from the same cell. The ILP solver is then called again to obtain
the new and final solution to accommodate the new constraints. Note again that the ILP

problems are solved separately for each cell.

Using this dual-pass strategy, We obtdiandw by taking the maximum value of,, —
;_yyg» @Ndz;p—x;; among all the leaf cells that have to be matched, wheisethe temporary
solution we obtain in the first pass. This method effectively stretches the port whose width or
spacing to the previous port can be smaller than the maximum value among all the leaf cells,

making all ports align together without design rule violations.

CHAPTER 4. MIGRATION FOR DATAPATH AND STANDARD CELL LIBRARIES 57

datapath architecture
cells specification
design rule

constraints generation

ILP solver

layout structure
constraints

ILP solver
migrated report
cells file

Figure 4.5: Dual-pass migration strategy.

4.1.2 Routing Track Matching

Data signals in the datapath are always routed horizontally (perpendicular to control signals),
and over-the-cell, as the feedthroughs in our datapath leaf cells shown in Figure 4.3. Typically,
they have to be aligned to a routing grid, for which the new migrated library may be different
than the original. For example, for a leaf cell layout given in Figure 4.6, and a routing grid
characterized byrs, ro, rw), representing the routing pitch, offset and width respectively. The
value ofrs, ro andrw is specified by the designer in the architecture specification file in
Figure 4.5. The Y coordinate of the bottom and top edge of each feedthrgugmdy; in

Figure 4.6, must satisfy constraints:

Yi-1)B — K-rs = yr (4.7)

CHAPTER 4. MIGRATION FOR DATAPATH AND STANDARD CELL LIBRARIES 58

K >0 (4.8)
Yir —Yip = TW (4.9)
S (xg, ¥7)
i
7
: (Xir ., YiT)
(xiL ,¥is) /

(Xc, Yg)

Figure 4.6: Cell with routing track for data signals.

while the Y coordinate of the top edge of the first feedthrough must satisfy constraints:

Yyr —ro = Yir (4.10)

As the feedthrough covers the entire layout in the X direction, the left edge and right edge
of each feedthrough must align the left boundary and right boundary of the leaf cell, which can

be translated into constraints:

T, = I, (411)

TiR — IR (412)

4.1.3 Power/Ground Net Sizing and Transistor Sizing

There are two kinds of constraints involved with power/ground nets. First, power/ground ports

of abutting cells have to match. This can be solved by the port matching method described

CHAPTER 4. MIGRATION FOR DATAPATH AND STANDARD CELL LIBRARIES 59

pw pw
- -
XL X1R X2L X2R

Figure 4.7. The width of each power net has to be equaltaiven by the designer in the

specification file.

earlier. Second, the width of the power/ground net needs to satisfy the architectural specifica-
tion as shown in Figure 4.7. Often, the width is determined by separate power/ground design
methodology and layout migration has to faithfully follow the specification. These constraints

are expressed as follows:

wherez;;, andz; are the left edge and right edge of the power/ground net respectivepuand
is the user specified width of the power line.

Similarly, a circuit-level transistor sizing tool may determine an optimal transistor size that
is different from the original layout, and it will rely on the migration tool to perform the change.
After the identification of transistors in the layout, the sizing requirement can be expressed
as an equality constraint, i.e the width and length of each transistor are set to the value as
specified. Note that we only expect modest change in the transistor size, and therefore mild
change in layout topology. For example, the introduction or elimination of transistor fingers is

not needed.

CHAPTER 4. MIGRATION FOR DATAPATH AND STANDARD CELL LIBRARIES 60

4.1.4 Soft Constraints

A practical problem frequently encountered is that it is highly possible that the layout archi-
tecture specified by the user may lead to infeasible solutions. For example, if the routing pitch
rs and routing width-w are too small, the routing grid constraints may conflict with minimum
spacing requirement and minimum width requirement on metal2 specified by design rules in
the new technology file. The ILP solver only provides a binary answer of failure when the
given constraints are conflicting with each other. To make things worse, a typical leaf cell may
have over thousands of constraints. it is unlikely that the user can trace where the conflicting
constraints are and make a decision on where to change architecture specification or manually
modify the layout at some specific location. Itis instead highly desirable for the tool to provide
some hints.

We introduce a new concept, callsdft constraintso address this problem. Typically, the
constraints that are related to architecture specification given by the designer, such as routing
track constraints, power/ground sizing constraints, and transistor sizing constraints, will be in-
troduced as soft constraints, in contrast to hard constraints such as design rule constraints. One
of the characteristics of these constraints is that they are all expressed as equalities. Consider

such equality constraints expressed in the form of:

J

Where A;; is the coefficient matrix, and; is a vector of constraints. We introduce two

positive variables, calledlastic variables:;; ande;, that will be added to the equality:

Z Aijxj +ej1 — €9 > bz (415)
J

CHAPTER 4. MIGRATION FOR DATAPATH AND STANDARD CELL LIBRARIES 61

Since the values of;; — ¢;; can be set arbitrarily in value, the original constraint can be
relaxed orsoftenedin other words, the equalities do not have to be satisfied. This effectively
enlarges the feasible solution space of the ILP problem.

On the other hand, it is highly possible that the soft variables may make those constraints
that can be satisfied become infeasible by setting the soft variables to a non-zero value. To
prevent unnecessary constraints relaxation, we penalize those solutions that were not supposed
to be feasible originally by adding them to the objective function with a large weighting factor.
Combining Equation (3.5), the new objective function becomes

Z(Rj —Lj)+W Z(eil + e2) (4.18)
7 %
This way, if conflicting constraints exist, by looking for all non-zero elastic variables, users

can easily pinpoint the wrong specifications and revise them accordingly.

4.2 Standard Cell Library Migration

Standard cell library is the basic library used for most ASIC designs. It provides functional
blocks such as inverters, NANDs, and flip-flops used for synthesis and layout presentation of
these function blocks for place & route. An example of design implemented with standard cell
library that consists of rows of standard cells and channels between them is given in Figure 4.8
[14]. More advanced design with more than two layers for routing may not leave the space for
channels which means that routings are all done over the cell.

There are several factors that impact the design of standard cell libraries. First, with the
modern synthesis design flow, circuit designers usually do not see the layout cells. So there
is great need for standardization of leaf cells in the library. The standardization includes the

requirements such as [7]:
e The shape of leaf cells must be rectangle.

e Cells in the same row or in particular are all of the same height.

CHAPTER 4. MIGRATION FOR DATAPATH AND STANDARD CELL LIBRARIES 62

e Power lines should have the same width and same position for all the cells in the library.

standard cells row
L~

-a— Channel

Figure 4.8: Standard cells design

Another factor that impacts standard cells design is the influence of place and route tools.
The connectivity between cells at the same row or in different row is done by the router which
only works well with cells designed in a certain pattern. Cells design is highly influenced by

the restriction of these tools. Some of the considerations related with routing are listed here:

¢ All the input and output ports must have a predefined layer, position, shape and size.
These characteristics are decided with considerations of requirements from place & route

tool.

e The cell width must be rounded up to multiple of coarse grid. The grid size is determined

by the desire to make placement easier.

e The placement of N transistors, P transistors, poly and wells should carefully follow the

same guidelines so that no design rule violations are created when cells are abutted.

4.2.1 Layout Structure Constraints Generation for Standard Cells

Figure 4.9 shows a summary of layout structure requirements for standard cell library devel-
oped by Tim Burd from University of California, Berkeley [3]. We will use this design as an

example to illustrate the architecture constraint generation process.

CHAPTER 4. MIGRATION FOR DATAPATH AND STANDARD CELL LIBRARIES

vdd (m1)
‘EE/S %5
M2 contact)
| (110 port) N-well cell height
- 50
5
1 goly P-well
5
Gnd (m1) 10
J 5
Usable cell wdith
k %8 (unit: lambda)

Figure 4.9: Layout architecture for a standard cell library.

63

e An I/O port is defined by a labeled metal2 contact, the shape of whiclWig’ax CW

square C'W is equal to5\ in Figure 4.9). As the placement and routing tool for this

library uses fixed-grid two-level routing, it requires that all I/O ports stay in fixed grids

as shown in Figure 4.10. Each port @s spacing along the horizontal axis, with an

offset of CO from either side of the power rail{S and C'O are set tobA and 5\ in

Figure 4.9). Letr;;, andz;r denote the X coordinates of each port’s left edge and right

edge ;g andy,r denote the Y coordinates of each port’s bottom edge and top edge. The

grid requirements for I/O ports are translated into constraints below:

Tir — Ti[+ €X;1 — €0 = cw ET;1 > 0 €X;2 > 0
Yir — YiB + €Yyir — eYip = CW eyip > 0 eyiz = 0
Tip, — TG-1R + €S;1 — est2 = lﬂl . (CW + CS) + cw

k; >0 esip > 0 esip > 0

(4.19)
(4.20)
(4.21)

(4.22)

Whereez;, ex;o, ey;1, €y, €s;1 andes;, are elastic variables used to trace conflicting

constraints when the constants given by the designer cause design rule violations as

discussed in Section 4.1.4. Since in real design, it is not necessary to have all the ports

CHAPTER 4. MIGRATION FOR DATAPATH AND STANDARD CELL LIBRARIES 64

LA

co |
-

cs |

I cs |

I¢CW:

LS

ren |
i

XiL

X iR

Figure 4.10: All I/O ports stay in fixed grids

in every other grid, the spacing of the ports is setto(CW + CS) + CW instead of

CW in Equation 4.21.

e The placement & route tool require that each cell in the library has identical usable cell

height 4 that is50\ in Figure 4.9 and the overall width of the cell is a multiple of a

constant’ which equals t®\ in Figure 4.9. Given cell topology in Figure 4.11, the

cell width and height requirement can be translated into equality constraints:

Yar — YgB + € —eg2 = H

Tar — Tar, +ew1 —ewa = W

eqg1 > 0

ew1 > 0

ez > 0

ews > 0

(4.23)
(4.24)
(4.25)

(4.26)

e The width of power rails is set to a value defined by circuit designer with considerations

that the power supply connections will meet electromigration requirements and resis-

tance characteristics. In our migration tool, this requirement can be modeled as setting

power rail width to a constant valuell. Take Vdd rail in Figure 4.11 as an example,

CHAPTER 4. MIGRATION FOR DATAPATH AND STANDARD CELL LIBRARIES 65

the width constraint is translated as:

Yar — Yap + ep1 — ep2 = PW (4.27)
epr > 0 epz > 0 (4.28)
kaw (XRr,¥7)
- ol
(Xdr,Ydr)
PWI -
(xdL , YdB) H
(XgR, YqT)
POH \
4‘_.»
Y
(xat, Yge) t POV

(XL, yg)

Figure 4.11: The requirements on power rails

e There is certain well overlap denoted B®V in Figure 4.11 POV is equal to5) in
Figure 4.9) along the vertical axis to guarantee that the active tiles can be placed all the
way to the outer edge of power rails without violating the overlap rule between active
and well. Although design rule constraints generation can guarantee that the overlap is
large enough, different cell may turn out with different overlap after migration, which
makes power rails not aligned when different cells are abutted. So, we set the overlap

between power rail and well all the same:

Ygr — YgB T+ €OV1 — €ova = PW (4.29)

eovi = 0 eova > 0 (4.30)

There is alsaPO H well overlap along the horizontal axis. The constraint for horizontal

overlap can be generated in the same way as the vertical overlap constraint. As the cells are

CHAPTER 4. MIGRATION FOR DATAPATH AND STANDARD CELL LIBRARIES 66

abutted along horizontal axis, all active, metall and metal2 tiles must be contained within two
power rails. This is guaranteed by the original careful design because migration will not make
drastic topology changes which means that the tiles inside power rails will not move outside

after migration.

Chapter 5

Experiments and Conclusion

5.1 Experimental Setup

We implemented the migration tool on top of an IP-centric CAD infrastructure, cigltedte

which uses Magic’s corner stitching data structure to represent mask layout. An open-source
ILP solverlp_solve by Michel Berkelaar from Northwestern University and Argonne National
Laboratory, is used to generate the optimized result. For all the test libraries, including the
datapath library and the standard cell library, there will be up to 2,000 variables and 40,000
constraints (shown in Appendix A and B). The ILP solver can solve the ILP problem with as
many as 30,000 variables and 50,000 constraints, which fits our requirement. The migration
tool itself is implemented by over 12,000 lines of C code.

To test the effectiveness of our tool, we apply our tool on the low-power standard library
and datapath library developed by Burd [3] at University of California, Berkeley. Standard
cell library contains 94 leaf cells that include the range of 2, 3 and 4 input “simple” gates —
nand/and, nor/or, muxes, and-or/or-and, etc. There are various-sized inverters, buffers, trans-
mission gates and a small variety of simple latches. Different types of adder and subtracter bit
slices are also included in the standard cell library. The datapath library contains 285 cells that

have a wide variety of functions as those in standard cell library. Several chips such as protocol

67

CHAPTER 5. EXPERIMENTS AND CONCLUSION 68

chip, video decompression chip set are designed with these libraries [3]. Both standard cell
library and datapath library are implemented based on standard MO&lLS, process. Our
targeted process is TSMC 0.251 and TSMC 0.18m technologies.

In the following sections, we show the experimental results to demonstrate each feature of
our migration tool. Section 5.2.1 gives the run time result for constraint generation algorithm
and ILP solver. The run time for constraint generation is found to be propotiof|IXd-*). In
order to demonstrate thBual-pass strategig effective in solving hierachical layout migration
problems, such as pitch matching problem, we give the experimental results of migrating leaf-
cells for a/V bit adder in datapath library, and migrating two datapath library eell$201 and
muz f201 with respect to layout architecture requirements in section 5.2.2sdfheonstraints
method is tested in section 5.2.4 with an example migration result of a standard cell. And the
soft constraint method is found to be effective in correcting wrong constraints and guiding
the users to fix them. Finally, a comparision of different objective functions is presented in

section 5.2.3 with migration result of a standard cell under different objective functions.

5.2 Experimental Result

5.2.1 Run Time

The run time of datapath library and standard cell library is summarized in Appendix . Fig-
ure 5.1 gives a plot of run time versus number of tiles in the layout. The solid line in the figure
shows the run time (measured in seconds) of constraints generation for standard cells versus
the number of tilesV. And the dotted line is the plot of function proportionalt@V) = N,

The run time in Figure 5.1 includdstraPlane InterPlane InterPassand Connectcon-
straint generation. Except fro@donnectconstraint generation, other constraint generation
algorithms are all based ddepth-K searching@lgorithm. Because most layouts have very few
contacts, we can assume that this rum time is dominated by the run time of constraint gen-

eration usingDepth-K searchinglgorithm. As can been seen from Figure 5.1, this real run

CHAPTER 5. EXPERIMENTS AND CONCLUSION 69

251

15F

run time (s)

05

0 1 1 1 1 1 1 1 1 1
150 200 250 300 350 400 450 500 550 600 650
N:number of tiles

Figure 5.1: The run time of design rule constraint generation

time curve fits the functiorf (V) very well and this gives the result:the expected running time
for constraint generation witbepth-K searchinglgorithm isO(N*#) within the range where
N € [0:700].

Figure 5.2 shows the run time of ILP versus number of tiles. As we can observe, the run
time of ILP dominates the whole computation time. The ILP problem is known to be an NP-
hard. The simplex algorithm, which is the basis of ILP solver, is found to be exponential in
the number of decision variables [23]. However, as the complexity of each leafcell is limited,

total migration time is limited in minutes and thus still tolerable.

5.2.2 Dual-pass strategy

Thedual-pass strategig used to accommodate layout architecture constraints with design rule

constraints that have been built. In this section, we give the migration result for the ripple carry

CHAPTER 5. EXPERIMENTS AND CONCLUSION 70

250 T T T T T T T T T

200 1

150 b

100 - T

50 B

0 I I I I I I I I I
150 200 250 300 350 400 450 500 550 600 650

Figure 5.2: The run time of ILP solver.

adder in datapath library and two leafcells in standard cell library to demonstrate the result for
this algorithm.

In this datapath library, there are four leafcells used for building a ripple carry adder. Cell
add and celladd_fast are full adder bit slices. Celidd_cs_sel and add_cs_0 are control
slices used to determine the carry-in signal for the least significant bit adder cell. Figure 5.3
shows the leafcells before migration and after migration. The old layouts are based on standard
MOSIS 1.2um technology, and the news cells are generated after the migration process under
the geometric closeness objective function. The targeted process is TSM@®t26hnology.
Note that the layouts are displayed with measurement unit 28t to

The usage of these cells for building an N bit adder are visualized in Figure 5.4.

The layout architecture characteristics before migration and after migration are summarized
in Table 5.1.

Figure 5.5(a) and (b) shows a four-bit adder built from old leafcells and from migrated

CHAPTER 5. EXPERIMENTS AND CONCLUSION 71

Vdd CININV GND

(b) Cell add after migration.

_vdd_COUTINGND

7 = 557777777777

Vdd CININVGND

(d) Cell adi@dst after migration.

GND GND Vdd _ COUTINV GND l CouT GND

GND

GND GND GND \GRRYIN GND vdd GND

(f) Cell adds sel after migration.

GND Vvdd COUTINV GND Vdd COUT GND
GND vdd GND vdd GND
(g) Cell addcs 0 before migration. (h) Cell adds 0 after migration.

Figure 5.3: The leafcells for ripple carry adder

Table 5.1: Layout architecture characteristics

Height of bit slice| Width of power rails| Feedthrough (old/new)

(old/new) (old/new) width | spacing| offset

64)\/100\ 8A/8)\ 3M3X\ | BA/6A | 1A/3A

leafcells respectively. Both adders are scaled to the same width for comparison. The result

shows that:

e All the ports such a€ARRYINCARRYOUTVddandGND are correctly matched both

in position and in size between abutting cells.

CHAPTER 5. EXPERIMENTS AND CONCLUSION 72

add/add_fast

[1.N]

add/add_fast

add_cs_0/add_cs_sel

Figure 5.4: The floorplane of an N bit adder.

e The feedthroughs are placed in grid according to the requirements given in Table 5.1.
e Other requirements such as cell height and power rail requirements are all met.

Figure 5.6 shows two example leafceltsdf201 andmux f201 based on standard MOSIS
1.2um technology in standard cell library and Figure 5.7 gives the migration result. The layout
structure requirements are given in Table 5.2. The migrated cells satisfy all the requirements

listed.

5.2.3 Geometric Closeness Objective Function

As discussed in Chapter 3, the geometric closeness objective function is adopted to keep the
original shape of the layout to a maximum extend. Figure 5.8 shows an example to compare
the migration result under geometric closeness objective function and minimum perturbation
objective function. Note that the height of the substrated conta@NrD rail in Figure 5.8(a)

is kept the same as in Figure 5.8(c), while the height in Figure 5.8(b) is larger than the old
layout. This is due to the fact that when overlap between power rail and well is reduced by
1A, the minimum perturbation objective function makes the contact snapped to the original
position and its height is thus increased1by Although this may not be a big improvement

for this specific digital circuit, we would expect that the geometric closeness objective function

plays a more important role for less aggressively circuits and analog circuits.

CHAPTER 5. EXPERIMENTS AND CONCLUSION 73

Vdd COUTINVGND VddCouUT

CARRYIN GND Vdd
(a) A four-bit adder based (b)The adder with migrated leafcells
on MOSIS1.2um technology based on TSMC 0.28n technology

Figure 5.5: Migration of a four-bit adder

5.2.4 Soft Constraints

Soft constraints method is employed to trace the conflicting constraints when the layout archi-
tecture requirements set by user are contradictory to design rule constraints. The migration
result for cell haf001 shown in Figure 5.9 and 5.10 gives a demonstration of the benefit from
this method.

The user specified layout architecture requirements are given in Table 5.3. Note that there
are two requirements in this table that conflict with design rules. First, the minimum size rule
for metal2 contact i\ according to design rule (Mosis #8.1) in TSMC .18 technology .

However, port size is specified to & x 4\, which violates the rule. The second unreasonable

CHAPTER 5. EXPERIMENTS AND CONCLUSION 74

ey

—
B

e

(a) Cell andf201 (b) Cell muxf201

Figure 5.6: Two old standard cells based on standard MQS|5n technology.

(a) Cell andf201 (b) Cell muxf201

Figure 5.7: Migrated cells based on TSMC Qub8technology.

requirement is the power width requirement. According to design rule Mosis #6.1 and #6B.4,5,
the minimum width of diffusion contact must be greater tdanand the minimum spacing
between diffusion contact must be greater thanSo the minimum power rail width must be
greater thari2\ as shown in Figure 5.11, which is contradictory to user specified ¥alue

Instead of simply giving the user a binary answer such as “This is an infeasible solution”,
soft constraints method generates a design rule clean layout that discards the conflicting user
specified constraints. The migrated layout has port size s&k @nd GN D line width set

to 12\. A report about the wrong constraints is also given to help the user correct the wrong

CHAPTER 5. EXPERIMENTS AND CONCLUSION

Table 5.2: Layout structure characteristics

usable cell height 50\
usable cell width k- 8\
width 8\

Old power| vertical overlap

between well 5\

rails | horizontal overlap

cells between well 3A
size AN X 4N
port spacing k- 4\
offset 2\
usable cell height 65\
usable cell width k- 8\
width 14\

Migrated | power| vertical overlap

between well 6

rails | horizontal overlap

cells between well 5\
size DA X DA
port spacing k- 5\
offset 2\

specifications:

75

Error message
Port size is increased by\1

Power rail width is increased by\4

CHAPTER 5. EXPERIMENTS AND CONCLUSION 76

gy

i
[=

(a) Cell invf101 migrated under (b) Cell invf101 migrated under minimum (c) Original cell

geometric closeness objective function perturbation objective function invf101

Figure 5.8: The migration results under geometric closeness objective function and minimum

perturbation objective function.

1 []
R N N U O O

Figure 5.9: Cell haf001 before migration

5.3 Limiation

Some limitations of our tool that can be observed from the experimental results are listed below:

e As we can see from Figure 5.7(b), three contacts are greatlt stretched in the X direction
after migration. This is due to the InterPass constraints that require the relative position
of edges keep unchanged. The right edges of these contacts streched are all on the right
side of portSELIin the original layout. After migration, the spacing requirements of ports

make SEL moving rightward, which make other contacts stretched at the same time.

CHAPTER 5. EXPERIMENTS AND CONCLUSION 77

T T T e T T e e i

Figure 5.10: Cell haf001 after migrated towards TSMC @:428echnology.

124
GND
I>4 >12

Figure 5.11: The design rule requirements on power rail.

Although the contact streching may not make a big difference in circuit performance,
this mechanism has potential to strecth some important tiles such as transistors, which
will affect the circuit performance. In other words, the tool needs some “intelligence” to
analyze that in which situation the layout is over-constrainted by InterPass constraints.
One of the methods to solve this problem is by adopting two-dimentional compaction

method, which can take care of X-compaction and Y-compaction at the same time.

e There is still no effective way to do transistor sizing. And the shape of transistors are

fixed to the original one. The tool still cannot allow the insertion of transistor fingers.

CHAPTER 5. EXPERIMENTS AND CONCLUSION 78

Table 5.3: User specified layout architecture requirements for cell haf001

usable cell height 65\
usable cell width k- 8\
width 8\
power vertical overlap
between well 6
rails horizontal overlap
between well 5\
size 4N X 4\
port spacing k- 5\
offset 2\

5.4 Conclusion

The quick update of technology and the complexity of SOC makes it necessary to develop a
tool to migrate the old library leafcells to the new technology in order to save the library design
cost for IP vendors. Traditionally, the migration tools are based on symbolic layout compaction
techniques that were developed to compress the layout area and convert the symbolic layout
to the actual mask layout. In this thesis, we demonstrate a layout migration engine can be
applied directly to the actual mask layouts and migrate the layouts under the multiple choices of
objectives such as minimum area, minimum perturbation or geometric closeness as discussed in
Chapter 3. The fundamental algorithm for the migration engine is design constraint generation,
which is used to perform the tedious tasks of determining geometric constraints between all
edges. We develop a Depth-K searching algorithm, which limits the searching area within
fixed number of depths for each design rule and thus saves checking time, to generate design
rule constraints.

The migration tool also provides a comprehensive framework to handle the high level struc-

CHAPTER 5. EXPERIMENTS AND CONCLUSION 79

tural requirements on library leafcells so that after one migration, all library leafcells do not
need to be migrated again with respect to specific circuits. By building soft constraints for
high level structure requirements, the migration tool can give users a feedback when these
requirements are not correctly set and guide users to the successful library migration.

We conducted our experiments on the standard cell library and datapath library developed
by Burd at University of California, Berkeley. The experiments result show that the migrated

layouts are design rule clean and respect the specified structural requirements.

5.5 Future work

There is a lot of space for future work for the migration tool. An important step would be

performance characterization for the migrated layouts. Timing analysis needs to be carried out
on new layouts for performance verification. More ambitious improvements such as transistor-
sizing capability where layout topology can be changed to insert transistor fingers, as well as

extending the application to other IP libraries can be included in the extension of our work.

Chapter 6

Appendix

The tables shown in the following give more comprehensive results carried out on a SUNBlade
100 system running at 500 MHZ. Here, related cells that need port matching are migrated in

groups. The third column demonstrates two important figuk&Ris the actual area scaling

ratio achieved, as measured Bygratcd layout arca 544 TSRjs the linear area scaling ratio mea-

~JYold layout area

sured by(migrated Jeature size)2 \which as we know, direct layout shrinking with this ratiomay

old feature size

result in design rule violations. These two values are shown for both targeted technologies.
The number of rectangles (including space) in the layout, and the total numbers of constraints
generated are shown in the fourth and fifth column. The last two columns show the runtime

spent on constraint generation (measured in seconds), and ILP solving (measured in minutes

).

80

CHAPTER 6. APPENDIX

81

Original cell based on

MOSIS1.2um technology

Migrated cell based on

TSMC 0.25um technology

Migrated cell based on

TSMC 0.18um technology

1 == T

///

Cell blf00101

Cell buff101

Cell buff121

CHAPTER 6. APPENDIX 82
Table 6.1: Experiment results of datpath library migration.
Function Cell ASR:TSR Number Number constraints generation ILP solver
unit name of of runtime (s) | runtime (m)
0.25:m /0.1&m polygons| constraints 0.25m/0.18m 0.25:m /0.1&m
add 0.07:0.04/0.04:0.02] 452 56127 / 36866
adder | addcssel| 0.06:0.04/0.03:0.02 71 4288 /3070 | 134.9/149.5 18.5/19
addcsO | 0.04:0.04/0.03:0.02 11 225/223
sub 0.07:0.04/0.04:0.02 479 36538 / 44535
substractor| subcssel | 0.06:0.04/0.03:0.02 72 3071/3071 | 136.7/114.4 | 20.6/19.8
subhcs1l | 0.03:0.04/0.015:0.02 11 229/229
mux2 0.08:0.04 /0.04:0.02 145 1179717745
mux2csl | 0.06:0.04/0.03:0.02 52 4248 / 2203
mux2 mux2.cs2 | 0.06:0.04/0.027:0.02 61 4577 /2279 10.9/10.5 3.2/29
mux2.cs3 | 0.07:0.04/0.03:0.02] 104 7512 /4771
mux2.cs4 | 0.06:0.04/0.027:0.02 149 11096 / 8518
mux3 0.08:0.04/0.04:0.02] 211 11768 /11796
mux3.csl| 0.06:0.04/0.03:0.02] 247 14247 /14243
mux3 mux3.cs2 | 0.06:0.04/0.03:0.02] 248 14573/ 14574 36.4/38.7 15.2/12.8
mux3.cs3 | 0.07:0.04/0.03:0.02] 293 17514 /17512
mux3.cs4 | 0.06:0.04/0.03:0.02 331 21099 / 21098
tribufl 0.07:0.04/0.03:0.02] 151 7880 /7880
tribuf tribufl_cs1| 0.07:0.04/0.03:0.02 59 2641 /2641 7.8/8.1 11/1.7
tribufl_cs2| 0.05:0.04/0.03:0.02] 105 5856 / 4723
tribufl_cs3| 0.06:0.04/0.03:0.02] 144 7164 /7163
rfO 0.06:0.04/0.03:0.02 66 274812748
rfl 0.06:0.04 /0.03:0.02 66 2756 / 2756
register rf01 csl | 0.07:0.04/0.03:0.02 92 3516/ 3517 3.7/3.9 0.6/0.6
rf0l.cs2 | 0.07:0.04/0.03:0.02 92 3584 / 3584
rf0l.cs3 | 0.06:0.04/0.03:0.02 92 3464 / 3464

CHAPTER 6. APPENDIX 83
Experiment results of datpath library (continued).
Function Cell ASR: TSR Number Number constraints generation ILP solver
unit name of of runtime (s) | runtime(m)
0.25m/0.18m polygons| constraints 0.25:m /0.1&m 0.25:m /0.1&m
shcsl 0.06:0.04/0.03:0.02 87 3957 / 3957
shilbit | 0.04:0.04/0.02:0.02 88 3921 /3921
shifter shilend | 0.05:0.04/0.02:0.02 81 3478 /3478 8.9/8.7 0.8/0.8
shlllsb 0.05:0.04/0.02:0.02 130 6539 / 6539
invs 0.04:0.04/0.02:0.02 57 2029 /2029
inverter invm 0.05:0.04/0.03:0.02 80 3098 / 3098 1.2/13 0.2/0.2
and2blp | 0.06:0.04/0.03:0.02 112 5940 / 5940
nand2lp | 0.05:0.04/0.03:0.02 83 4015/ 4015
random | nandand3lp 0.07:0.04/0.03:0.02 113 6706 / 6706 6.4/6.6 3.3/3.3
logic or2blp | 0.06:0.04/0.03:0.02 99 5319 /5319
xnor2lp | 0.06:0.04/0.03:0.02 132 8075 /8075
xor2lp 0.06:0.04/0.03:0.02 132 8003 /8003
tspcr 0.07:0.04/0.03:0.02 137 7580 / 7582
tsperfb 0.08:0.04/0.04:0.02 173 10637 / 10637
tspcrcsl | 0.05:0.04/0.03:0.02 49 1792 /1792
tspcrcs2 | 0.05:0.04/0.03:0.02 52 2003 /2003
pipeline | tspcrcs3 | 0.06:0.04/0.03:0.02 91 3792 /3792
tspcr tspcrcs4 | 0.06:0.04/0.03:0.02 103 4602 / 4602 14.7/14.9 5.7/6.1
register | tspcrcsil | 0.06:0.04/0.03:0.02 33 980/980
tspcresi2 | 0.06:0.04/0.03:0.02 34 1110/1110
tspcrcsi3 | 0.05:0.04/0.03:0.02 96 4595 / 4595
tspcrcsi4 | 0.05:0.04/0.03:0.02 126 6008 / 6008

CHAPTER 6. APPENDIX

Table 6.2: Experiment results for standard cell library migration.

Cell Number of Number of Constraint generation ILP
Name tiles constraints run time (s) run time(s)
0.25uml0.18um 0.25uml0.18um 0.25uml0.18um

andf201 187 4384/4378 0.3/0.3 8/14
andf301 243 6772/6264 0.6/0.6 16/27
andf401 286 7568/7578 0.7/0.8 27/40
aof2201 298 8562/8572 0.8/0.9 35/42
aof2301 410 12586/12620 1.2/1.3 73/80
aof3201 463 14930/14944 1.6/1.6 101/108
aof4201 550 18870/18888 2.5/2.5 169/199
aoif2201 241 6212/6222 0.6/0.6 18/19
bIf00001 195 4233/4241 0.3/0.5 9/13
blf00101 193 4391/4379 0.5/0.5 11/15
buff101 140 2757/2761 0.3/0.3 3/6
buff102 169 3590/3594 0.3/0.3 5/8
buff103 188 4252/4257 0.3/0.4 8/10
buff104 191 4290/4294 0.4/0.4 9/11
buff105 220 5341/5345 0.5/0.5 11/18
buff106 222 5415/5419 0.5/0.5 12/19
buff121 252 6365/6371 0.6/0.6 16/25
buff122 273 7167/7173 0.6/0.6 21/36
buff123 378 11912/11918 1.2/1.6 57/95
buff124 372 12148/12154 1.2/1.4 59/74
buff125 406 13565/13571 1.5/1.6 68/83
buff126 399 13374/13380 1.3/1.6 70/83

84

CHAPTER 6. APPENDIX

Experiment results of standard cell library (continued 1).

Cell Number of Number of Constraint generation ILP
Name tiles constraints run time (s) run time(s)
0.25um/l0.18um 0.25um/0.18um 0.25um/l0.18um

dfnf401 353 10705/10711 1.1/1.0 64/57
dinf411 411 13245/13253 1.6/1.4 73/101
dfrf401 433 14133/14141 1.4/1.5 90/93
dfrf411 488 16615/16626 1.7/1.8 127/122
drif101 275 7692/7688 0.9/0.9 34/27
drif102 404 13109/13105 2.3/1.7 78/70
drif103 521 18054/18058 3.3/3.3 138/157
drif104 663 24415/24419 6.0/6.3 292/314
drif105 912 36074/36078 12.6/12.2 565/595
haf001 410 12861/12869 1.5/1.6 71/89
hsf001 421 13668/13676 1.5/1.3 74/79
invf101 100 1617/1621 0.2/0.2 1/2
invf102 127 2416/2420 0.3/0.2 3/3
invf103 128 2530/2534 0.2/0.3 3/4
invf104 144 2994/2998 0.3/0.4 5/6
invfl21 196 4804/4810 0.4/0.6 9/10
invf201 155 3327/3335 0.4/0.4 5/6
invf202 154 3308/3325 0.3/0.3 6/7
labfl11 213 5140/5148 0.5/0.5 12/13
labf211 237 5970/5962 0.6/0.6 15/14
Irbf202 76 1029/1033 0.1/0.1 1/2

CHAPTER 6. APPENDIX

Experiment results of standard cell library (continued 2).

Cell Number of Number of Constraint generation ILP
Name tiles constraints run time (s) run time(s)
0.25um/l0.18um 0.25um/0.18um 0.25um/l0.18um

muxf201 337 10076/10080 1.1/1.1 42/44
muxf251 311 8828/8838 0.8/0.8 35/47
muxf301 639 23031/23043 3.0/2.9 233/308
muxf351 463 14930/14944 1.6/1.8 102/142
muxf401 993 40403/40417 6.7/6.4 704/822
muxf451 557 19340/19358 2.9/3.1 164/164
nanf201 143 2749/2755 0.3/0.3 4/4
nanf202 138 2640/2634 0.2/0.3 4/3
nanf211 197 4686/4694 0.4/0.4 11/10
nanf251 181 4094/4100 0.4/0.4 8/11
nanf301 179 3728/3736 0.4/0.4 6/12
nanf311 249 6420/6430 0.6/0.5 17/29
nanf401 240 5588/5598 0.6/0.5 16/21
nanf411 297 7893/7905 0.7/0.7 31/34
norf201 141 2684/2690 0.3/0.4 4/4
norf211 202 4749/4757 0.5/0.5 12/11
norf251 209 5354/5360 0.6/0.5 14/12
norf301 229 6074/6082 0.5/0.6 16/18
norf311 280 7465/7475 0.6/0.7 32/36
norf401 275 7773/7386 0.8/0.8 29/29
norf411 344 10168/10180 1.1/0.9 58/75

86

CHAPTER 6. APPENDIX

Experiment results of standard cell library (continued 3).

Cell Number of Number of Constraint generatiof ILP
Name tiles constraints run time (s) run time(s)
0.25uml0.18um 0.25uml0.18um 0.25uml0.18um
0aif2201 243 6009/6019 0.5/0.6 20/17
orf201 189 4401/4407 0.5/0.6 10/10
orf301 272 7254/7262 0.8/0.9 26/31
orf401 338 10019/10029 1.1/1.0 52/44
pudf000 52 517/519 0.1/0.1 1/1
puuf000 52 527/529 0.1/0.1 1/1
sdnf401 499 17111/17121 2.1/1.9 147/168
sdnf411 557 19845/19875 2.5/2.7 211/210
sdrf401 563 19723/19735 2.8/2.6 202/213
sdrf411 621 22387/22401 3.0/3.1 241/239
swcf020 154 3225/3219 0.3/0.4 6/4
swcf022 170 3965/3971 0.5/0.4 8/7
swcf023 168 3793/3799 0.4/0.4 9/8
swcf024 191 4709/4702 0.4/0.5 16/10
swcfl20 160 3343/3337 0.4/0.4 716
swcfl22 175 4070/4064 0.4/0.4 9/7
swcfl23 172 3904/3898 0.4/0.4 10/7
swcfl24 189 4606/4600 0.5/0.4 11/10
xnof201 307 8924/8930 0.8/0.8 37/36
xorf201 303 8716/8722 0.9/0.7 34/45

87

CHAPTER 6. APPENDIX

Original cell based on

MOSIS1.2um technology

Migrated cell based on

TSMC 0.25um technology

Migrated cell based on

TSMC 0.18um technology

L
L

Cell invf104

Cell labf111

88

CHAPTER 6. APPENDIX

Original cell based on

MOSIS1.2um technology

Migrated cell based on

TSMC 0.25um technology

Migrated cell based on

TSMC 0.18um technology

S
e

T S ST

||

o 1§
L

s

S

Cell muxf451

Cell nanf201

Cell norf201

L

Cell orf301

89

CHAPTER 6. APPENDIX 90

Original cell based on Migrated cell based on Migrated cell based on

MOSIS1.2um technology TSMC 0.25um technology TSMC 0.18um technology

HEEE

Cell xorf201

CHAPTER 6. APPENDIX

Original cell based on Migrated cell based on Migrated cell based on

MOSIS1.2um technology| TSMC 0.25um technology| TSMC 0.18um technology

——

B

A four-bit buffer with medimum drive length

91

CHAPTER 6. APPENDIX 92

Original cell based on Migrated cell based on Migrated cell based on

MOSIS1.2um technology TSMC 0.25um technology TSMC 0.18um technology

L
SVdd GND SAVdd GND

A four-bit two-input multiplexer

CHAPTER 6. APPENDIX

Original cell based on

MOSIS1.2um technology

Migrated cell based on

TSMC 0.25um technology

Migrated cell based on

TSMC 0.18um technology

GND

Vd8EL2
NB

SAVdd

5
= o

GND Vd&B

GND Vd&B

A four-bit three-input multiplexer

GND vdd
o e——

A four-bit bitwise NAND

93

CHAPTER 6. APPENDIX

Original cell based on

MOSIS1.2um technology

Migrated cell based on

TSMC 0.25um technology

Migrated cell based on

TSMC 0.18um technology

B — Ty
FEED 1 ==mrmmsmsyy)
5 I

B ———1
FEED1/===r=sssmZd FEED1
I

GND CLK VddCASOAN GND

el

LK VBG/SOAN

A four-bit pipeline true single-phase clocked register

94

CHAPTER 6. APPENDIX

Original cell based on

MOSIS1.2um technology

Migrated cell based on

TSMC 0.25um technology

Migrated cell based on

TSMC 0.18um technology

b
5

i
Vdd EN GND

Vdd EN GND

Vdd EN GND

A four-bit tri-state buffer

95

Bibliography

[1] A.E.Dunlop. Slim-the translation of symbolic layouts into mask dataPioceeding of

the 20st Design Automation Conferenpages 595-602, 1980.

[2] Michael A.Riepe and Karem A.Sakallah. The edge-based design rule model revisited.

ACM transactions on design automation of electronic sysBa63—486, July 1998.

[3] Tom Burd. Very low power cell library. Technical report, University of California, Berke-

ley, 1995.

[4] Chung-Kuan Cheng, Xiaotie Deng, Yuh-Zen Liao, and So-Zen Yao. Symbolic layout
compaction under conditional design ruléEEE Transactions on Computer-Aided De-

sign of Integrated Circuits and Syster@sA76—486, April 1992.

[5] Y. E. Cho, A. J. Korenjak, and D. E. Stockton. FLOSS: An approach to automated layout
for high-volume designs. IRroceeding of the 14st Design Automation Conferepages

138 — 141, 1977.

[6] Y.Eric Cho. A subjective review of compaction. 22nd Design Automation Conference

pages 396-404, 1985.
[7] Dan Clein.CMOS IC layout concepts, methodologies, and toNkswnes, 1999.

[8] Ralph C.Mcgarity and Daniel P.Siewiorek. Experiments with the slimcircuitcom-

pactor. InProceeding of the 20st Design Automation Conferepages 740-746, 1983.

96

BIBLIOGRAPHY 97

[9] David G.Boyer. Symbolic layout compaction review.25th ACM/IEEE Design Automa-
tion Conferencegpages 383—-389, 1988.

[10] Fook-Luen Heng, Zhan Chen, and Gustavo E.Tellez. A VLSI artwork legalization tech-
nique based on a new criterion of minimum layout perturbation1987 International

Symposium on Physical Desjgrages 116-121, 1997.

[11] J.L.Burns and A.R.Newton. Efficient constraint generation for hierachical compaction.

In Proc. of the IEEE international conference on computer despgges 197-200, 1986.

[12] Christopher Kingsley. A hiererachical, error-tolerant compacto2list Design Automa-

tion Conferencegpages 126—-132, 1984.

[13] Chi-Yuan Lo and Ravi Varadarajan. Aiin'5logn) 1-d compaction algorithm. IRro-

ceeding of the 27th Design Automation Conferepeges 382—-387, 1990.

[14] Juan Carlos Lopez, Roman Hermida, and Walter GeisselhAditanced techniques for

embedded systems design and tEtiwer academic publishers, 1998.

[15] David Marple. A hierarchy preserving hierarchical compacto2th ACM/IEEE Design
Automation Conferen¢c@ages 375-381, 1990.

[16] C. Mead and L. Conwayintroduction to VLSI System#éddison-Wesley, 1980.

[17] M.Schiag, Y.Z.Liao, and C.K.Wong. An algorithm for optimal two-dimentional com-
paction of VLSI layoutsProceedings of ICCADpages 88-89, 1983.

[18] M.Y.Hsueh and D.O.Pederson. Computer-aided layout of Isi circuit building-blocks.

Technical report, University of California, Berkeley, 1979.

[19] John K. Ousterhout. Corner stitching: a data-structuring technique for visi layout tools.

IEEE transactions on computer-aided desi@B7-100, January 1984.

BIBLIOGRAPHY 98

[20] P.T.Chapman and Jr K.Clark. The scan line approach to design rules checking: compu-
tational experiences. IRroceeding of the 21st Design Automation Conferempeges

235-241, 1984.
[21] Rochit RajsumanSystem-on-a-chip: design and te&ttech House, 2000.

[22] Walter Scott and John Ousterhout. Magic maintainer's manual #2: The technology file.
Technical report, Lawrence Livermore National Laboratory and University of California,

Berkeley.

[23] Gerard Sierksmd.inear and integer programming : theory and practiééarcel Dekker,

2002.

[24] George S.Taylor and John K.Ousterhout. Magic’s incremental design rule checker. In

Proceeding of the 21st Design Automation Conferepaeges 160-165.

[25] Neil Weste. Virtual grid symbolic layout. 1648th Design automation conferenqeages
225-233, 1981.

[26] Wayne Wolf, Robert Mathews, John Newkirk, and Robert Dutton. Two-dimentional com-

paction strategieRroceedings of ICCADpages 90-91, 1983.

[27] Jianwen Zhu. Symbolic pointer analysis. Pnoceedings of the 2002 IEEE/ACM inter-

national conference on Computer-aided desigages 150— 157, 2002.

