
IP-CENTRIC METHODOLOGY AND DESIGN

WITH THE SpecC LANGUAGE

System Level Design of Embedded Systems

DANIEL D. GAJSKI, RAINER D�OMER AND JIANWEN ZHU

Department of Information and Computer Science
University of California, Irvine
Irvine, California, USA

Abstract.

In this paper, we demonstrate the application of the specify-explore-
re�ne (SER) paradigm for an IP-centric codesign of embedded systems. We
describe the necessary design tasks required to map an abstract executable
speci�cation of the system to the architectural implementation model. We
also describe the �nal and intermediate models generated as a result of
these design tasks. The executable speci�cation and its re�nements should
support easy insertion and reuse of IPs.

Although several languages are currently used for system design, none of
them completely meets the unique requirements of system modelling with
support for IP reuse. This paper discusses the requirements and objectives
for system languages and describes a C-based language called SpecC, which
precisely covers these requirements in an orthogonal manner.

Finally, we describe the design environment which is based on our code-
sign methodology.

1. Introduction

New technologies allow designers to generate chips with more than 10 mil-
lion transistors on a single chip. The main problem at this complexity is
designer productivity. Although the chip complexity measured in number
of transistors per chip has increased at the rate of 60 percent per year in
the past, the productivity measured in number of transistors designed per
day by a single designer has increased only at the rate of 20 percent. This
growing gap between the complexity and productivity rates may have the
catastrophic e�ect of slowing down semiconductor industry.

2

One of the main solutions for solving this problem is increasing the
level of abstraction in design of complex chips. The abstraction level in-
crease should be re
ected in descriptions, components, tools, and design
methodology.

First, modelling or describing designs on the gate or RT level is not
su�cient. Moving to executable speci�cations (behavior) and architectural
descriptions (structure) is necessary to improve design productivity.

In order to explore di�erent architectural solutions, we must use higher-
level components beyond RTL components, such as registers, counters,
ALUs, multipliers, etc. These higher-level components, frequently called
IPs, are changing the business and design models. In order to use IPs, we
need a methodology that will allow easy insertion of IPs in designs. This
new methodology must have well-de�ned models of design representation,
so that IP can be easily inserted or replaced when supplies disappear or
IPs get discontinued. In order to achieve easy insertion and replacement,
the design models must separate computation from communication, in ad-
dition to abstracting those two functions. This way, IP can be inserted by
changing only the communication interface to the rest of the design.

Finally, the above IP-centric design methodology must be supported by
CAD tools that will allow easy capture of executable speci�cation, archi-
tecture exploration with IPs, and RTL hand-o� to semiconductor fabs.

In this paper, we present such an IP-centric methodology, starting with
an executable speci�cation, de�ne the abstract models used for architec-
tural exploration, synthesis, and hand-o�, and describe the necessary tools
to support this methodology.

We also describe a C based language, called SpecC, for describing all
the models in the methodology, and the SpecC Design Environment which
supports all the transformations and explorations indicated in the method-
ology.

2. Related Work

For system-level synthesis, in particular codesign and coveri�cation,
academia, as well as industry, has developed a set of promising approaches
and methodologies. Several systems already exist that assist designers with
the design of embedded systems. However, none of todays systems covers
the whole spectrum of codesign tasks. Instead, most systems focus on a
subset of these problems.

2.1. UNIVERSITY PROJECTS

Table 1 lists some system-level projects developed by universities. Although
all systems try to cover all aspects of system-level design, each of them really

3

focuses on a subset of the tasks. Also, the target architectures addressed
by the tools in many cases are quite speci�c and do not cover the whole
design space.

TABLE 1. System-level Design Projects in Academia.

Project University Main Focus

Chinook U Washington Simulation, Synthesis

Cosmos TIMA Simulation, Synthesis

Cosyma TU Braunschweig Exploration, Synthesis

CoWare IMEC Interface Synthesis

Lycos TU Denmark Synthesis

Polis UC Berkeley Modelling, Synthesis

Ptolemy UC Berkeley Simulation

Scenic UC Irvine Simulation

SpecSyn UC Irvine Exploration

Weld UC Berkeley Framework

For the speci�cation of embedded systems, standard programming lan-
guages are being used, as well as special languages developed to support
important concepts in codesign directly. For the latter, two early approaches
must be mentioned. Statecharts [7, 15] and SpecCharts [29, 10] use an ex-
tended �nite state machine model in order to support hierarchy, concur-
rency and other common concepts. Both have a textual and a graphical
representation. SpecCharts is the underlying language being used in the
SpecSyn system [11], which is targeted at design space exploration and
estimation.

In the Scenic environment [23, 14], the design is modeled with the stan-
dard programming language C++. Features not present in the language,
like for example concurrency, can be speci�ed by use of classes provided
with the Scenic libraries. The SpecC system, as introduced in [39, 6] and
described later in Section 4.3, goes one step further. The standard language
C is extended with special constructs that support concurrency, hierarchy,
exceptions, and timing issues, among others. For simulation, the SpecC lan-
guage is automatically translated into a C++ program, which can be com-
piled and executed. This approach makes it possible for the SpecC system
to focus on codesign modelling and synthesis while providing simulation,
whereas Scenic mainly targets only simulation.

Similar to the speci�cation language, the design representation being
used internally in a codesign system is important. Usually every system
has its own representation. The Polis system [2], targeted at small reactive

4

embedded systems, uses the codesign �nite state machine (CFSM) model
[4] to represent the designs. Since this model is formally de�ned, it is also
a suitable starting point for formal veri�cation.

Most codesign systems can be classi�ed as either simulation oriented,
or synthesis oriented. A typical representative for simulation oriented sys-
tems is the Ptolemy frame work [22, 19]. Ptolemy models a design as a
hierarchical network of heterogeneous subsystems and supports simulta-
neous simulation of multiple models of computation, such as for example
synchronous data
ow (SDF).

On the other hand, several systems are mainly synthesis oriented. In
this category, Cosmos [35, 18] targets at the development of multiproces-
sor architectures using a set of user-guided transformations on the design.
For the Cosyma [9, 16, 30] and the Lycos [26] system, the target architec-
ture is an embedded micro architecture consisting of one processor with a
coprocessor, e.g. an ASIC.

Interface and communication synthesis are addressed in particular by
the Chinook [5] and CoWare [31] systems. Chinook is targeted at the de-
sign of control-dominated, reactive systems, whereas CoWare addresses the
design of heterogeneous DSP systems.

As a special framework, the Weld project [3] addresses the use of net-
working in electronic design. It de�nes a design environment which enables
web-based computer aided design (CAD) and supports interoperability via
the internet.

2.2. COMMERCIAL SYSTEMS

A growing number of commercial tools are being o�ered by the EDA com-
panies. However, they tend to either solve a particular problem as a point
tool in the codesign process, e.g. cosimulation, or focus on one particular
application domain, e.g. telecommunications.

For modeling and analysis at the speci�cation level, Cadence and Syn-
opsys o�ers tools (SPW and COSSAP, respectively) to support easy entry
and simulation of block diagrams, a popular paradigm used in the commu-
nication community.

Another category of simulation tools is targeted at veri�cation for de-
sign after backend synthesis. A representative is Seamless CVE from Men-
tor Graphics, which speeds up cosimulation of hardware and software by
suppressing the simulation of information unrelevant to the hardware soft-
ware interaction. Such information may include instruction fetch, memory
access, etc. A similar tool is Eaglei from ViewLogic.

A variety of backend tools exists. The most widely used retargetable
compiler is the GNU C compiler. However, since it is designed to be a

5

compiler for general purpose processors, upgrading it into an aggressive,
optimizing compiler for an embedded processor with possibly a VLIW dat-
apath and multiple memory banks can be a tremendous e�ort. Although
assembly programming prevails in current practice, new tools are expected
to emerge as research in this area matures. The Behavioral Compiler from
Synopsys, Monet from Mentor Graphics, and XE of Y-Explorations, are
examples of high-level synthesis tools starting from a hardware description
language. The Protocol Compiler of Synopsys exploits the regular expres-
sion paradigm for the speci�cation of communication protocols and synthe-
sizes interface circuitries between hardware modules.

There is a limited number of commercial tools o�ered for system-level
synthesis. Among the few is the CoWare system, which targets at the hard-
ware software interfacing problem. VHDL+ of ICL, also provides an exten-
sion of VHDL, which helps to solve the same problem.

There are a rapidly growing number of vendors for reusable components,
or IP products for embedded systems. A traditional software component is
the embedded operating system, which usually requires a small memory,
and sometimes real time constraints have to be respected. Examples are
VxWorks from Wind River, Windows CE from Microsoft, JavaOS from
Sun Microsystems, to name just a few. The Inferno operating system from
Lucent is especially designed for networking applications. The hardware
IP vendors o�er cores ranging from the gate and functional unit level, for
example Synopsys Designware, to block level, for example Viterbi decoders
and processors. They are often provided with a simulation model or a syn-
thesizable model in VHDL or Verilog. While integrating these cores into a
system-on-a-chip is not as easy as it appears, new methodologies, such as
those proposed in the academia, and new standards, such as those prepared
in the VSI alliance, are expected to make the plug-and-play capability pos-
sible.

3. System Design Methodology

A methodology is a set of models and transformations, possibly imple-
mented by CAD tools, that re�nes the abstract, functional or behavioral
speci�cation into a detailed implementation description ready for manufac-
turing. The system methodology [12] starts with an executable speci�cation
as shown in Figure 1. This speci�cation describes the functionality as well as
the performance, power, cost and other constraints of the intended design.
It does not make any premature allusions to implementation details. The
speci�cation is captured directly in a formal speci�cation language such as
SpecC (see Section 4.3), that supports di�erent models in the methodology.

Since designers do not like to learn the syntax and semantics of a new

6

Compilation Interface
synthesis

Backend

Simulation
 model

Simulation
 model

Manufacturing

Communication
 model

Simulation
 model

Simulation
 model

Implementation
 model

Validation of
algorithm and
functionality

Validation of
functionality and
synchronization

Validation of
functionality and

performance

Validation of

performance
timing and

High level
synthesis

Protocol selection

Protocol inlining

Communication synthesis

Behavior partitioning

Synthesis flow Analysis and validation flow

IP

IP

Estimation

Estimation

Estimation

Estimation

Architecture exploration

Architecture
 model

Channel partitioning

Variable partitioning

Specification
model

Transducer synthesis

Figure 1. The codesign methodology in the SpecC Design Environment

language, the executable speci�cation can be captured with a graphical ed-
itor that generates the speci�cation from well-known graphical forms, such
as block diagrams, connectivity tables, communication channels, timing di-
agrams, bubble charts, hierarchical trees, scheduling charts, and others.
Such a graphical editor must also provide support for manual transforma-

7

tions of one model to another in the methodology.

As shown in Figure 1, the synthesis
ow of the codesign process con-
sists of a series of well-de�ned design steps which will eventually map the
executable speci�cation to the target architecture. In this methodology, we
distinguish two major system level tasks, namely architecture exploration
and communication synthesis.

Architecture exploration includes the design steps of allocation and par-
titioning of behaviors, channels and variables. Allocation determines the
number and the types of the system components, such as processors, ASICs
and busses, which will be used to implement the system behavior. Alloca-
tion includes the reuse of intellectual property (IP), when IP components
are selected from the component library.

Then, behavior partitioning distributes the behaviors (or processes) that
comprise the system functionality amongst the allocated processing el-
ements, whereas variable partitioning assigns variables to memories and
channel partitioning assigns communication channels to busses. Scheduling
is used to determine the order of execution of the behaviors assigned to the
processors.

Architecture exploration is an iterative process whose �nal result is the
de�nition of the system architecture. In each iteration, estimators are used
to evaluate the satisfaction of the design constraints. As long as any con-
straints are not met, component and connectivity reallocation is performed
and a new architecture with di�erent components, connectivity, partitions,
schedules or protocols is evaluated.

After the architecture model is de�ned, communication synthesis is per-
formed in order to obtain a design model with re�ned communication. The
task of communication synthesis includes the selection of communication
protocols, synthesis of interfaces and transducers, and inlining of protocols
into synthesizable components. Thus, communication synthesis re�nes the
abstract communications between behaviors into an implementation.

It should be noted that the design decisions in each of the tasks can be
made manually by the designer, e. g. by using an interactive graphical user
interface, as well as by automatic synthesis tools.

The result of the synthesis
ow is handed-o� to the backend tools, shown
in the lower part of Figure 1. The software part of the hand-o� model
consists of C code and the hardware part consists of behavioral VHDL or
C code. The backend tools include compilers, a high-level synthesis tool and
an interface synthesizer. The compilers are used to compile the software C
code for the processor on which the code is mapped. The high-level synthesis
tool is used to synthesize the functionality mapped to custom hardware.
The interface synthesizer is used to implement the functionality of interfaces
needed to connect di�erent processors, memories and IPs.

8

During each design step, the design model is statically analyzed to esti-
mate certain quality metrics such as performance, cost and power consump-
tion. This design model is also used in simulation to verify the correctness
of the design at the corresponding step. For example, at the speci�cation
stage, the simulation model is used to verify the functional correctness of
the intended design. After architecture exploration, the simulation model
will verify the synchronization between behaviors on di�erent processing
elements (PEs). After communication synthesis, the simulation model is
used to verify the performance of the system including computation and
communication.

At any stage, if the veri�cation fails, a debugger can be used to locate
and �x the errors. Usually, standard software debuggers can be used which
provide the ability to set break points anywhere in the source code and
allow detailed state inspection at any time.

3.1. IP REQUIREMENTS

The use of Intellectual Property introduces additional requirements on the
system design methodology. In order to identify the speci�cation segments
that can be implemented by an IP, or to replace one IP by another one, the
system speci�cation and its re�ned models must clearly identify the speci�c
IP segment or the IP functionality must be deduced from the description.
On the other hand, if the meaning of a model or one of its parts is di�cult
to discover, it is also di�cult to see whether an IP can be used for its
implementation.

This situation is well demonstrated in a much broader problem of de-
sign methodologies: simulatable vs. synthesizable languages. We know that
almost any language (C, C++, Java, VHDL, Verilog, etc.) can be used for
writing simulatable models. However, each design can be described in many
di�erent ways, all of them producing correct simulation results. Therefore,
an IP function can be described in many di�erent ways inside the system
speci�cation without being recognized as an IP description. In such a case,
IP insertion is not possible. Similarly, replacing one IP with another with
slightly di�erent functionality or descriptions is not possible.

For example, a controller, whose computational model is a �nite state
machine, can be easily described by a case statement in which the cases
represent the states. Similarly, an array of coe�cients can be described
with a case statement in which the cases represent the coe�cient indices.
In order to synthesize the description with these two case statements, we
have to realize that the �rst statement should be implemented as a con-
troller and the second as a look-up ROM. If the designer or a synthesis tool
cannot distinguish between these two meanings, there is no possibility that

9

a correct implementation can be obtained from that description although
it will produce correct simulation results.

Therefore, in order to synthesize a proper architecture, we need a spec-
i�cation or a model that clearly identi�es synthesizable functions including
IP functions. In order to allow easy insertion and replacement of IPs, a
model must also separate computation from communication, because dif-
ferent IPs have di�erent communication protocols and busses connecting
IPs may not match either of the IP protocols. The solution is to encap-
sulate di�erent IPs and busses within virtual components and channels by
introducing wrappers to hide detailed protocols and allow virtual objects
to communicate via shared variables and complex data structures. In the
methodology presented in Figure 1, the executable speci�cation is written
using shared variables for communication between behaviors or processes,
while models used for architecture exploration use virtual components and
channels for easy insertion and replacement of IPs. The �nal communica-
tion model exposes the protocols and uses again shared variables to describe
individual wires and busses used in communication. Thus, the architecture
exploration is performed on the model that clearly separates computations
(behaviors) from communication (channels) and allows a plug-and-play ap-
proach for IPs.

However, there is a di�erence between functions de�ned in a channel
and functions in a behavior. While the functions of a behavior specify its
own functionality, the functions of a channel specify the functionality of the
caller, in other words, when the system is implemented, they will get inlined
into the connected behaviors or into transducers between the behaviors.
When a channel is inlined, the encapsulated variables are exposed serving
as communication media, and the functions become part of the caller. This
is shown in Figure 2(a) where the channel C connecting behaviors A and B

is inlined, assuming that A and B will be implemented as custom hardware
parts. In such custom parts, the computation and communication will be
realized by the same datapath and controlled by one controller.

The situation is di�erent when a behavior is not synthesizable, such as
in a processor core with a �xed protocol. This can be modelled using a
wrapper which is a channel encapsulating a �xed behavior while providing
higher-level communication functions that deal with the speci�c protocol
of the internal component. For example, a MPEG decoder component with
a wrapper can be used by other behaviors simply by calling the decode
function provided by the wrapper. Figure 2(b) shows the inlining of the
wrapper in component A allowing the communication between A and IP to
use the IP protocol. On the other hand, whenever two channels (or wrap-
pers) encapsulating incompatible protocols need to be connected, as shown
in Figure 2(c), an interface component or transducer has to be inserted into

10

(a)

(b)

(c)

A B
C

A B

W
A

A

TA

A T

WC

IP

IP

IP

IP

Figure 2. Channel inlining: (a) two synthesizable behaviors connected by a channel, (b)
synthesizable behavior connected to an IP, (c) a synthesizable behavior connected to an
IP through an incompatible channel.

which the channel functions will be inlined during communication re�ne-
ment.

Next, we give a detailed description of each re�nement task in the syn-
thesis
ow of the codesign process.

3.2. SPECIFICATION

The synthesis
ow begins with a speci�cation of the system being designed.
An executable speci�cation in a formal description language describes the
functionality of the system along with performance, cost and other con-
straints but without premature allusions to implementation details. The
speci�cation should be as close to the computational model of the system

11

as possible.

The source code can be executed with the help of a simulator and a set of
test vectors, and errors can be located with debugger tools. This step veri�es
the algorithms and the functionality of the system. Obviously, it is easier
and more e�cient to verify the correctness of the algorithms at a higher
abstraction level than at a lower level which includes the implementation
details as well.

In our system, we use the SpecC language, described in detail in Sec-
tion 4.3, to capture the high-level speci�cation of the system under design.
SpecC [39] is a superset of C [37] and provides special language constructs
for modelling concurrency, state transitions, structural and behavioral hi-
erarchy, exception handling, timing, communication and synchronization.
This is in contrast to popular hardware description languages, like VHDL
[17] and Verilog [34], which do not include explicit constructs for state tran-
sitions, communication, etc., and standard programming languages, like
C/C++ [33] and Java [1], that cannot directly model timing, concurrency,
structural hierarchy, and state transitions. Thus, SpecC is easily used for
specifying FSMD or PSM computational models [11].

In addition, SpecC is synthesizable and aids the designer in developing
\good" designs by providing the above listed features as language constructs
rather than just supporting them in some contrived way. Another impor-
tant feature of SpecC is its emphasis on separation of communication and
computation at higher levels of abstraction. This dichotomy is essential to
support plug-and-play of IPs. SpecC achieves this by using abstract func-
tion calls in the port interfaces of behaviors. The function calls are them-
selves implemented by communication channels [39]. The system behavior
includes only the computation portion and uses a model similar to remote
procedure calls (RPC) for communication. For implementation, the actual
communication methods are resolved and inlined during the re�nement
process.

In the SpecC Design Environment, the SpecC Editor is used to cap-
ture the speci�cation model of the system under design. The editor helps
in capturing and visualizing the behavioral and structural hierarchy in the
speci�cation. It also supports the speci�cation of the state transition ta-
bles, component connectivity and scope of variables and channels with a
graphical user interface. Only the behavior of leaf nodes is programmed by
use of a standard text editor.

We illustrate our codesign methodology with a simple example. The
speci�cation model is shown in Figure 3 using the PSM notation. The
top level behavior B0 consists of three sequential behaviors: B1, B2 and
B3. The system starts execution with behavior B1. When B1 completes, the
system transitions to B2. Finally, the system transitions to B3 on behavioral

12

B0

B1

B2

B3

B4

B5

B6

B7

syncdata

data, sync

Figure 3. Speci�cation model

completion of B2. Behavior B2 again is a compound behavior, composed of
two concurrent behaviors: B4 and B5. Behavior B4 is a leaf behavior like B1
and B3. On the other hand, B5 is hierarchical and consists of two sequential
behaviors: B6 and B7.

The leaf behaviors B6 and B4 communicate using global variables. First,
B6 synchronizes its execution with B4 by using the sync event, as shown
with the dashed arrow in Figure 3. Then, data is exchanged via the (possibly
complex) variable data.

It should be emphasized that in the speci�cation, the communication
over shared global variables does not imply anything about the way it
will be implemented later. For the implementation, this communication
scheme could be transformed into a remote procedure call mechanism, or
actually a shared memory model. Also, please note that we use the global
variable communication to make the example simple. For a larger system,
the designer is free to use, for example, communication via channels (as
described in Section 4.3) in the speci�cation model as well.

3.3. ARCHITECTURE EXPLORATION

The �rst major re�nement step in the synthesis
ow is the task of archi-
tecture exploration which includes allocation, partitioning and scheduling.

Allocation is usually done manually by the designer and basically means
the selection of components from a library. In general, three types of compo-
nents have to be selected from the component library: processing elements,
called PEs (where a PE can be a standard processor or custom hardware),
memories and busses. Of course, the component library can include IP
components and already designed parts which can be reused.

13

The set of selected and interconnected components is called the system
target architecture. The task of partitioning, then, is to map the system
speci�cation onto this architecture. In particular, behaviors are mapped to
PEs, variables are mapped to memories, and channels are mapped to busses.
In the SpecC system, the partitioned model, like the initial speci�cation, is
modeled in SpecC.

In order to perform partitioning, accurate information about the design
has to be obtained before. This is the task of estimation. Estimation tools
determine design metrics such as performance (execution time) and memory
requirements (code and data size) for each part of the speci�cation with
respect to the allocated components. Estimation can be performed either
statically by analyzing the speci�cation or dynamically by execution and
pro�ling of the design description. Obviously estimation has to support
both software and hardware components. The estimation results usually are
stored in a table which lists each obtained design metric for each allocated
component.

The table of estimation results can then be used by the designer (or an
automated partitioner) to tradeo� hardware vs. software implementation.
It is also used to determine whether each partition meets the design con-
straints and to optimize the partitions with respect to an objective function.

In our methodology, architecture exploration is separated in three steps,
namely behavior partitioning, channel partitioning and variable partition-
ing, which can be executed in any order.

3.3.1. Behavior partitioning

First, behaviors are partitioned among the allocated processing elements.
This decides which behavior is going to be executed on which PE. Thus,
it separates behaviors to be implemented in software from behaviors to be
implemented in hardware.

For example, given an allocation of two processing elements PE0 and PE1

(e.g. a processor and an ASIC), the speci�cation model from Figure 3 can
be partitioned as shown in Figure 4. Here, the behaviors B0, B2, B3, B5, B6
and B7 are mapped to PE0 (executing in software), and the behaviors B1 and
B4 are assigned to PE1 (implemented in hardware). In order to maintain the
execution semantics of the speci�cation, two additional behaviors, B1 ctrl

and B4 ctrl, are inserted which synchronize the execution with B1 and B4,
respectively. Also, for this synchronization, four global variables, B1 start,
B1 done, B4 start and B4 done, are introduced, as shown in Figure 4.

The assignment of behaviors to a sequential PE, for example a processor,
requires scheduling to be performed. As a preparation step, the approximate
execution time for each leaf behavior, which was already obtained from

14

PE0 PE1

B0

B2
B5

B6

B7

B3

B4_ctrl

B1

B4

Top
B1_start B1_done B4_start B4_done

B1_ctrl
B1_start

B1_done

B4_start

B4_done

syncdata

data, sync

Figure 4. Intermediate model re
ecting behavior partitioning

estimators for the partitioning phase, is annotated with the behaviors, so
that it can be used during scheduling.

The task of scheduling determines the order of execution for the behav-
iors that execute on a processor. The scheduler ensures that the schedule
does not violate any dependencies imposed by the speci�cation and tries
to optimize objectives speci�ed by the designer. After a schedule is deter-
mined, the design model is re�ned so that it re
ects the sequential execution
of the behaviors.

In general, scheduling can be either time-constrained or resource-
constrained. For time-constrained scheduling, the designer supplies a set of
timing constraints. Each timing constraint speci�es the minimum and max-
imum time between two behaviors. The scheduler therefore has to compute
a schedule, in which no behavior violates any of the timing constraints,
and can minimize the number of resources used. On the other hand, for
resource-constrained scheduling, the designer speci�es constraints on the
available resources. The scheduler then creates a schedule while optimizing
execution time, such that all the subtasks are completed in the shortest
time possible given the restrictions on the resource usage. In this method-
ology, resource-constraint scheduling is used, since the available resources
are already determined during allocation.

Scheduling may be done statically or dynamically. In static scheduling,
each behavior is executed according to a �xed schedule. The scheduler com-
putes the best schedule at design time and the schedule does not change at

15

B1

B3

B4

B6

B7

sync

PE0 PE1

Top

B1_crtl

B4_crtl

B1_start

B1_done

B4_start

B4_done

B1_start B1_done B4_start B4_donedata

data, sync

(a)

(b)

syncTop B6_start B3_start

B3

B6

B7

PE0

B1

B4

PE1

B6_start

B3_start

data

data, sync

Figure 5. Intermediate model after scheduling: (a) non-optimized, (b) optimized.

run time. On the other hand, in dynamic scheduling, the execution sequence
of the subtasks is determined at run-time. An embedded operating system
maintains a pool of behaviors ready to be executed. A behavior becomes
ready for execution when all its predecessor behaviors have been completed
and all inputs are available. With a non-preemptive scheduler, a behavior is
selected from the ready list as soon as the current behavior �nishes, whereas
for a scheduler with preemption, a running behavior may be interrupted in
its computation when another behavior with higher priority becomes ready
to execute.

After a schedule is created, the scheduler moves the leaf behaviors into
the scheduled order and also adds necessary synchronization signals and
constructs to the behaviors. This re�ned model then re
ects the tasks per-
formed for behavior partitioning including scheduling. Since, in the SpecC
system, all design models are captured with the same language, the sched-
uled model is also speci�ed in SpecC.

16

We illustrate the scheduling process with the intermediate model after
behavior partitioning, as shown before in Figure 4. Figure 5 shows how
scheduling is performed with the example. As shown in Figure 5(a), the
behavioral hierarchy inside PE1 is
attened and its leaf behaviors are se-
quentialized. For PE2, the behavior changes from (potentially) concurrent
to sequential execution.

Due to scheduling, some explicit synchronization can become redundant.
Figure 5(b) shows the optimized version of the example. Here, the behaviors
B1 ctrl and B4 ctrl), which were introduced in the partitioning stage, are
removed, together with their synchronization signals.

(a)

(b)

syncTop B6_start B3_start

PE0

B3

B6

B7

PE1

B1

B4

data

PE1PE0
data

sync

B6_start

B3_start

Figure 6. Model after behavior partitioning

After scheduling is done, the task of PE allocation and behavior parti-
tioning is complete. Figure 6 shows the resulting design. In the lower part,
it also shows the example from a structural view which emphasizes on the
communication structure. This representation helps to explain the insertion
of communication channels and memory behaviors which is described next.

17

3.3.2. Channel partitioning
Up to this point, communication between the allocated PEs is still per-
formed via shared variables. In order to re�ne this abstract communication,
these variables are �rst grouped and encapsulated in virtual channels.

In other words, in order to de�ne the communication structure of the
system architecture, channels are allocated into which the variables are
partitioned. Later, during communication synthesis, these virtual channels
will be re�ned to system busses.

(a)

(b)

Top

PE0 PE1

B7

B3

B1
B6

B4

CH0 data sync B6_start B3_start

PE0 PE1

CH0

Figure 7. Model after channel partitioning

In our example, channel partitioning is performed as shown in Figure 7.
Here, due to the simplicity of the example, channel partitioning is easy.
Since we have to connect only two PEs, we allocate one channel CH0 and
group all the variables into this channel, as shown in Figure 7(a).

Please note that in Figure 7, the leaf behaviors of PE0 and PE1, which
formerly could access the shared variables directly, are transformed in order
to use the protocols supplied by the channel. For example, the behavior B4,
formerly containing statements like x = data, is now transformed into one
which uses statements like x = CH0.read data() instead.

18

3.3.3. Variable partitioning

The last partitioning step is the allocation of memory components and the
mapping of variables onto these memories. This is called variable partition-
ing.

(a)

(b)

Top

PE0 PE1

B7

B3

B1
B6

B4

data
sync

M0

CH0 B6_start B3_start

PE0 PE1

M0

CH0

Figure 8. Model after variable partitioning

Variable partitioning essentially decides whether a variable used for
communication is stored in a memory outside the PEs or is directly sent by
use of message passing. It also assigns variables to be stored in a memory
to one of the allocated memory behaviors.

In our example, a single memory behavior M0 is allocated and inserted
in the architecture, as shown in Figure 8. The four variables, that were for-
merly kept locally in the channel CH0, are partitioned into two groups. The
possibly complex variable data and sync are assigned to the memory M0,
whereas message passing is used for the synchronization variables B6 start

and B3 start, as illustrated in Figure 8(a).
Please note that the channel CH0 is modi�ed only internally in order

to accommodate the communication to the inserted memory. Its interfaces

19

to the PEs and the connected PEs themselves are not a�ected by this
re�nement step and, thus, need not be modi�ed.

After variable partitioning, the task of architecture exploration is com-
plete. However, it should be emphasized that in the SpecC environment,
the sequence of allocation and partitioning tasks is determined by the de-
signer and usually contains several iterations. The designer repeats these
steps based on his experience and the performance metrics obtained with
the estimation tools. This designer-driven design space exploration is easily
possible in the SpecC Environment, because all parts of the system and all
models are captured in the same language. This is in contrast to other en-
vironments where, for example, translating C code to VHDL and vice versa
must be performed and veri�ed. This design space exploration helps to ob-
tain a \good" system architecture and �nally an optimized implementation
of the design with good performance and less costs.

3.4. COMMUNICATION SYNTHESIS

The purpose of communication synthesis is to resolve the abstract commu-
nication behavior in the virtual architecture through a series of re�nements
that lead to an implementation consisting of processing elements, busses
and memories. During this process, new processing elements may be intro-
duced in the form of transducers which serve to bridge the gap between
di�ering protocols.

In our methodology, communication synthesis consists of three tasks,
namely protocol selection, interface synthesis and protocol inlining.

3.4.1. Protocol selection

The designer selects the appropriate communication medium for mapping
the abstract channels from a library of bus/protocol schemes during the
task of protocol selection. Further, the designer has the option of includ-
ing custom protocols or customizing available protocols to suit the current
application. Protocol speci�cations contained in the library are written in
terms of channel primitives of the SpecC language and supply common
interface function calls to facilitate reuse. For example, a given VME bus
description will supply send() and receive() as would the PCI speci�-
cation. In this way, we can easily interchange protocols (as channels) and
perform some simulation to obtain performance estimates. Later, the re-
mote procedure calls (RPCs) to the channels will be replaced by local I/O
instructions for software, or additional behavior to be synthesized for hard-
ware entities.

The virtual channels in the design model after architecture exploration
can now be re�ned into hierarchical channels which are implemented in

20

(a)

(b)

Top

PE0 PE1

B7

B3

B1
B6

B4

data
sync

M0

CH0 BUS

PE0 PE1

M0

CH0
BUS

Figure 9. Model after bus allocation

terms of selected lower level channels. This process can be either manual
or automatic. The cost of manual re�nement is still lower than in the tra-
ditional way, since the user does not have to bother about issues such as
detailed timing, thanks to the abstraction provided by the channel con-
struct. Automatic re�nement will generate code which assembles high level
messages from low level messages, or vice versa, that can be delivered by
the lower level channel.

In our example, this re�nement is shown in Figure 9. A single bus chan-
nel BUS, e. g. a PCI bus, is selected in order to carry out the communication
between the three behaviors. The methods of the virtual channel CH0 are
re�ned to use the methods of the bus protocol that is encapsulated in the
channel BUS. It should be noted, that the channel hierarchy, as shown in
Figure 9(b), directly re
ects the layers of the communication between the
PEs.

21

3.4.2. Protocol inlining

During the task of protocol inlining, methods that are located in the chan-
nels, are moved into the connected behaviors if these behaviors were as-
signed to a synthesizable component. Thus, the behavior now includes the
communication functionality also. Its port interfaces are composed of bit-
level signals as compared to the abstract function calls before inlining was
done. The \communication behavior" can then be synthesized/compiled
with the rest of the component's functional (computational) behavior.

It should be noted that, since all information necessary is available in
the design model, protocol inlining is a fully automatic task that requires
no designer interaction.

(a)

(b)

Top

PE0 PE1

B7

B3

B1
B6

B4

data
sync

wrrd dt ad

M0

PE0 PE1

M0

Figure 10. Model after inlining in synthesizable behaviors

In case, in our example, PE0, PE1 and M0 are all synthesizable behaviors,
the methods of both channels CH0 and BUS can be inlined into the behaviors,
as shown in Figure 10. After this protocol inlining, the channel variables
rd, wr, dt and ad are exposed and serve as interconnection wires between
the accordingly created ports of the components.

22

3.4.3. Transducer synthesis
On the other hand, the designer may decide to use a non-synthesizable IP
to implement a behavior in the system architecture. Such an IP can be
selected from the component library, which contains both behavior models
and wrappers which encapsulate the proprietary protocols of communica-
tion with the IPs. In the design model, a IP is introduced by creation of
a transducer which bridges the gap between the IP component and the
channels which the original behavior is connected to. Again, such a trans-
ducer can be easily created manually thanks to the high level nature of the
wrapper and the connected channel.

It should be emphasized that the replacement of synthesizable behaviors
with IP components is not limited to the communication synthesis stage.
In fact, it is possible at any time during architecture exploration and com-
munication synthesis. The key to this feature is the encapsulation of IP
components in wrappers.

(b)

(a)

T0
IP0

T1

IP1

MEM

T2

IP2

CH0
BUS

Top

IP0 IP1 IP2

T0 T1 T2

CH0 BUS

Figure 11. Alternative model with IPs

In our example, Figure 11 shows the design model where the synthesiz-

23

able behaviors PE0, PE1 and M0 are all replaced with non-synthesizable IP
components encapsulated in wrappers and connected to the channel CH0
via the inserted transducers T0, T1 and T2.

(b)

(a)

T0

IP0

T1

IP1

T2

IP2

Top

IP1 IP2

T0 T1 T2

wrrd

IP0

dt ad

Figure 12. Model with IPs after inlining

Finally, Figure 12 shows this new model with the inserted IP compo-
nents after protocol inlining is performed. Here, the methods from all the
channels and wrappers, are inlined into the transducers which communicate
with the IPs via proprietary busses. Again, the bus variables rd, wr, dt and
ad are exposed and serve as interconnection wires between the transducers.

3.5. HAND-OFF

Communication synthesis, as the last step in the synthesis
ow, generates
the hand-o� model for our system. This model is then further re�ned using
traditional back-end tools as shown in Figure 1.

The software portion of the communication (hand-o�) model consists
of code in C for each of the allocated processors in the target architecture.

24

Retargetable compilers or special compilers for each of the di�erent proces-
sors can be used to compile the C code. The hardware portion of the model
consists of synthesizable, behavioral models in C or VHDL. The behav-
ioral models can be synthesized using standard high-level synthesis (HLS)
tools. The interfaces between hardware and software components are also
separated in software (device drivers) and hardware parts (transducers).
Thus, this is just a special case of hardware and software parts and can be
handled in the same way.

Finally, this design process generates the implementation model consist-
ing of assembly code executing on the di�erent processors and a register
transfer level (RTL) or gate-level netlist of the hardware components. Thus,
the implementation model is ready for manufacturing.

4. The Language

With this generic methodology in mind, Section 4.1 discusses the require-
ments and goals for system description languages and Section 4.2 compares
traditional languages with these requirements. Since none of the languages
supports all concepts a new modelling language called SpecC is proposed
and presented in Section 4.3.

4.1. MODELLING LANGUAGE REQUIREMENTS

For the codesign methodology presented above, it is desirable that one
language is used for all models at all stages. Such a methodology is called
homogeneous in contrast to heterogeneous approaches [19, 31], where a
system is speci�ed in one language and then is transformed into another,
or is represented by a mixture of several languages at the same time.

This homogeneous methodology does not su�er from simulator interfac-
ing problems or cumbersome translations between languages with di�erent
semantics. Instead one set of tools can be used for all models and synthesis
tasks are merely transformations from one program into a more detailed
one using the same language. This is also important for reuse, because
design models in the library can be used in the system without modi�ca-
tion (\plug-and-play") and a new design can be used directly as a library
component.

System design places unique requirements on the speci�cation and mod-
elling language being used. In particular the language must be

1. executable,
2. modular and
3. complete.

25

1. Executability of the language is of crucial importance for simulation.
The system speci�cation must be validated to assure that exactly the
intended functionality is captured. Simulation is also necessary for the
intermediate design models whose functionality must be equivalent to
the behavior of the model before the re�nement.

2. Modularity is required to clearly separate functionality from commu-
nication, which is necessary in a model at a high level of abstrac-
tion. It also enables the decomposition of a system into a hierarchical
network of components. Behavioral hierarchy is used to decompose a
system's behavior into sequential or concurrent subbehaviors, whereas
structural hierarchy decomposes a system into a set of interconnected
components.
Modularity is also required to support design reuse and the incorpo-
ration of intellectual property. During re�nement, modularity helps to
keep changes in the system description local so that other parts of the
design are not a�ected. For example, communication re�nement should
only replace abstract channels with more detailed ones without mod-
ifying the components using these channels. The locality of changes
makes re�nement tools simpler and the generated results more under-
standable.

3. Completeness is obviously a requirement. A system language must
cover all concepts commonly found in embedded systems. In addition
to (a) behavioral and (b) structural hierarchy this includes (c) concur-
rency, (d) synchronization, (e) exception handling and (f) timing, as
discussed in detail in [11]. For explicit modelling of Mealy and Moore
type �nite state machines, (g) state transitions have to be supported.
Furthermore, it is desirable that these concepts are organized orthogo-
nally (independent from each other) so that the language can be min-
imal. In addition to these requirements, the language should be easy
to understand and easy to learn.

4.2. TRADITIONAL LANGUAGES

Most traditional languages lack one or more of the requirements discussed
in Section 4.1 and therefore cannot be used for system modelling without
problems. Figure 13 lists examples of current languages [34, 17, 15, 29, 37,
1, 39] and shows which requirements they support and which are missing.

Because the traditional languages are not su�cient, a new language
must be developed, either from scratch or as an extension of an existing
language. The SpecC language [6] represents the latter approach as it is
built on top of C.

26

Behavioral
Hierarchy

Structural
Hierarchy

Concurrency

Synchronization

Exception
Handling

Timing

C JavaVHDLVerilog SpecCharts SpecCStatecharts

State
Transitions

not supported partly supported fully supported

Figure 13. Language Comparison

4.3. THE SPECC LANGUAGE

This section introduces the SpecC language and shows how SpecC covers
all the requirements discussed before. SpecC is a superset of ANSI-C. C
was selected because of its high acceptance in software development and its
large library of already existing code.

A SpecC program can be executed after compilation with the SpecC
compiler which �rst generates an intermediate C++ model of the program
that is then compiled by a standard compiler for execution on the host
machine.

Modularity, providing structural and behavioral hierarchy, and the spe-
cial constructs making SpecC complete are described next.

4.4. STRUCTURAL HIERARCHY

Semantically, the functionality of a system is captured as a a hierarchical
network of behaviors interconnected by hierarchical channels. Syntactically,
a SpecC program consists of a set of behavior, channel and interface decla-
rations.

A behavior is a class consisting of a set of ports, a set of component
instantiations, a set of private variables and functions, and a public main
function. Through its ports, a behavior can be connected to other behaviors
or channels in order to communicate. A behavior is called a composite
behavior if it contains instantiations of child behaviors. Otherwise it is

27

c1

c2

b1 b2

B
p1 p2

p1 p2 p3

L R

p1 p2 p3

Figure 14. Basic Structure of a SpecC Model

called a leaf behavior. The functionality of a behavior is speci�ed by its
functions starting with the main function.

A channel is a class that encapsulates communication. It consists of a set
of variables and functions, called methods, which de�ne a communication
protocol. A channel can be hierarchical, for example subchannels can be
used to specify lower level communication.

An interface represents a
exible link between behaviors and channels.
It consists of declarations of communication methods which will be de�ned
in a channel.

For example, the following SpecC description speci�es the system shown
in Figure 14:

interface L { void Write(int x); };
interface R { int Read (void); };

channel C implements L, R
{
int Data; bool Valid;

void Write(int x)
{ Data = x; Valid = true; }

int Read(void)
{ while(! Valid) waitfor(10);
return(Data); }

};

behavior B1(in int p1, L p2, in int p3)
{
void main(void)

{ /* ... */ p2.Write(p1); }
};

28

behavior B2(out int p1, R p2, out int p3)
{
void main(void)

{ /* ... */ p3 = p2.Read(); }
};

behavior B(in int p1, out int p2)
{
int c1;
C c2;
B1 b1(p1, c2, c1);
B2 b2(c1, c2, p2);

void main(void)
{ par { b1.main(); b2.main(); } }

};

The example system speci�es a behavior B consisting of two subbehav-
iors b1 and b2 which execute in parallel and communicate via integer c1
and channel c2. Thus structural hierarchy is speci�ed by the tree of child
behavior instantiations and the interconnection of their ports via variables
and channels. Behaviors de�ne functionality, and the time of communica-
tion, whereas channels de�ne how the communication is performed.

4.5. BEHAVIORAL HIERARCHY

The composition of child behaviors in time is called behavioral hierarchy.
Child behaviors can either be executed sequentially or concurrently. Se-
quential execution can be speci�ed by standard imperative statements or
as a �nite state machine with explicit state transitions. Concurrent execu-
tion is either parallel or pipelined.

For example, we can specify a behavior being the sequential composition
of the child behaviors using sequential statements, as shown in Figure 15(a),
where X �nishes when the last behavior C �nishes. Second, we can use the
parallel composition using the par construct, as shown in Figure 15(b),
where X �nishes when all its child behaviors A, B and C are �nished. Also,
pipelined composition is supported using the pipe construct, as shown in
Figure 15(c), where X starts again when the slowest behavior �nishes.

Syntactically, behavioral hierarchy is speci�ed in the main function of a
composite behavior. For example, with a, b, and c being instantiated child
behaviors, the sequence of calls

a.main(); b.main(); c.main();

simply speci�es sequential execution of a, b, c. The par and pipe statements
specify concurrent execution. For example,

29

A

B

C

X

A

B

C

X

Sequential Concurrent Pipelined

(b) (c)

A

B

C

X

(a)

Figure 15. Behavioral Hierarchy

par { a.main(); b.main(); c.main(); }

executes a, b, c in parallel, whereas

pipe { a.main(); b.main(); c.main(); }

speci�es execution in a pipelined fashion (a in the �rst iteration, a and b

in the second, . . .). The par statement completes when its last statement
�nishes, the pipe statement implicitly speci�es an endless loop.

SpecC also supports explicit speci�cation of state transitions. For ex-
ample

fsm { a: { if (x > 0) break;
if (x <= 0) goto b; }

b: { if (y > 0) goto a;
if (y == 0) goto b; }

c: { break; }
}

speci�es the state transitions of a �nite state machine model with three
behaviors a, b, c. Implicitly the �rst label in the fsm statement speci�es
the initial state (a). The FSM exits when a break statement is executed.

In summary, behavioral hierarchy is captured by the tree of function
calls to the behavior main methods.

4.6. SYNCHRONIZATION

Concurrent behaviors usually must be synchronized in order to be coop-
erative. In SpecC, a built-in type event serves as the basic unit of syn-
chronization. Events can only be used as arguments to wait and notify

30

statements (or with exceptions as explained in Section 4.7). A wait state-
ment suspends the current behavior from execution until one of the speci�ed
events is noti�ed by another behavior. The notify statement triggers all
speci�ed events so that all behaviors waiting on one of these events can
resume their execution.

(b)(a)

IL
ef

t

IR
ight

valid

storage

wakeup

interface ILeft {
 void write(int val);
 };
interface IRight {
 int read(void);
 };

channel CShared(void)
 implements ILeft, IRight {
 int storage;
 bool valid;
 event wakeup;
 void write(int val) {
 storage = val;
 valid = true;
 notify(wakeup); }
 int read(void) {
 while (!valid)
 wait(wakeup);
 valid = false;
 return storage; } };

Figure 16. Example for simple Shared Memory Channel

For example, Figure 16 shows a simple shared memory channel CShared
that, in addition to a valid bit, uses the event wakeup to allow only syn-
chronized accesses to its storage. With this channel, it is assured that a
consumer will always get valid data.

4.7. EXCEPTION HANDLING

SpecC provides support for two types of exceptions, namely abortion (or
trap) and interrupt, as shown in Figure 17.

The try-trap construct, illustrated in Figure 17(a), aborts behavior
x immediately when one of the events e1, e2 occurs. The execution of
behavior x (and all its child behaviors) is terminated without completing
its computation and control is transferred to behavior y in case of e1, to
behavior z in case of e2. This type of exception usually is used to model
the reset of a system.

On the other hand, the try-interrupt construct, as shown in Fig-
ure 17(b), can be used to model interrupts. Here again, execution of be-
havior x is stopped immediately for events e1 and e2, and behavior y or
z, respectively, is started to service the interrupt. After completion of in-
terrupt handlers y and z control is transferred back to behavior x and
execution is resumed right at the point where it was stopped.

For both types of exceptions, in case two or more events happen at the
same time, priority is given to the �rst listed event.

31

void main(void) {
 try { x.main(); }
 interrupt(e1) { y.main(); }
 interrupt(e2) { z.main(); }
 }

X

Y Z

e1 e2

e1 e2

X

Y Z

e1 e2

e1 e2

(a) (b)

void main(void) {
 try { x.main(); }
 trap(e1) { y.main(); }
 trap(e2) { z.main(); }
 }

Figure 17. Exception handling: (a) abortion, (b) interrupt.

It should be noted that interrupt and abortion type exceptions can be
mixed in SpecC. For example, the following code speci�es a behavior B with
a resetable child behavior b1 and an interrupt handler b2.

behavior B (in event IRQ, in event RST)
{
B_sub b1, b2;

void main(void)
{ try { b1.main(); }
interrupt IRQ { b2.main(); }
trap RST { b1.main(); }
}

};

4.8. TIMING

In the design of embedded systems the notion of real time is an important
issue. However, in traditional imperative languages such as C, only the
ordering among statements is speci�ed, the exact information on when these
statements are executed, is irrelevant. While these languages are suitable for
specifying functionality, they are insu�cient in modeling embedded systems
because of the lack of timing information. Hardware description languages
such as VHDL overcome this problem by introducing the notion of time:
statements are executed at discrete points in time and their execution delay
is zero. While VHDL gives an exact de�nition of timing for each statement,
such a treatment often leads to over-speci�cation.

32

One obvious over-speci�cation is the case when VHDL is used to specify
functional behavior. The timing of functional behaviors is unknown until
they are synthesized. The assumption of zero execution time is too opti-
mistic and there are chances to miss design errors during speci�cation val-
idation. Other cases of over-speci�cation are timing constraints and timing
delays, where events have to happen, or, are guaranteed to happen in a
time range, instead of at a �xed point in time, as restricted by VHDL.

SpecC overcomes this problem by di�erentiating between two types of
timing information, exact timing and timing ranges. Exact timing is used
when the timing is known, for example the execution delay of an already
synthesized component. This is speci�ed with a waitfor statement which
suspends the execution of the current behavior for a speci�ed time. The time
is measured in real time units such as nanoseconds. Simulation time is only
increased by waitfor statements, other statements are always executed in
zero time.

Timing ranges are used to specify timing constraints at the speci�cation
level. SpecC supports timing information in terms of timing diagrams with
minimum and maximum time constraints. Timing ranges are speci�ed as
4-tuples T = hl1; l2;min;maxi with the range statement. For example,

range(l1; l2; 10; 20);

speci�es at least 10 but not more than 20 time units spent between labels
l1 and l2.

Consider, for example, the timing diagram of the read protocol for a
static RAM, as shown in Figure 18(a). In order to read a word from the
SRAM, the address of the data is supplied at the address port and the read
operation is selected by assigning 1 to the read and 0 to the write port.
The selected word then can be accessed at the data port. The diagram
in Figure 18(a) explicitly speci�es all timing constraints that have to be
satis�ed during this read access. These constraints are speci�ed as arcs
between pairs of events annotated with x/y, where x speci�es the minimum
and y the maximum time between the value changes of the signals.

Figure 18(b) shows the SpecC source code of a SRAM channel C SRAM,
which instantiates the behavior B SRAM, and the signals, which are mapped
to the ports of the SRAM. Access to the memory is provided by the
read word method, which encapsulates the read protocol explained above
(due to space constraints write access is ignored).

Figure 18(c) shows the source code of the read word method at the
speci�cation level. The do-timing construct used here e�ectively describes
all information contained in the timing diagram. The �rst part of the con-
struct lists all the events of the diagram, which are speci�ed as a label and
its associated piece of code, which describes the changes of signal values.

33

(a)

a

t1 t2 t4 t5 t6

d

t7

10/200/

10/20 10/20

5/100/0/

t3

in Read

in Write

inout Data

in Address

(b) (c) (d)

channel C_SRAM(void)
 implements I_SRAM {

interface I_SRAM {
 void read_word(bit[15:0] a,
 bit[15:0] *d);
 };

behavior B_SRAM(
 in bit[15:0] addr,
 inout bit[15:0] data,
 in bool rd,
 in bool wr) {
 void main(void) { ... }
 };

bit[15:0] Address, Data;
bool Read, Write;
B_SRAM sram(
 Address, Data,
 Read, Write);

 void read_word(bit[15:0] a,
 bit[15:0] *d) { ... }
 };

void read_word(
 bit[15:0] a, bit[15:0] *d) {
 do {
 t1 : { Address = a; }
 t2 : { Read = 1; }
 t3 : { }
 t4 : { *d = Data; }
 t5 : { Address = 0; }
 t6 : { Read = 0; }
 t7 : { break; }
 }
 timing {
 range(t1; t2; 0;);
 range(t1; t3; 10; 20);
 range(t2; t3; 10; 20);
 range(t3; t4; 0;);
 range(t4; t5; 0;);
 range(t5; t7; 10; 20);
 range(t6; t7; 5; 10);
 }
 }

void read_word(
 bit[15:0] a, bit[15:0] *d) {
 Address = a;
 Read = 1;
 waitfor(10);
 *d = Data;
 Address = 0;
 Read = 0;
 waitfor(10);
 }

Figure 18. Timing Example: SRAM Read Protocol: (a) timing diagram, (b) SRAM
channel, (c) speci�cation level timing, (d) implementation level timing.

The second part is a list of range statements, which specify the timing
constraints between the events, as explained above.

This style of timing description is used at the speci�cation level. In order
to get an executable model of the protocol, scheduling has to be performed
for each do-timing statement. Figure 18(d) shows the implementation of
the read word method after an ASAP scheduling is performed. All timing
constraints are replaced by delays, which are speci�ed using the waitfor

construct.

34

4.9. ADDITIONAL FEATURES

In addition to the concepts explained in the last sections, the SpecC lan-
guage supports further constructs that are necessary for system-level de-
sign. First, SpecC provides explicit support for Boolean (bool) and bitvector
(bit[:]) types, in addition to all types provided by ANSI-C.

Also, constructs for binary import of pre-compiled SpecC code and sup-
port of persistent annotation for objects in the language are provided. Since
these constructs are beyond the scope of this paper, please refer to [6] for
further details.

In conclusion, the Sections 4.4 to 4.8 show that the SpecC language
satis�es the requirements of executability, modularity and completeness, as
discussed in Section 4.1.

It has to be emphasized, that the advantage of SpecC lies in its orthogo-
nal constructs which implement orthogonal concepts. All SpecC constructs
are independent of each other, unlike for example signals in VHDL, which
are used for synchronization, communication and timing. The SpecC lan-
guage covers the complete set of system concepts with a minimal set of
constructs. Therefore it is easy to learn and easy to understand.

5. Reuse and IP

This section takes a closer look at how well the SpecC language and the
SpecC methodology supports the reuse and integration of intellectual prop-
erty.

Reuse essentially deals with the check-in (\Design for Reuse") and
check-out (\Reuse of Designs") of components in the design library. Be-
cause all components in the design library are speci�ed using the same
SpecC language, reuse becomes easy. Also, the SpecC language encourages
the speci�cation of modular components which are decoupled from each
other and therefore can be used independently.

In particular, a SpecC design library consists of behaviors, channels, and
interfaces. A new design can be developed from scratch and/or composed
from existing parts by selecting components from this library. As described
earlier, behaviors represent functional units such as hardware components,
and channels encapsulate communication such as bus protocols and bus me-
dia. Thus computation and communication are clearly separated. Interfaces
connect behaviors and channels, as they declare what kind of communica-
tion is performed. Channels de�ne how the communication is performed by
implementing the interface.

A behavior's port of type interface can be mapped to any channel that
implements that interface. Thus channels delivering the same type of com-
munication can be exchanged without modi�cation of the connected be-

35

haviors, for example a PCI bus can be easily replaced with a VME bus
(\plug-and-play"). The same applies to behaviors. A behavior can be re-
placed with another behavior without a�ecting the channels as long as both
implement the same functionality and have compatible ports.

For integration of intellectual property, three IP con�gurations are pos-
sible with SpecC. First, an IP vendor can o�er design speci�cations which
still need to be synthesized. This is called Soft-IP and is useful for stan-
dard busses and bus protocols for example. In this case the IP consists of
a SpecC interface declaration and a channel de�nition.

On the other hand, Hard-IP integrates already synthesized components
such as cores. Here, in addition to the actual core (layout), the IP vendor
delivers a SpecC behavior declaration which only speci�es the ports of
the component, and an object or library �le that can be linked to the
executable SpecC code for simulation. Note, in this case the IP vendor
keeps the implementation of the core secret.

As a third con�guration, a combination of Soft-IP and Hard-IP is pos-
sible, where the IP consists of a wrapper (a SpecC channel de�nition with
interface) in addition to the Hard-IP parts. This is exactly the situation as
described in Figure 2(b), where the wrapper supplies higher-level functions
dealing with the communication to the internal component.

6. The System

We have developed the SpecC Environment as shown in Figure 19. The de-
sign is speci�ed with the help of the SpecC Editor which provides a graphical
user interface (GUI). The SpecC Editor is also used for displaying the sys-
tem models at di�erent design stages and allows the designer to execute
transformations on the models in an interactive or automatic manner. Dif-
ferent aspects of the design model are displayed in separate windows. For
example, the structural hierarchy of the system under design is displayed in
a hierarchy browser, whereas the mapping of ports and variables is shown
in a connectivity window. All windows support interactive modi�cation of
the design.

In analogy to the methodology described in Section 3, the SpecC syn-
thesis system consists of a set of tools, such as the Estimator, the Allocator
and Partitioner, the Scheduler, and the Communication Synthesizer, which
operate on the SIR, the SpecC Intermediate Representation. A SIR �le
can be obtained initially by compiling SpecC source code using the SpecC
Compiler. It contains the symbol table and the abstract syntax tree of the
corresponding SpecC code. It also contains explicit information such as the
type of each expression which is implicit in the source.

The SpecC compiler can also automatically generate simulation code

36

Debugger

SpecC Compiler

C++ Compiler

SpecC
Code

SIR

Estimator

Scheduler

SpecC Editor

Type
LibraryLibrary

Simulator GUI
Library

HW/SW Code
Generator

Backend

IP

C++
Code

Executable

Allocator
Partitioner

Communication
Synthesizer

Figure 19. The SpecC Environment (SCE)

in the form of C++, which can then be compiled and linked with a set of
prede�ned libraries in order to generate an executable.

The Simulation Library implements a discrete event simulator by main-
taining a time wheel which schedules concurrent threads. The Type Library
provides an implementation of data types such as bitvector and multi-
valued logic. The GUI Library helps to visualize signal waveforms and sup-
ports graphical entry of stimuli.

A standard source-level debugger can be used to debug the executable.
The HW/SW Code Generator exports the implementation level SIR into C
or HDL code.

7. Conclusion

With the background of a specify-explore-re�ne paradigm, an IP-centric
methodology for the codesign of embedded systems was presented. The
methodology consists of a set of well-de�ned tasks and design models which
allow the easy insertion and reuse of intellectual property.

In particular, the design methodology starts with an executable speci�-
cation of the system under design and eventually creates an implementation
architecture ready for manufacturing. The intermediate tasks of allocation,
partitioning, scheduling, and communication synthesis are performed by

37

the designer interactively, either manually or with the help of automatic
tools. In other words, for architecture exploration the designer is in the
loop.

In order to incorporate IP components and allow \plug-and-play", pro-
tocol encapsulation and separation of communication and computation is
necessary. A wrapper concept is used to hide details of communication pro-
tocols and replace these details with an abstract high-level interface.

For this system design methodology, the language being used is impor-
tant. Since none of the traditional languages meets all the requirements
for system level design, the SpecC language was presented. SpecC precisely
satis�es all requirements for codesign languages and explicitly supports
structural and behavioral hierarchy, concurrency, state transitions, excep-
tion handling, timing and synchronization in an orthogonal way. SpecC
encourages reuse and supports integration of IP. Since SpecC is a superset
of C, a large library of already existing algorithms can directly be used.
SpecC is easy to learn and easy to understand.

Finally, the SpecC Environment was presented. The system is based on
the described methodology and the SpecC language.

Acknowledgements

We would like to acknowledge the support of the various granting agencies
who have contributed research funding, without which this work would
not have been possible. This work was supported in part by grants from:
Hitachi, Grant #-H22003; Toshiba, Grant #-TC-20881; SRC, Grant #-97-
DJ-146; and Rockwell, Grant #-RSS-24141.

References

1. K. Arnold, J. Gosling; The Java Programming Language; Addison-Wesley, 1996.
2. F. Balarin, P. Giusto, A. Jurecska, C. Passerone, E. Sentovich, B. Tabbara,

M. Chiodo, H. Hsieh, L. Lavagno, A. Sangiovanni-Vincentelli, K. Suzuki. Hardware-
Software Co-Design of Embedded Systems, The POLIS approach. Kluwer Academic
Publishers, April 1997.

3. F. Chan, M. Spiller, R. Newton. \WELD { An Environment for Web-Based Elec-
tronic Design". In Proceedings of the Design Automation Conference, San Francisco,
1998.

4. M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, A. Sangiovanni-
Vincentelli. \A Formal Speci�cation Model for Hardware/Software Codesign". In
Proceedings of International Workshop on Hardware-Software Codesign, Oct. 1993.

5. P. Chou, R. Ortega, G. Borriello. \The Chinook Hardware/Software Co-Synthesis
System". In International Symposium on System Synthesis, Cannes, France,
Sept. 1995.

6. R. D�omer, J. Zhu, D. Gajski. The SpecC Language Reference Manual. University of
California, Irvine, Technical Report ICS-TR-98-13, March 1998.

7. D. Drusinsky and D. Harel. \Using Statecharts for hardware description and syn-
thesis". In IEEE Transactions on Computer Aided Design, 1989.

38

8. R. Ernst, J. Henkel, T. Benner. \Hardware-software cosynthesis for microcon-
trollers". In IEEE Design and Test, Vol. 12, 1993.

9. R. Ernst, et. al. \The COSYMA Environment for Hardware-Software Cosynthesis
of Small Embedded Systems". InMicroprocessors and Microsystems, Vol. 20, No. 3,
May 1996.

10. D. Gajski, F. Vahid, and S. Narayan. \SpecCharts: a VHDL front-end for embedded
systems". University of California, Irvine, Technical Report ICS-TR-93-31, 1993.

11. D. Gajski, F. Vahid, S. Narayan, J. Gong. Speci�cation and Design of Embedded
Systems. Prentice Hall, New Jersey, 1994.

12. D. Gajski, J. Zhu, R. D�omer. \Essential Issues in Codesign". In Hardware/Software
Co-Design: Principles and Practice, edited by J. Staunstrup, W. Wolf. Kluwer Aca-
demic Publishers, 1997.

13. R. Gupta, C. Coelho., G. De Micheli. \Synthesis and simulation of digital systems
containing interacting hardware and software components". In Proceedings of the
29th ACM, IEEE Design Automation Conference, 1992.

14. R. Gupta, S. Liao. \Using a Programming Language for Digital System Design". In
IEEE Design & Test of Computers, IEEE, 1997.

15. D. Harel; \StateCharts: a Visual Formalism for Complex Systems"; Science of Pro-
gramming, 8, 1987.

16. J. Henkel, R. Ernst. \A Hardware-Software Partitioner Using a Dynamically Deter-
mined Granularity". In Proceedings of the Design Automation Conference, 1997.

17. IEEE Inc., N.Y. IEEE Standard VHDL Language Reference Manual, 1998.
18. T. Ismail, M. Abid, A. Jerraya. \COSMOS: A Codesign Approach for Communicat-

ing Systems". In Proceedings of the International Workshop on Hardware- Software
Codesign. IEEE CS Press, 1994.

19. A. Kalavade, E. Lee. \A Hardware/Software Codesign Methodology for DSP Ap-
plications". In IEEE Design and Test, Sept. 1993.

20. G. Koch, U. Kebschull, W. Rosenstiel. \A prototyping architecture for hard-
ware/software codesign in the COBRA project". In Proceedings of the third Inter-
national Workshop on Hardware/Software Codesign, IEEE Computer Society Press,
1994.

21. D. Ku, G. De Micheli. \HardwareC { A Language for Hardware Design, Version
2.0". Tech. Rep. CSL-TR-90-419, Stanford University, April 1990.

22. E. Lee and D. Messerschmidt. \Static scheduling of synchronous data
ow graphs
for digital signal processors". In IEEE Transactions on Computer-Aided Design,
1987.

23. S. Liao, S. Tjiang, R. Gupta. \An E�cient Implementation of Reactivity for Model-
ing Hardware in the Scenic Design Environment". In Proceedings of the 34th Design
Automation Conference, Anaheim, California, USA, 1997.

24. C. Liem, F. Nacabal, C. Valderrama, P. Paulin, A. Jerraya. \System-on-a-chip
cosimulation and compilation". In IEEE Design & Test of Computers, 1997.

25. C. Liem, P. Paulin. \Compilation Techniques and Tools for Embedded Processor
Architectures". In Hardware/Software Co-Design: Principles and Practice, edited
by J. Staunstrup, W. Wolf. Kluwer Academic Publishers, 1997.

26. J. Madsen, J. Grode, P. Knudsen. \Hardware/Software Partitioning using the LY-
COS System". In Hardware/Software Co-Design: Principles and Practice, edited by
J. Staunstrup, W. Wolf. Kluwer Academic Publishers, 1997.

27. P. Marwedel, G. Goossens. Code Generation for Embedded Processors. Kluwer Aca-
demic Publishers, 1995.

28. G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw Hill, 1994.
29. S. Narayan, F. Vahid, D. Gajski. \System Speci�cation and Synthesis with the

SpecCharts Language". In Proceedings of the International Conference on Computer
Aided Design, 1991.

30. A. �Osterling, T. Benner, R. Ernst, D. Herrmann, T. Scholz, W. Ye. \The Cosyma

39

System". In Hardware/Software Co-Design: Principles and Practice, edited by
J. Staunstrup, W. Wolf. Kluwer Academic Publishers, 1997.

31. K. Rompaey, D. Verkest, I. Bolsens, H. De Man. \CoWare { A design environment
for heterogeneous hardware/software systems". In Proceedings of the European De-
sign Automation Conference, 1996.

32. W. Rosenstiel. \Prototyping and Emulation". In Hardware/Software Co-Design:
Principles and Practice, edited by J. Staunstrup, W. Wolf. Kluwer Academic Pub-
lishers, 1997.

33. B. Stroustrup. The C++ Programming Language, third edition. Addison-Wesley,
1997.

34. D. Thomas, P. Moorby. The Verilog Hardware Description Language. Kluwer Aca-
demic Publishers, 1991.

35. C. Valderrama, M. Romdhani, J. Daveau, G. Marchioro, A. Changuel, A. Jerraya.
\Cosmos: A Transformational Co-design tool for Multiprocessor Architectures". In
Hardware/Software Co-Design: Principles and Practice, edited by J. Staunstrup,
W. Wolf. Kluwer Academic Publishers, 1997.

36. W. Wolf. \Hardware/Software Co-Synthesis Algorithms". In Hardware/Software
Co-Design: Principles and Practice, edited by J. Staunstrup, W. Wolf. Kluwer Aca-
demic Publishers, 1997.

37. X3 Secretariat. The C Language. X3J11/90-013, ISO Standard ISO/IEC 9899. Com-
puter and Business Equipment Manufacturers Association, Washington, DC, USA,
1990.

38. T. Yen, W. Wolf. Hardware-software Co-synthesis of Distributed Embedded Systems.
Kluwer Academic Publishers, 1997.

39. J. Zhu, R. D�omer, D. Gajski. \Syntax and Semantics of the SpecC Language". In
Proceedings of the Synthesis and System Integration of Mixed Technologies, Osaka,
Japan, Dec. 1997.

