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Abstract—

In this paper, we present new techniques which further
improve the static compilation-based instruction set archi-
tecture (ISA) simulation by the aggressive utilization of
the host machine resources. Such utilization is achieved
by defining a low level code generation interface specialized
for ISA simulation, rather than the traditional approaches
which use C as a code generation interface. We are able
to perform the simulation at a speed of up to 102 millions
of simulated instructions per second (MIPS) on a 270 MHz
Ultra-5 workstation. This result is only on average 1.6 times
slower than the native execution on the host machine, the
fastest to the best of our knowledge.

fast the simulator can bring an application into a simulat-
able state; traceability, which has to do with how flexible
the simulator can collect useful statistics such as instruc-
tion profiling; portability, which has to do with how easy
the tool can be ported to new platforms; retargetability,
which has to do with how easy the tool can be extended to
handle new target machines; interoperatability, which has
to do with its capability to integrate with other tools such
as debuggers, hardware simulators, etc.

Due to their importance, numerous ISA simulators

Keywords— Computing, High-performance, Logic-simulation,1ave been developed, which can be categorized into three

System-level

I. INTRODUCTION

An instruction set simulator is a tool that runs on a
workstation, called the host machine, to mimic the behav-
ior of, or simulate a program running on another machine,
called the target machine, which either does not yet exist,
or is not available. Typically, instruction set simulation
allows the user to examine the internal state of the target
machine, such as the values of processor registers, during
the execution of each instruction.

Instruction set simulators are indispensable tools in the
development of conventional computer systems. They help
to wvalidate the processor design, the compiler design, as
well as evaluate architectural design decisions such as cache
sizes. Instruction set simulators play an even more impor-
tant role in the development of modern embedded systems,
which typically integrate one or more processors, accelera-
tion hardware, and sometimes analog front-ends, on one
chip to implement one specific application, such as cel-
lular phone and personal communication systems. Hard-
ware/software co-simulation [1], of which instruction set
simulation is one of the most important parts, must be
performed in order to validate and evaluate not only archi-
tectural decisions, but also implementation decisions such
as how the functionality of the application is partitioned
into hardware and software before any such systems are
built. Such capability of wirtual prototyping is essential to
the success of a product.

It is obvious that the most important quality metric of
an ISA simulator is its simulation speed, which is especially
relevant to the development of high performance systems,
where being able to perform simulation in real time is de-
sired. Hardware emulation, despite its cost, has to be used
when real time simulation is impossible. Other quality met-
rics include compilation speed, which has to do with how
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types (Section II), namely, interpretation-based, static
compilation-based and dynamic compilation-based.

In this paper, we present the design of a simulator for
pure ISA simulation. Our simulator, however, does not
handle complete machine simulation including additional
peripheral devices such as co-processors and UARTSs at the
current stage. Our tool falls into the category of static
compilation-based simulators. In addition to the advan-
tages inherited, our tool makes several contributions, which
lead to its superior performance. First, we propose to use
a RISC like virtual machine, which has a predefined in-
struction set and an unlimited number of virtual registers,
to serve as the intermediate form to which the target in-
structions get translated, and from which the host instruc-
tions are generated. This is in contrast to the dynamic
compilation-based approaches which usually directly emit
host instructions, where portability has to be sacrificed;
and the traditional static approaches which emit C, where
the direct manipulation of host machine resources is im-
possible.

Second, we use an aggressive, yet extremely simple reg-
ister allocator, which is tailored for the purpose of ISA
simulation. Effectively, this allows the direct mapping of
target machine registers to host machine registers, while
retaining portability. Such effect is hard, if not impossi-
ble to achieve in the traditional C-emitting approach, even
when sophisticated optimizations are used.

In addition, the proposed low level interface allows us to
bypass the host machine calling conventions (Section IV-
F), which effectively expose more registers for the register
allocator to manipulate on host machine architectures with
register windows, such as SPARC. In combination, we are
able to simulate the benchmarks only 1.1-2.5 times slower
than the execution of their counterparts directly compiled
on the host machine when tracing is off. This result is on
average 2 times faster than that can be achieved by the
approaches used in state-of-the-art tools [2] [3] [4].

The remainder of this paper is organized as follows. Sec-
tion IT gives more detailed description on the various ap-
proaches and compares their trade-offs. Section III and
Section IV present the details of our simulator. Section V



discusses its extensions and limitations. Section VI de-
scribes the experiment setup and gives an analysis of our
experimental results on the chosen benchmarks. We would
also like to acknowledge that the preliminary results of this
work were presented at [5].

II. RELATED WORKS
A. Interpretation-Based Simulation

Interpretation-based simulation builds in memory a data
structure representing the state of the target processor. It
then enters a loop, the body of which executes the sequence
of actions as shown in Figure 1: fetch, which reads an in-
struction word from memory; decode, which analyzes the
instruction and extracts the opcode field of the instruction;
dispatch, which uses a switch statement to jump to the ap-
propriate code to handle a particular instruction; and ex-
ecute, which updates the processor state according to the
semantics of the instruction.

for( ; ;) {
instruction = fetch( pc );
opcode = decode( instruction );
switch( opcode ) {

case ADD

break;
}
}
Fig. 1. Simulation loop of interpretative simulator.

A representative, widely used interpretation-based simu-
lator for the MIPS processor is described in [6]. Almost all
commercially available simulators are interpretative. De-
spite ease of implementation and flexibility, interpretation-
based simulators suffer performance problems, mainly due
to the tremendous overhead spent on instruction fetching,
decoding and dispatching, which, from the simulation point
of view, is unproductive. The simulator [6] reports a 25
times slowdown of the native execution. [4] reported that
it takes DSP simulators provided by vendors 6.4 hours to
simulate G.726 speech transcoder for 13 seconds of speech
signals, in contrast to the 7 seconds of native execution
time.

B. Compilation-Based Simulation

Compilation-based approaches reduce the runtime over-
head by translating each target machine instruction di-
rectly to a series of host machine instructions which manip-
ulate the simulated machine state. Typically, the simulated
machine state is maintained in a global memory space of
the host machine. For example, the MIPS code in Exam-
ple 1 is translated to the SPARC code in Example 2 for
simulation. Here, sp__sim is the memory location which
holds the value of the simulated sp register.

Ezample 1: Target code.

addu $sp,$sp,-80

Ezample 2: Simulation code.

sethi %hi(sp__sim), %10
1d [%lo(sp__sim)+%10]1, %11
add %11, -80, %12

sethi %hi(sp__sim), %13
st [hlo(sp__sim)+%13], %12

O

Such translation can be done either at compile time, as in
the case of statically compiled simulation, where the trans-
lation overhead is completely eliminated; or at load time,
as in the case of dynamically compiled simulation, where
the overhead is amortized over the loops which repeatedly
execute the same code.

Static compilation-based simulation, as shown in Fig-
ure 2, usually translates the target program into C code,
and then uses an optimizing C compiler (e.g., gcc with op-
tion -03) to translate the C code into host machine instruc-
tions. In [4], such simulators are developed for DSP pro-
cessors. The authors reported a 200-640 faster speed than
the corresponding interpretative simulator. However, the
simulation speed still ranges from 0.8 MIPS to 2.5 MIPS,
which we believe is slower than [3] and [2] for the following
reasons: First, simulation of DSP instructions is usually
more complex than RISC instructions, especially when bit
true simulation is required. Second, when the input is a bi-
nary executable in which the symbolic information is miss-
ing, the simulator has to assume that every instruction is a
target for branching. The resultant C code is very difficult
for the compiler to optimize.

Binary
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Fig. 2. Static compilation-based simulator.

C Translator

Dynamic compilation-based simulation, as shown in Fig-
ure 3, translates the target program into host machine code
on the fly. More specifically, chunks of translated host ma-
chine codes, called translations, are kept in the so-called
translation cache (TC), which is in turn addressed by the
translation lookaside buffer (TLB). The translation usually
consists of a prologue, which typically consists of instruc-
tions that load simulated target machine state from the
memory into the host machine registers; the body, which
manipulates the target machine state in the host machine
registers; and the epilogue, which dumps the content of the
host machine registers back to the memory. The simula-
tor proceeds by first looking up the TLB with the current
target program counter value. If there is a hit, that is,
the corresponding translation has been performed before,
the TLB will return a host machine address in the trans-
lation cache to which the simulator can jump immediately.



Otherwise, a chunk of target machine instructions starting
from the target PC address will be translated and the TLB
and TC are updated accordingly.

The dynamic compilation-based approach is pioneered
by the shade simulator [3], where the SPARC V8, V9 and
MIPS instruction set can be simulated within 3-10 times
native time. Inspired by [3], the Embra simulator [2] per-
forms complete machine simulation with similar perfor-
mance.
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Fig. 3. Dynamic compilation-based simulator.

Several recent research efforts focus on the retargetabil-
ity issue of the instruction set simulation, where the goal
is to generate a simulator automatically from a machine
description language. The Insulin simulator [7], translates
target machine code into a generic assembly code, which
in turn is simulated by a VHDL simulator. In [8] and [9],
interpretive and compiled simulators are generated from
nML machine description language respectively. Similarly,
the JACOB system [10], generates both interpretive and
compiled simulators from the MIMOLA HDL.

To compare these efforts with ours, [4], [9], [10] ignore
register allocation and leave everything to the C compiler.
[3], [2] do limited register allocation within the boundary
of so called translation, a unit of code which can be roughly
considered a basic block. In addition, portability issues are
not addressed. In contrast, our approach allows the reg-
ister allocation spanning the entire target program, which
provides the additional performance improvement that will
be illustrated later. In this paper, we focus mainly on the
performance issue of instruction set simulation. The re-
targetability issue, however, is not addressed, although we
cannot envision fundamental reasons that can prevent us
from combining our techniques with those in [7], [8], [9],
[10]. We will conduct detailed study on traceability and
cycle accuracy in separate works.

The techniques discussed in this paper are not limited to
embedded system design. It is also closely related to the
field of binary translation [11], [12], [13], [14], [15], which
promises to emulate the software of one platform, for ex-
ample, a Microsoft Windows application, on another plat-
form, for example, a Sun workstation. It is obvious that
our technique can be used for the purpose of binary trans-
lation. However, we would like to point out that the reverse
is not true. The reason is that while binary translation only
needs the translated executable to produce the same result
as the original, the simulation also needs to correctly main-
tain the target machine state at every simulated machine
cycle. Given such freedom, binary translation can poten-

tially achieve better performance than compilation-based
simulation. One extreme case is to reverse engineer the
control-dataflow graph from the target machine code, and
aggressive compiler optimization can then be applied to
obtain a program which can be potentially faster than the
original —- this certainly cannot be the case for instruction
set simulation.

III. A NEw APPROACH

As shown in Figure 4, our simulator looks like, and in
fact is integrated into, a retargetable compiler. A retar-
getable compiler is able to cross compile a source program
into binary code for a number of targets. Typically, it has a
backend code generator for each target it is able to support.
Our tool adds a corresponding number of backends for sim-
ulation purpose. Instead of generating the target code, our
simulation backends generate host machine code to simu-
late target code instead. As illustrated in Figure 4, for each
target, a software component called the target translator is
responsible for emitting a series of virtual machine instruc-
tions through a simulation code generation API, for each
target machine instruction to be simulated. For example,
in Figure 4, the MIPS target translator translates MIPS
machine code into virtual machine code. The abstract sim-
ulation code generation API is in turn implemented by a
host translator, which translates each virtual machine in-
struction into a form that can be converted into host ma-
chine instructions. There can be many host translator im-
plementations depending on what platform the simulation
is to be performed. For example, in Figure 4, the host
SPARC translator translates virtual machine instructions
directly into SPARC instructions. The C translator trans-
lates virtual machine instructions into C code, which can
be compiled into any host machine code using a standard C
compiler. In order to achieve good simulation performance,
the host translators might need to manage the mapping be-
tween virtual machine registers to host machine registers
via the register allocation API, which can be implemented
by a register allocator using an algorithm independent of
any host machine platforms.
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Fig. 4. Our simulator.

A. Simulation Code Generation API

Figure 5 defines the API that every host translator has
to implement. The API essentially provides the routines
to emit code of a virtual machine, whose instruction set



public enum SegKind {
SEG_CODE = 1, SEG_BSS, SEG_DATA, SEG_LIT
}

public interface IHost {
void begin();
void end();
void beginFunction( String name );
void endFunction( String name );
void segment( SegKind seg );

void exportSymbol( String symbol );
void importSymbol( String name, int size );
void declSymbol( String name, boolean isstatic );

void emitConstantValue( Type type,
Object value );
void emitAddressValue( String name );
void emitStringValue( int n, String name );
void emitSpace( int size );
void emitAlign( int align );
void emitInstrn(
Opcode opcode, Type type,
TargetExpr dest,
TargetExpr opl, TargetExpr op2

int declGlobal( String name );
int declLocal();
void undeclAllLocals();

void emitFetch( IRegAlloc ra, int vreg );
void emitFlush( IRegAlloc ra, int vreg );
}

Fig. 5. Simulation code generation API.

resembles that of a RISC machine, and contains an unlim-
ited number of virtual registers. Hence in many ways, the
APT looks like one that helps to emit assembly code. Con-
ceptually, the API is a procedural interface to help emit
either data or instructions into different memory segments
at the current program location of the current virtual ma-
chine code module.

The virtual machine that we define has an instruction
set that resembles [16], which in turn is derived from the
intermediate representation of [17]. Each instruction is rep-
resented as a value tuple of opcode, type, destination and
operands. The opcodes include arithmetic/logical oper-
ations, type conversion operations, load/store operations
and control transfer operations. The types further con-
strain the operations to work on a byte (signed or un-
signed), halfword, word, long, single and double precision
floating point and pointer value. They are defined in Fig-
ure 6.

The operands can be either an immediate value, that
is, a constant, a symbol, an expression which manipulates
constants and symbols, or a virtual register. A symbol is
nothing but a symbolic name for address. The destination
is always a virtual register.

To briefly describe the API, begin and end give the host
translator an opportunity to initialize and finalize its in-
ternal data structure to emit code for a module. Likewise,
beginFunction and endFunction signal the beginning and
the end of a function. segment announces that the tar-
get translator will start emitting either instructions in the

public enum Opcode {
OP_ADD, OP_SUB, OP_MUL, OP_DIV, OP_MOD,
OP_AND, OP_OR, OP_XOR, OP_SHL, OP_SHR,
0pP_COMP, OP_NOT, OP_NEG, OP_MOV, OP_SET,
OP_CNVI, OP_CNVU, ...,
OP_LD, OP_ST,
OP_RET, 0OP_J, OP_JAL,
0P_BLT, OP_BLE, OP_BGT, OP_BGE,
0OP_BEQ, OP_BNE,
0P_NOP
}

public enum Type {
TYPE_C, TYPE_UC, TYPE_S, TYPE_US,
TYPE_I, TYPE_U, TYPE_L, TYPE_UL,
TYPE_F, TYPE_D, TYPE_P, TYPE_V,
}

Fig. 6. Virtual machine opcode and data types.

text segment SEG_CODE, or uninitialized data in segment
SEG_BSS, or initialized data in segment SEG_DATA, or con-
stant data in segment SEG_LIT.

The next few functions manage symbols. A symbol can
be either a function name, a global variable name, or a label
to which control flow can merge. Function exportSymbol
announces that the provided symbol can be exported to
other modules. Function importSymbol announces that
the provided symbol should be imported from other mod-
ules. Function dec1Symbol declares a symbol in the current
module.

The next few functions emit code. Function
emitConstantValue emits constant numerical data in seg-
ment SEG_LIT. Function emitAddressValue emits address
value, typically simply using a symbolic name, in segment
SEG_DATA. Function emitSpace emits uninitialized data in
segment SEG_BSS. The function emitAlign emits space so
that the current program location is aligned to word or
double word boundary. Function emitInstrn emits a vir-
tual instruction given the opcode, type, destination and
operands.

Our virtual machine has an unlimited number of virtual
registers. The virtual registers are categorized into global
registers, which are alive during the entire program exe-
cution; and local registers, whose values only last a short
time, typically one simulated instruction. For ease of pre-
sentation, here and in the text afterwards we do not dis-
tinguish an integer register and a floating-point register.
Function declGlobal can be used to allocate a global vir-
tual register. Function declLocal can be used to allocate
a local virtual register. Function undeclAl1Locals can be
used to release all the local virtual registers. In addition,
emitFetch and emitFlush are helper functions for the reg-
ister allocator.

The improvement of portability of our simulator over dy-
namic compilation-based simulators attributes to the fact
that the host translators are completely decoupled from
the target translators thanks to the code generation API.
Therefore if we have M targets and N hosts, we need only
to implement M + N software components, namely M tar-
get translators and N host translators. In fact, if we always
use the C translator in Figure 4, we can reduce the number



to M + 1. This is in contrast to approaches used by [3],
[2], where M = N components have to be implemented. We
envision that if our simulator is to be extended with the
similar capability of retargetability as in [7], [8], [9], [10],
we can specify the instruction semantics of the target ma-
chine in the architectural description language in terms of
virtual instructions. This is needed anyway to help imple-
ment the instruction selector of the compiler. But now the
same information can be used to automate the generation
of target translators.

B. Target Translator

A target translator uses the code generation API to emit
simulation code. It first allocates a set of global virtual reg-
isters to simulate the target machine state. Typically, they
correspond to the target machine registers. It then emits
a set of virtual instructions for every target instruction,
while making sure that they have the same semantics. Note
that usually one virtual instruction is enough for a target
instruction. Otherwise, local virtual registers have to be
allocated for temporary storage. At the end of a simulated
target instruction, all the allocated virtual registers should
be released. For example, the MIPS instruction in Exam-
ple 1 is mapped to the virtual instruction add_i vsp, -80,
vsp, where vsp is a virtual register allocated for the tar-
get sp register. The target translator calls other interface
functions to emit data and other assembly directives.

C. Register Allocation API

Most virtual instructions apply certain operations on
some source virtual registers and write the result to the
destination virtual registers. Each virtual register has a
memory location in the simulation code to hold its value.
For efficiency, the virtual registers should be cached in the
host machine registers, called the hard registers. The pol-
icy towards how the virtual registers are cached comprises
the job of the register allocator.

In Figure 7, we define that a hard register can be marked
as free (REG_FREE), which means that it can be allocated to
any virtual register; and fixed (REG_FIXED), which means
that once it is allocated to a virtual register, the binding re-
mains permanently; and spillable (REG_.SPILLABLE), which
means that its content can be flushed to the memory and
thereby be reallocated to another virtual register; and dirty
(REG_DIRTY), which means that it has been written after its
content was fetched from the memory.

The API includes functions start and end, which initial-
izes and finalizes the register allocator internal data struc-
ture respectively. Function declHard declares a hard reg-
ister with its initial marking. It should always be marked
as free, unspillable, not dirty, and either fixed or unfixed.
Functions declGlobal, declLocal and undeclAllLocals
implement the corresponding simulation code generation
APT functions. Function getName returns the name of a
virtual register given its integer identifier. Function ask
performs the mapping of a given virtual register vreg to
the hard register and returns its name as the result. It will
emit fetching and flushing instructions as needed. Function

public enum RegMark

{
REG_FREE = 0x01,
REG_FIXED = 0x02,
REG_SPILLABLE = 0x04,
REG_DIRTY = 0x08
}
public interface IRegAlloc {
void start();
void end();
void declHard( String name, RegMark mark );
int declGlobal( String name );
int declLocal();
void undeclAllLocals();
String getName( int vreg );
String ask( IHost host, int vreg, boolean isFetch );
void kill( int r );
¥

Fig. 7. Register allocation API.

kill releases the binding between a virtual register and a
hard register.

D. Host Translator

A host translator implements the APIT defined in Sec-
tion III-A. The majority of the development effort is usu-
ally devoted to the implementation of every virtual instruc-
tion using host machine instructions. For example, to emit
the virtual instruction add_i dest, srcl, src2, the host
SPARC translator in Figure 4 will execute the following
code sequence, assuming ra is the register allocator:

Example 8: VM instruction implementation for SPARC

String nmsrcl = ra.ask( srcl, true );
String nmsrc2 = ra.ask( src2, true );
String nmdest = ra.ask( dest, false );
System.out.println(

"add" + nmsrcl + ", "

+ nmsrc2 + ", " + nmdest

);
ra.kill( srcl );
ra.kill( src2 );
ra.kill( dest );

O

As mentioned earlier, the allocation of virtual registers
is delegated to the register allocation APT in Figure III-C.
The data emission and other bookkeeping tasks, such as
symbol management, are trivial.

SPARC implementation of the emitFetch and emitFlush
is shown in Example 4.

Ezample 4: Fetching and flushing implementation for
SPARC

;éid emitFetch( IRegAlloc ra, int vreg ) {

String name = ra.getName( vreg );
String hard = ra.ask( vreg, 0 );

System.out.println( "set" + name + ", %gl" );
System.out.println( "1d [%gll, %" + hard );
}

void emitFlush( IRegAlloc ra, int vreg ) {

String name = ra.getName( vreg );
String hard = ra.ask( vreg, 0 );
System.out.println( "set " + name + ", Y%gl" );
System.out.println( "st " + hard + ", [lgll" );



IV. IMPLEMENTATION STRATEGIES

Up to this point, we have introduced the software ar-
chitecture of our tool. In this section, we will focus on the
register allocation algorithm and discuss various implemen-
tation strategies.

A. Register Allocation Algorithm

Figure 8 shows our implementation of the register allo-
cation API defined in Figure 7. Note that:
o In function declGlobal, the allocated global virtual
register is associated with a hard register whenever one
marked as fixed is available.
o Function ask will emit nothing if the virtual register is
already assigned a hard register; otherwise it will call alloc
to find a free hard register. In case of failure, it will call
spill, thereby select a virtual register to give up its occu-
pancy of the corresponding hard register, by first flushing
its value if it is marked as “dirty” or its value is inconsis-
tent with that stored in the memory. Once it gets a hard
register, it will emit fetching instructions as needed.
« Function alloc has a complexity of O(n), where n is the
number of hard registers.
o Function spill has a complexity of O(m), where m is
the number of declared virtual registers.

B. Greedy Allocation

Equipped with the register allocator, the host translator
can employ different strategies to manage the mapping of
virtual registers to hard registers. A straightforward strat-
egy for implementing a virtual instruction would fetch the
source virtual register values from the memory to the hard
registers, compute, and then store the result immediately
back to the memory. An example of such a strategy is
shown in Example 2.

To implement this strategy, the host translator will first
add all hard registers with a marking of unfixed. For each
virtual instruction, after emitting host instructions (Exam-
ple 3), it will have to call emitFlush to flush all the virtual
registers.

The obvious overhead of this strategy is the read of
operands of the instruction from memory and the write
of destination of the instruction to the memory. Each read
costs one cycle, for the best case of cache hit. Each write
costs at least one cycle too, regardless of the fact that the
host machine might have a write-through or write-back
cache policy.

C. Lazy Allocation

A better policy is to perform lazy fetching, that is, vir-
tual register values need not be loaded from the memory
if they have not recently been written after the last read
from the same basic block; and lazy flushing, that is, vir-
tual registers need not be written to the memory until the
end of a basic block. Here, the basic block refers to a piece

public class RegAlloc implements IRegAlloc {
void declHard( String name, RegMark mark ) {
add a hard register with its name and mark;
}
int declGlobal( String name ) {
int rtn = add a global virtual register;
record name for rtn;

forall hard registers hreg {
if( hreg is marked as free and fixed ) {
unmark REG_FREE of hreg;
bind hreg to rtn;

break;
}
}
return rtn;

}

int declLocal( String name ) {
int rtn = add a local virtual register;
record name for rtn; return rtn;

}

void undeclAllLocals() { delete all locals; }

String getName( int vreg ) {
return the recorded name of vreg;

}

String ask( IHost host, int vreg, boolean isFetch ) {
hreg = hard register assigned to vreg;
if( hreg != NULL ) {

if( !isFetch )
mark REG_DIRTY of hreg;
return name of hreg;
}
rtn = alloc( vreg );
if( rtn == NULL ) {
spill( host );
rtn = alloc( vreg );
}
if( vreg is global ) {
if( isFetch )
host.emitFetch( host, vreg );
else
mark REG_DIRTY of assigned hard register;
}
return rtn;
}

void kill( int vreg ) {
preg = hard register assigned to vreg;
mark REG_SPILLABLE of preg;

}

private String alloc( int vreg ) {

forall hard registers hreg {
if( hreg is free ) {
unmark REG_FREE of hreg;
assign hreg to vreg;
return name of hreg;
}
}
}
private void spill( IHost host ) {
forall virtual registers vreg {
hreg = hard register assigned to vreg;
if ( hreg != NULL && hreg is spillable ) {
host.emitFlush( host, vreg );
unmark REG_DIRTY of hreg;
mark REG_FREE of hreg;
return;

}

Fig. 8. Register allocation algorithm.



of code which contains a single entry and does not contain
control transfer instructions except the last one.

To implement this strategy, the host translator will first
add all hard registers with a marking of unfixed. It will
flush all the virtual registers at the end of a basic block.

The overhead of lazy allocation lies in the fetching code
for the first use of virtual registers in the basic block, the
spilling code which flushes virtual register, and an epilogue
which flushes all the “dirty” virtual registers, for every ba-
sic block. This overhead is needed because the mapping
between virtual registers and hard registers are different
across different basic blocks.

D. Fized Allocation

An observation is that if the mapping is consistent across
the entire program, then these overheads can be eliminated.
This is of course not always feasible since there might not
be enough hard registers to hold all the virtual registers.
But still, some virtual registers, such as those which cor-
respond to the stack pointer, program counter, and target
scratch registers, are so frequently used that they deserve
to have one fixed hard register allocated whenever possible.

E. Hybrid Approach

This leads to a hybrid approach in which the hard regis-
ters are partitioned into two sets: one is the fized register
set, the member of which is assigned to a global virtual reg-
ister throughout the entire program execution; the other is
the temporary register set.

This strategy is adopted by our simulator, where a global
virtual register is assigned a fixed hard register on a first-
come-first-served basis. Those globals that fail to obtain a
fixed hard register are mapped to the temporary registers
together with the locals according to the lazy allocation
mechanism.

To implement this strategy, the host translator will first
add all fixed hard registers with a fixed marking, and all
temporary hard registers with an unfixed marking. There
is no need to explicitly flush any virtual register.

Note that our algorithm is of linear complexity in terms
of number of virtual or hard registers. This is in contrast to
standard approaches based on liveness analysis and graph
coloring, which is (1) an overkill for allocation of locals
since their lifetimes only last one simulated instruction;
(2) unable to handle globals like ours without expensive
inter-procedural analysis and execution profiling.

F. Calling Convention Bypass

One might argue that the high level C code gener-
ation interface can still be used, since some compiler-
specific extensions of C are able to direct the com-
piler to map global variables to hard registers. In
fact, the popular gcc compiler can accept statement
register int sp__sim asm( "%g4" ) to map global vari-
able sp__sim to hard register g4.

This approach is certainly not portable. Furthermore,
there is one fundamental reason that this proposal is not
feasible.

One important family of host workstations, namely the
Sun machines, use the SPARC architecture [18], which con-
tains register windows to reduce the cost of function calls.
If a standard C compiler is used, the compiler will gener-
ate code to shift the register window whenever a procedure
is called. This essentially causes most hard registers to
become physically different hard registers residing in a dif-
ferent register window. Hence these registers cannot be
partitioned into the fixed register set. Thus, on SPARC,
only g4 through g7 are available, and the performance im-
provement is greatly reduced.

On the other hand, by using a low level code genera-
tion interface, our approach can bypass the standard call-
ing convention by suppressing the instructions for register
window shifting. Therefore, almost all the hard registers
are available for us to enable an efficient register mapping.

V. EXTENSIONS AND LIMITATIONS

We have presented a “bare” simulator whose only utility
is to run the simulated application. However, it can be
extended to meet other requirements.

A. Tracing and Profiling

It is sometimes helpful to collect tracing information dur-
ing the simulation. For example, the number of total in-
structions executed. This can be easily achieved by allo-
cating a global itotal and emitting the virtual instruction
add_i, itotal, 1, itotal
before every simulated instruction.

Similarly, the number of executions of every type of tar-
get instruction can be kept track of by allocating a global
icount, which points to the beginning of a table, and emit-
ting virtual instructions
1d_i, [icount+offset], tmp
add_i, tmp, 1, tmp
st_i, [icount+offset], tmp
before each simulated instruction. Here offset is the off-
set into the table where the tracing information is stored,
and tmp is a local.

It is also possible to emit instructions to call a user de-
fined routine. For example, whenever a load or store in-
struction is encountered, a user provided cache simulation
routine is called. Note that in order to achieve this, ex-
tra care has to be exercised so that the user routine, which
uses the host machine’s calling convention, does not corrupt
the data maintained in the hard registers. We address this
problem and study the effect of tracing in a separate study.

Note that tracing will inevitably slow down the simu-
lation performance. But being able to directly map fre-
quently used variables such as itotal and icount is cer-
tainly helpful.

B. Cycle-True Simulation

When cycle-true simulation is required, the program
state includes the values of not only all registers, but also
the registers between the pipeline stages. It is easy to
see that our technique can be very useful to map the fre-
quently used pipeline registers directly into host machine



registers. However, the existence of branches, especially in-
direct branches, complicates the static compilation-based
simulation. This problem has been pointed out by [4]. We
address this issue in a separate study.

C. Source Level Debugging

Support for source level debugging can be achieved
by simply enhancing the code generation interface pre-
sented with functions that emit debug information, such
as stabline, which emits source line number information,
stabsym, which emits symbol information, and stabtype,
which emits type information.

D. Limitations

There are limitations to the static compiled approach in
general. Simulators that fall into this category cannot han-
dle self-modifying code and code with dynamically linked
libraries. Our tool is not immune to these limitations. For-
tunately, these cases are rare in embedded systems.

There are also limitations specific to our tool. First, our
tool works best on high performance host machines with
large register sets. When the host has a limited number
of registers, the performance will degrade, however, not
to the level worse than those without register allocation.
Second, the difference on byte order assumed by the target
machine and the host machine is ignored. Third, currently
the code generation from target machine to virtual machine
is directly built on a retargetable compiler, rather than a
separate one which accepts assembly or binary as input.
While the replacement of additional parsing with a direct
function call could certainly speed up the compilation, it
also ties our tool with a specific compiler. Fortunately, one
can build a “binary translation” version of our tool fairly
easily.

VI. EXPERIMENTAL RESULTS
A. FEzxperiment Setup

The efficiency of the proposed techniques can only be
verified by extensive experiments. However, the following
factors contribute adversely to the fairness of direct com-
parison of our results with others reported in the literature:
« Most previous works on static compilation-based simula-
tion have few results available. For example, [4] has results
on only one benchmark.

o Previous works may use different target/host combi-
nations. For example, [3] reports results on simulating
SPARC V9 instruction set on SPARC V8 machine.

o Simulators in previous works vary with accuracy. For
example, [4] is cycle accurate, and [10] performs bit-true
simulation.

o Dynamic compilation-based approaches [3], [2] have dy-
namic compilation overhead not present in our simulator.

It is hence desirable to implement all simulators accord-
ing to the techniques that they reported for the same tar-
get/host combination, and with the same accuracy. Fur-
thermore, dynamic compilation overhead should not be in-
cluded in the comparison. In this way, we can focus on

the effect of register allocation on simulation performance,
which is the major contribution of this work.

We manage to do that thanks to the clean simulation
code generation API defined in Section III-A. We can im-
plement the virtual machine by emitting C code using a C
translator, thus effectively implement a simulator equiva-
lent to [4], [9], [10]. By turning on the optimization switch
of the C compiler (the gce compiler in our study), we argue
that this configuration is also equivalent to [3], [2] with-
out dynamic compilation overhead, since with trivial alias
analysis, the C compiler is able to perform register allo-
cation at the basic block level. We also argue that the
potential performance reduction due to the introduction
of virtual machine is eliminated, since the instruction se-
lector of the C compiler can recognize virtual instruction
patterns that can be efficiently implemented by one host
machine instruction. We are hence confident that conclu-
sions derived from comparing the simulation performance
of our proposed simulator with the described mock-up of
the previous works are reasonably fair.

We also choose to measure the simulation performance
against native execution on the host machine, rather than
the target machine. We believe it offers a better measure-
ment on the performance of the simulator since the per-
formance difference between the host machine and target
machine is factored out. Also worthy of mention is that
for a given benchmark, we use the same retargetable com-
piler to compile it into target code for simulation and host
code for native execution. In other words, they undergo
the same frontend analysis and machine-independent op-
timization. In this way, we are confident that the “code
quality” of both are roughly the same, thus making our
metric of simulation performance against native execution
more reasonable.

We select a set of benchmarks to evaluate our simula-
tor. COUNT consists of a loop which simply increments a
counter. IDCT is the inverse discrete cosine transform al-
gorithm extracted from JPEG/MPEG. Viterbi is a popular
channel coding algorithm. FIR and LD (Levison-Durbin)
are signal processing algorithms extracted from ITU speech
coding standard g.723. LM* are the Livermore Kernels
Benchmark that were used historically to rate the strengths
and weaknesses of vector supercomputers.

We chose the MIPS 3000 as our target machine due to
its wide acceptance. We chose an Ultra-5 Sun workstation
with 270Mhz UltraSparc CPU and 64M-byte memory as
our host machine due to its wide availability in research
environments.

B. Simulation Performance

We performed the simulation of the benchmark set, with
the total instruction count traced, using both our pro-
posed approach and the C-emitting approach, and com-
pared them against the native execution on the host ma-
chine. The results are summarized in Table I, where each
row corresponds to a benchmark. The first column (icount)
records the number of thousand (K) instructions executed
for each run of the benchmark. The remaining columns



Benchmark || icount native hybrid C-emitting lazy greedy

K MS [ MIPS || MS [ MIPS || MS [ MIPS || MS [ MIPS || MS | MIPS

COUNT 30000 11 272 14 272 52 75 100 30 100 30
IDCT 1670 6 278 9 209 32 52 34 49 69 24
Viterbi 23638 116 203 142 185 430 54 450 53 948 25
FIR 8169 27 302 78 122 178 45 167 49 254 32
LD 18447 69 266 198 105 336 54 435 42 632 29
LM1 325 1 325 3 108 6 54 8 40 14 23
LM2 511 4 127 6 85 13 39 13 39 22 23
LM3 198 0.9 220 1 198 3 66 5 39 8 24
LM4 1067 5 213 8 133 20 53 27 40 44 24
LM5 328 1 328 3 109 6 55 8 41 14 23
LM6 7853 25 314 41 191 136 58 193 41 316 24
LM7 274 2.3 119 3.5 78 7.5 37 5.4 51 13 21.2
LM8 1128 6 188 9.6 118 27 41 26 44 47 23
LM9 2127 9.3 228 17 124 44 47 40 53 91 23
LM10 202 0.9 224 2 101 3.7 55 5.3 38 8.2 25
LM11 140 0.7 200 1.7 82 2.6 54 3.5 40 5.7 25
LM12 14247 73.5 193 111 128 350 41 218 65 641 22
LM13 1085 7 155 9.5 114 19 57 15.7 69 50 22
LM14 521 3.2 162 5.4 96 10 52 10 52 20.5 25
LM15 2114 9.4 224 17 124 44 48 36 59 90 23
LM16 321 2.5 128 3.8 84 7.4 43 6.9 47 14 23
LM17 2047 8.5 240 15 136 38 53 26.4 78 90 23
LM18 231 1.2 192 2.3 100 4.5 51 7.2 32 8.9 26

average slowdown 1.59 4.25 4.99 8.50
TABLE I

COMPARISON OF SIMULATION PERFORMANCE.

record the performance in millisecond (MS) and millions
of simulated instruction per second (MIPS) respectively,
of different implementation strategies. The column native
corresponds to compiling and running the benchmark di-
rectly on the host machine; the column hybrid corresponds
to our proposed approach using the hybrid register alloca-
tion strategy; and the column C-emitting corresponds to
the C-emitting approach described before, where the exe-
cutable is generated by gce with optimization (with option
-0O3 turned on). To show the penalty of not performing
proper register allocation, we also include simulation per-
formance of our simulator in the last two columns when the
lazy and greedy register allocation strategies are employed.

Our results show that our approach simulates the bench-
marks at an average speed only 1.59 times slower than na-
tive execution, whereas the C-emitting approach, which
serves as the mockup of previous efforts, simulates 4.25
times slower than native execution. Our approach is hence
about 2.67 times better.

C. Result Analysis

It is interesting to analyze the factors that contribute to
the performance difference between our simulator and the
native execution to appreciate the simulation results.

o architecture difference between target and host:
For example, the MIPS has a flat register file architecture,
whereas the SPARC architecture has a register window ar-
chitecture. Hence the target code spends more time sav-
ing registers for calls, and so does our simulator. Another
example is that the target machine contains instructions
which are not directly implemented on the host machine.
For our study, the target and host instruction set are very

similar. Hence this overhead is not large. Obviously, such
overhead can be never avoided.

o target machine state: The simulator has to maintain
the target machine state. Depending on different register
allocation strategies, this overhead might vary. The perfor-
mance difference between the greedy allocation approach,
the lazy approach, and our proposed hybrid allocation ap-
proach, quantifies this effect.

o virtual machine abstraction: We add one level of in-
direction, that is, the virtual machine, between the target
and host. This will introduce overhead. For example, it
might happen that both the target and host have a simi-
lar instruction, but the virtual machine does not have an
equivalent one. Without a host machine instruction selec-
tor implemented, our tool has to use a sequence of host ma-
chine instructions to simulate. This overhead can be quan-
tified by the performance difference between the C-emitting
approach and the lazy allocation approach for our bench-
mark set: As mentioned earlier, with proper optimization
switch turned on, the C compiler effectively enables basic
block level register allocation, hence the overhead on main-
taining target machine state should be roughly equivalent
to the lazy allocation approach. However, the instruction
selector of the C compiler can help to eliminate the over-
head of virtual machine abstraction, while lazy approach
cannot. This explains their performance difference.

VII. CONCLUSION

In conclusion, we have described a technique which uses
a virtual machine code generation interface for the static
compiled ISA simulation. We argue that such a low level
interface is more efficient than the high level C interface.



Our future work will extend this methodology to per-
form cycle accurate instruction set simulation, and hard-
ware/software co-simulation, which present more chal-
lenges.
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for( ; ; ) {
instruction = fetch( pc );
opcode = decode( instruction );
switch( opcode ) {

case ADD
break;

}

Fig. 1.

Simulation loop of interpretative simulator.
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Fig. 2. Static compilation-based simulator.
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Fig. 3. Dynamic compilation-based simulator.
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public enum SegKind {
SEG_CODE = 1, SEG_BSS, SEG_DATA, SEG_LIT
}

public interface IHost {
void begin();
void end();
void beginFunction( String name );
void endFunction( String name );
void segment( SegKind seg );

void exportSymbol( String symbol );
void importSymbol( String name, int size );
void declSymbol( String name, boolean isstatic );

void emitConstantValue( Type type,
Object value );
void emitAddressValue( String name );
void emitStringValue( int n, String name );
void emitSpace( int size );
void emitAlign( int align );
void emitInstrn(
Opcode opcode, Type type,
TargetExpr dest,
TargetExpr opl, TargetExpr op2

int declGlobal( String name );
int declLocal();
void undeclAllLocals();

void emitFetch( IRegAlloc ra, int vreg );

void emitFlush( IRegAlloc ra, int vreg );
}

Fig. 5. Simulation code generation API.



public enum Opcode {
OP_ADD, 0OP_SUB, OP_MUL, OP_DIV, OP_MOD,
OP_AND, OP_OR, OP_XOR, OP_SHL, OP_SHR,
Oop_COMP, OP_NOT, OP_NEG, OP_MOV, OP_SET,
OP_CNVI, OP_CNVU, ...,
OP_LD, OP_ST,
OP_RET, OP_J, OP_JAL,
OP_BLT, OP_BLE, OP_BGT, OP_BGE,
OP_BEQ, OP_BNE,
OP_NOP
}

public enum Type {
TYPE_C, TYPE_UC, TYPE_S, TYPE_US,
TYPE_I, TYPE_U, TYPE_L, TYPE_UL,
TYPE_F, TYPE_D, TYPE_P, TYPE_V,
}

Fig. 6. Virtual machine opcode

and data types.
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ask( IHost host, int vreg, boolean isFetch );

public enum RegMark {
REG_FREE = 0x01,
REG_FIXED = 0x02,
REG_SPILLABLE = 0x04,
REG_DIRTY = 0x08
}

public interface IRegAlloc {
void start();
void end();
void declHard( String name, RegMark mark );
int declGlobal( String name );
int declLocal();
void undeclAllLocals();
String getName( int vreg );
String
void kill( int r );
}

Fig. 7. Register allocation API.

17



public class RegAlloc implements IRegAlloc {

void declHard( String name, RegMark mark ) {
add a hard register with its name and mark;
}

int declGlobal( String name ) {
int rtn = add a global virtual register;
record name for rtn;

forall hard registers hreg {
if( hreg is marked as free and fixed ) {
unmark REG_FREE of hreg;
bind hreg to rtn;

break;
}
}
return rtn;

}
int declLocal( String name ) {
int rtn = add a local virtual register;
record name for rtn; return rtn;
}
void undeclAllLocals() { delete all locals; }
String getName( int vreg ) {
return the recorded name of vreg;

}

String ask( IHost host, int vreg, boolean isFetch ) {

hreg = hard register assigned to vreg;
if( hreg != NULL ) {
if( !isFetch )
mark REG_DIRTY of hreg;
return name of hreg;
}
rtn = alloc( vreg );
if( rtn == NULL ) {
spill( host );
rtn = alloc( vreg );
}
if( vreg is global ) {
if ( isFetch )
host.emitFetch( host, vreg );
else

mark REG_DIRTY of assigned hard register;

}
return rtn;
}
void kill( int vreg ) {
preg = hard register assigned to vreg;
mark REG_SPILLABLE of preg;
}
private String alloc( int vreg ) {
forall hard registers hreg {
if( hreg is free ) {
unmark REG_FREE of hreg;
assign hreg to vreg;
return name of hreg;
}
}
}
private void spill( IHost host ) {
forall virtual registers vreg {
hreg = hard register assigned to vreg;
if( hreg != NULL && hreg is spillable ) {
host.emitFlush( host, vreg );
unmark REG_DIRTY of hreg;
mark REG_FREE of hreg;
return;

}

Fig. 8. Register allocation algorithm.
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Benchmark || icount native hybrid C-emitting lazy greedy

K MS [ MIPS || MS [ MIPS || MS [ MIPS || MS [ MIPS || MS | MIPS

COUNT 30000 11 272 14 272 52 75 100 30 100 30
IDCT 1670 6 278 9 209 32 52 34 49 69 24
Viterbi 23638 116 203 142 185 430 54 450 53 948 25
FIR 8169 27 302 78 122 178 45 167 49 254 32
LD 18447 69 266 198 105 336 54 435 42 632 29
LM1 325 1 325 3 108 6 54 8 40 14 23
LM2 511 4 127 6 85 13 39 13 39 22 23
LM3 198 0.9 220 1 198 3 66 5 39 8 24
LM4 1067 5 213 8 133 20 53 27 40 44 24
LM5 328 1 328 3 109 6 55 8 41 14 23
LM6 7853 25 314 41 191 136 58 193 41 316 24
LM7 274 2.3 119 3.5 78 7.5 37 5.4 51 13 21.2
LM8 1128 6 188 9.6 118 27 41 26 44 47 23
LM9 2127 9.3 228 17 124 44 47 40 53 91 23
LM10 202 0.9 224 2 101 3.7 55 5.3 38 8.2 25
LM11 140 0.7 200 1.7 82 2.6 54 3.5 40 5.7 25
LM12 14247 73.5 193 111 128 350 41 218 65 641 22
LM13 1085 7 155 9.5 114 19 57 15.7 69 50 22
LM14 521 3.2 162 5.4 96 10 52 10 52 20.5 25
LM15 2114 9.4 224 17 124 44 48 36 59 90 23
LM16 321 2.5 128 3.8 84 7.4 43 6.9 47 14 23
LM17 2047 8.5 240 15 136 38 53 26.4 78 90 23
LM18 231 1.2 192 2.3 100 4.5 51 7.2 32 8.9 26

average slowdown 1.59 4.25 4.99 8.50
TABLE I

COMPARISON OF SIMULATION PERFORMANCE.
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