
A Gentle Introduction to
High Level Synthesis

Jianwen Zhu

Electrical and Computer Engineering

University of Toronto

jzhu@eecg.toronto.edu

http://www.eecg.toronto.edu/˜jzhu

1

Outline

Overview

Scheduling

Resource Sharing

Summary

2

Y-chart

Behavioral
 Domain

Structural
 Domain

Geometric
 Domain

System level

Architecture level

Logic level

Circuit level

Cocurrent
 program

Sequential
 program

 FSM and
Bool. function

 Differential
 equation transitors

gates

cotroller/datapath

CPUs, cores

leaf cell

standard cell
 arrays

macros

floorplan and
assembly

3

High-level Synthesis

What is Synthesis

Given a functional model of a
design

Find a structural model of a
design

Such that some figure of merit is
optimized

Speed
Area
Power

Noise

Subject to some constraints

What is High-level Synthesis

Given an algorithm model of a

design

Find a micro-architecture

Controller: sequential random
logic, ROM

Datapath: adder, ALU, mux,

register, register file

Such that speed/area/power is

optimized

Subject to some constraints

4

High-level Function Model

Can be captured by an imperative
program

C/C++, Java, ...

Behavioral VHDL/Verilog

Untimed state machine

Can be transformed into
control-dataflow graph (CDFG)
by synthesis front-end

Ease for machine manipulation

Control flow: statement

Data flow: expression

5

Example of Dataflow Graph

... 1
while(x ¡a) f 2

x1 = x + dx; 3
u1 = u - (3 * x + u * dx) 4

- (3 * y * dx); 5
y1 = y + u * dx; 6
x = x1; 7
u = u1; 8
y = y1; 9
g 10

... 11

−

−

+

+

<

v v v v v

vvvv

v

v

1 2 3 4 10

5 6 9 11

7

8

* * *

* *

*

s

t

6

Micro-architecture

Controller is responsible forwhenandwhatregister transfer

operations (assignments) to perform

Datapath is responsible forhowto perform the register transfer

operations

Control
outputs

Datapath
 inputs

Control
 inputs

Datapath
 outputs

Control
 signals

Status
signals

Control
 unit Datapath

7

Micro-architecture: Controller

Controller is a sequential network

Can be implemented using logic synthesis and layout tool

Status
signals

Control unit

Control
outputs

Control
signals

Control
inputs

State
register

D Q

D Q

D Q

. . .

Output
logic

Next−
state
logic

. . .

. . .

. . .

8

Micro-architecture: Datapath

Datapath is a network of sequential and combinational components:

Registers, register files

Adders, Subtracters, ...

Steering components: buses, selectors, ...

Status
signals

Control
signals

Control
inputs

Datapath

Datapath
outputs

Bus 1
Bus 2

Selector

Register

Register
RF

Mem

ALU

Datapath
 inputs

. . .

−.

.

 * /

Bus 3

9

Quality Metrics/Constraints

Latency: the time it

takes to process the data

Throughput: the rate to

process the data

Cycle time

Area

Power

Status
signals

Control unit

Control
outputs

Control
signals

Control
inputs

Datapath

Datapath
outputs

Bus 1
Bus 2

Selector

Register

Register
RF

Mem

ALU
State
register

D Q

D Q

D Q

. . .

Output
logic

Next−
state
logic

Datapath
 inputs

. . .

. . .

. . .

−.

.

 * /

Bus 3

10

Outline

Overview

Scheduling

Resource Sharing

Summary

11

Scheduling

Have to decidewheneach operation is performed

untimed state machine7! timed state machine

flow graph7! ASM chart

Pretty much like the determine the class schedule

Dependency constraint: ECE241 is a prerequisite of ECE451

Resource constraint: Do not have enough #rooms to hold all classes

simultaneously

Here

Dependency constraint: A depends on the result of B

Resource constraint: there are at most 3 adders

12

Unconstrained Scheduling: List Scheduling

As Soon As Possible (ASAP)

schedule

−

−

+

+

<

v v v v v

vvvv

v

v

1 2 3 4 10

5 6 9 11

7

8

* * *

* *

*

s

t

0

1

2

3

4

5

As Late As Possible (ALAP)

schedule

−

− +

+

<

v v

v v v

vv

vv

v

v

1 2

3 4 10

5 6

9 11

7

8

* *

*

* *

*

s

t0

1

2

3

4

5

13

Resource-constrained List Scheduling Scheduling

Keep a list a ready operations

whose predecessors are all scheduled

Schedule an operation from the ready list

Has no resource conflict

Has higher priority

Heuristics to determine the priority

Mobility

Out degree

Distance to the sink

14

List Scheduling Example

ASAP Schedule ALAP Schedule

−

− +

+

<

v v

v v

v v v v

v v v

1 2

4

5

67

8
9

10

11

L=1

L=2

L=3

L=4

3

* *

* *

* *−

−

+

+

<

v v v v v

vvvv

v

v

1 2 3 4 10

5 6 9 11

7

8

E=1

E=2

E=3

E=4

* * *

* *

*

1 2 3 4 5 6 7 8 9

s

s

s

s

1

2

3

4

1110

Mobility(op) = ASAP − ALAP

Operator Mobility

Node: v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11
Operation: * * * * * * − − + + <

Mobility: 0 0 1 2 0 1 0 0 2 2 2

* *

* *

*−

−

*

+

+

<

1 2

3

4

67

8

9

10

11

<2>

<2>

<2>

<2>

<1>

<1>

<0><0>

<0>

<0>

<0>

5

* * +− <

1 2 10

5 3 11

6 4
7

98

s

s

s

s

1

2

3

4

*

*

*

*

*

* −

−

+

+

<

Resources
* : 2

Resources : 1+
Resources : 1
Resources : 1

−

<

DFG with mobilities Resource Constraints Scheduled DFG

15

Outline

Overview

Scheduling

Resource Sharing

Summary

16

Square Root Approximation (SRA) Example

ComputesO=
p

a2+b2

Approximation:

O= max((0:875x+0:5y);x) where

x= max(jaj; jbj);y= min(jaj; jbj)

A scheduled design

ASM chart

(a) Block diagram

In 1 In 2

Out

Control
Start

Done

Done = 1
 Out = t

t = x >>3
t = y >>1

 x = max(t , t)
 y = min(t , t)

1

0

s0

a = In 1
b = In 2

t = |a|
t = |b|

1
2

21
21

t = x − t

t = t + t

5 3

6 4 5

t = max(t , x)67

s

s

s

s

1

2

3

4

5

6

s

s

s7

4

3

7

Start

(b) ASM Chart of
square−root approximation

17

A Straight-forward Approach

Map each variable to a distinct register

Map each operations to a distinct combinational component

min max >>1 >>3+ −

Output

In 1 In 2

 |a| |b|

a b t 1 t 2 x y t tt t t3 4 5 6 7

write network

read network

18

Solving Resource Sharing Problem

Resources (registers, functional units) can be shared

Cast resource sharing problem into a graph problem

Graph nodes: subject objects to be shared

Graph edges: sharing relation

Dual problem:

Coloring of conflict graph

Clique-partitioning of compatibility graph

19

Resource Sharing Algorithm

Graph coloring

Color one node at a time

Select the color different from its

neighbors

Graph partitioning

Select two compatible nodes at a

time

Merge them into a supernode

Update edges accordingly

20

Register Sharing

Two variables can share the same register if and only if they have

non-overlapping life time

Lifetime = [first time write, last time read]

Casting register sharing into graph partitioning problem

Each vertex represents a variable

There is adashed edgebetween two vertices if the corresponding

vertices have overlapping life time

There is asolid edgebetween two vertices if the corresponding vertices

have non-overlapping life time

The solid edge is annotated with #common src/#common dest

21

Variable Compatibility Graph

1
2

3

4

5

6

7

0

a
b
t
t
x
y
t
t
t
t
t

X
X

X
X

X
X

X

X
X

X

X

X

X

X

X

1 2 3 4 5 6 7s s s s s s s s

Done = 1
 Out = t

t = x >>3
t = y >>1

 x = max(t , t)
 y = min(t , t)

1

0

s0

a = In 1
b = In 2

t = |a|
t = |b|

1
2

21
21

t = x − t

t = t + t

5 3

6 4 5

t = max(t , x)67

s

s

s

s

1

2

3

4

5

6

s

s

s7

4

3

7

Start

7tx

ya

b

t 1

t 2

t 3

t 4

t 5 t 6

(a) Initial compatibility graph

1/0

0/1

0/1

1/0

1/0 0/1
1/0

1/0

22

Register Sharing by Graph Partitioning

(e) Final compatibility graph

7tx

y

a

b

t 1

t 2
t 3

t 4

t 5 t 6

7tx

y

a

b t 1

t 2
t 3

t 4

t 5 t 6

t2 y(d) Compatibility graph after merging andt , x, t1 7
(c) Compatibility graph after merging and

7tx

ya

b t 1t 2

t 3

t 4

t 5 t 6

1/0

7tx

ya

b

t 1

t 2

t 3

t 4

t 5 t 6

(a) Initial compatibility graph

1/0

0/1

0/1

1/0

1/0 0/1
1/0

1/0
7tx

ya

b

t 1

t 2

t 3

t 4

t 5 t 6

3 t 5 t 6t ,(b) Compatibility graph after merging and

1/0
0/1

1/0

1/0

1/0

0/1

23

SRA Implementation after Register Sharing

(a) Register assignments

R = [a, t , x, t]
R = [b, t , y, t , t , t]
R = [t]

1 1

2

3 4

2 3 5 6

7

(b) Datapath

Selector

R1

min max >>1 >>3+ −

R3

Selector

R2

 |a| |b|

24

Functional Unit Sharing

Two Operations can share the same functional unit if they are

non-concurrent and has “similar” functionality

Sharing priority: #common source, #common destinations

si

x = a + b

. . .

sj

y = c − d

(a) Partial ASM Chart (b) Non−shared design

y

c d

−

a b

+

x

(c) Shared design

y

da

Selector

x

Selector

+/−

c b

25

More Components in the Library

1c c0c2 Operation

addition
absolute
subtraction
minimum
maximum

0 0 1
1 0 0
1 0 1
1 1 0
1 1 1

Selector
1 0

Adder

Selector
1 0

1c

c0

c2

a b

sign bit

a

Selector
1 0

Adder

1c

c0

b

sign bit

1c c0 Operation

1 0
0 1
1 1

addition
absolute
subtraction

a

Selector
1 0

Adder

Selector
1 0

1c

c0

b

sign bit
1c c0 Operation

absolute
minimum
maximum

0 1
1 0
1 1

1c c0 Operation

0 0
0 1
1 0
1 1

addition
minimum
subtraction
maximum

a

Selector
1 0

Adder

Selector
1 0

1c

c0

b

sign bit

(a) Unit for computing minimum,
 maximum and absolute value

(b) Unit for computing addition,
 subtraction, minimum and maximum

(c) Unit for computing addition,
 subtraction, and absolute value

(d) Unit for computing addition, subtraction,
 minimum, maximum and absolute value

26

Functional Unit Sharing by Graph Partitioning

Done = 1
 Out = t

t = x >>3
t = y >>1

 x = max(t , t)
 y = min(t , t)

1

0

s0

a = In 1
b = In 2

t = |a|
t = |b|

1
2

21
21

t = x − t

t = t + t

5 3

6 4 5

t = max(t , x)67

s

s

s

s

1

2

3

4

5

6

s

s

s7

4

3

7

Start

maxmin

|b||a|

−+

(a) Compatibility graph

maxmin

|b||a|

−+

(c) Merging alternative

maxmin

|b||a|

−+

Total

|a|

|b|

min

max

 +

 −

AND
logic

Invert
 logic

EX−OR
 logic Adder Selector

Component

Unit

1

1

1

1

1

5

1

1

1

1

1

1

6

1

1

1

1

4

(b) Cost table

(d) Cost table

Total

AND
logic

Invert
 logic

EX−OR
 logic Adder Selector

Component

Unit

1

1

2

1

1

1

1

1

1

2

2

2

2

 [|a|/min]

[|b|/max/+/−]

Total

AND
logic

Invert
 logic

EX−OR
 logic Adder Selector

Component

Unit

1

1

2

1

1

2

2

2

2

1

1

1

1

 [|a|/min/+]

[|b|/max/−]

 ASM Chart

27

SRA Implementation after Functional Unit Sharing

Done = 1
 Out = t

t = x >>3
t = y >>1

 x = max(t , t)
 y = min(t , t)

1

0

s0

a = In 1
b = In 2

t = |a|
t = |b|

1
2

21
21

t = x − t

t = t + t

5 3

6 4 5

t = max(t , x)67

s

s

s

s

1

2

3

4

5

6

s

s

s7

4

3

7

Start

Selector

R1

>>1 >>3

R3

Selector

R2

Selector

[abs/min/+] [abs/max/−]

Selector

R1

>>1 >>3

R3

Selector

R2

Selector

[abs/max/+/−][abs/min]

(a) Datapath schematic for unit allocation from Figure 8.22(c)

(b) Datapath schematic for unit allocation from Figure 8.22(e)

 ASM Chart

28

Bus Sharing

Wires can be expensive

Different interconnections can be shared if they are not used at the

same cycle

Pitfall: may end up longer wires

29

Bus Sharing by Graph Partitioning

A

B

H

F

ED

C

G

M

I

N

J

(c) Compatibility graph
 for input buses

(d) Compatibility graph
 for output buses

(b) Connectivity usage table

(e) Bus assignment(a) Datapath for SRA

Selector

R1

>>1 >>3

R3

Selector

R2

SelectorB C
D E F G H

I J

K L

M N

A

In1 In2

Out

K

L

[abs/min/+/−][abs/max]

s0 s s s s s s1 s2 3 4 5 6 7

A
B
C
D
E
F
G
H
I
J
K
L
M
N

X
X

X

X
X

X

X

X

X

X
X

X
X

X
X
X

X

X
X

X

X

X
X

X
X

X

Bus1 = [A, C, D, E, H]
Bus2 = [B, F, G]

Bus3 = [I, K, M]
Bus4 = [J, L, N]

30

SRA Implementation after Bus Sharing

Selector

R1

>>1 >>3

R3

Selector

R2

SelectorB C
D E F G H

I J

K L

M N

A

In1 In2

Out

[abs/min/+/−][abs/max]

(f) Bus oriented datapath

R1

>>1>>3

R3R2

In 1 In 2

[abs/min] [abs/max/+/−]

Bus

Bus

Bus

 Bus

1

2

3

4

 Datapath for SRA

Bus1 = [A, C, D, E, H]
Bus2 = [B, F, G]

Bus3 = [I, K, M]
Bus4 = [J, L, N]

 Bus assignment

31

Summary

High-level synthesis maps an imperative program into a

micro-architecture, which can be further synthesized by lower-level

tools

Scheduling determines the control step at which each operation is

performed

Binding determines how variables, operations, data transfered are

mapped into shared registers, functional units and buses.

32

