
Stacked FSMD:

A New Microarchitecture Model

for High-Level Synthesis

by

Khushwinder Singh Jasrotia

A thesis submitted in conformity with the requirements
for the Degree of Master of Applied Science in the

Graduate Department of Electrical and Computer Engineering,
University of Toronto

 Copyright by Khushwinder Singh Jasrotia 2003

Stacked FSMD:

A New Microarchitecture Model

for High-Level Synthesis

Khushwinder Singh Jasrotia

Master of Applied Science, 2003

Graduate Department of Electrical and Computer Engineering

University of Toronto

Abstract

High-Level synthesis is a process that automates the transformation of an algorithmic

description of a digital design into its physical implementation. With digital systems’ ever

increasing complexity in terms of transistor count and clock speed, it becomes necessary

for a high-level synthesis tool to work at higher levels of abstraction in order to effectively

cope with the design.

Traditional high-level synthesis tools are unable to efficiently synthesize designs de-

scribed in high-level abstract languages such as C or Java. This is because the Finite

State Machine with Datapath model (FSMD), the underlying microarchitecture into

which the synthesis tool transforms the design, is too simplistic. FSMD is unable to

effectively capture high-level constructs such as procedure abstraction and memory allo-

cation.

This thesis makes two primary contributions: First, it proposes an extension of the

FSMD model into a Stacked FSMD (SFSMD) model that supports procedure abstrac-

tion, and includes support for dynamic memory allocation. Secondly, it describes a be-

havioral level partitioning technique which leverages the SFSMD model to reduce power

consumption.

ii

Acknowledgements

First, I would like to thank my supervisor Professor Jianwen Zhu for his advice, guidance,

and support. He was always willing to set aside any amount of time to clarify issues

relating to my research. His continual patience and encouragement were invaluable for

the successful completion of this thesis.

To my family, thank you for your love, support, patience, and in believing in my

ability to go the distance.

To my friends from lab EA306: Zhong, Fang, Rami, Linda, and Dennis, thanks for

all your help and support. Val, thanks for providing all those movie passes and for all

the interesting discussions we’ve had. A special thanks to Lesley for taking the time to

read my drafts and for being a great friend.

Finally, I would also like to thank Y-Explorations Inc. for donating the eXcite syn-

thesis tool which proved invaluable for generating the experimental data used in this

thesis.

iii

Contents

1 Introduction 1

1.1 Motivation . 4

1.1.1 Support for Higher Levels of Abstraction 4

1.1.2 Generation of Power Efficient Designs 6

1.2 Objectives . 7

1.3 Contributions . 7

1.4 Thesis Organization . 8

2 Background and Related Work 9

2.1 Introduction . 9

2.2 Overview of High-Level Synthesis . 9

2.2.1 Abstraction Levels . 10

2.2.2 Definition of High-Level Synthesis 11

2.2.3 Definition of FSMD . 14

2.3 Procedure Abstraction . 16

2.4 Memory Abstraction . 19

2.4.1 Memory Allocation Techniques 19

Sequential First Fit . 20

Segregated Free Lists . 20

Buddy-System . 20

iv

2.5 Partitioning for Low Power . 22

3 The Stacked FSMD Microarchitecture 24

3.1 Introduction . 24

3.2 The SFSMD Model and Procedure Abstraction 24

3.2.1 SFSMD Design Example . 29

FSMD Implementation of SumOfCubes 30

SFSMD Implementation of SumOfCubes 31

3.2.2 Stack Controller . 33

3.3 Dynamic Memory Allocation . 36

3.3.1 Description of Memory Allocator 36

OR tree . 39

AND tree . 39

Bit-Flipper Circuitry . 39

4 Region Based Partitioning 41

4.1 Introduction . 41

4.2 Partitioning Methodology . 41

4.2.1 Partitioning Power-Index . 44

4.3 Power Reduction through Clock Gating 48

4.4 Design Example . 49

4.4.1 Blackjack Controller . 50

4.4.2 Implementation Methodology . 54

4.4.3 Results of Design Example . 55

5 Experiments and Results 58

5.1 Introduction . 58

5.2 Region Partitioning Experiments . 58

5.2.1 Partitioning Methodology . 60

v

5.2.2 Measuring Power Of The Partitions 62

5.2.3 Power Results . 64

5.2.4 Area Results . 74

5.3 Memory Allocator Implementation . 76

5.3.1 Design Synthesis . 77

5.3.2 Synthesis Results . 78

Area Results . 78

Critical Path Delay Results . 79

Compile Time Results . 80

FPGA Implementation . 81

6 Conclusion and Future Work 83

6.1 Conclusions . 83

6.2 Future Work . 84

vi

List of Tables

2.1 Abstraction Levels in High-Level Synthesis 10

4.1 Power and Area Results for Blackjack Game Machine 55

4.2 Area Break-Down For FSMD Implementation 55

4.3 Area Break-Down For SFSMD Implementation 56

4.4 Power Results Based on High Controller Inter-Communication 56

4.5 Dramatic Power Savings by Region Partitioning 57

5.1 Controller Power Results for Partition Level 1 65

5.2 Controller Power Results for Partition Level 2 66

5.3 Controller Power Results for Partition Level 3 66

5.4 Controller Area Results of Partitioning 74

vii

List of Figures

2.1 Y-Chart . 12

2.2 FSMD Block Diagram . 15

2.3 Example of a Buddy-System Memory Allocation Technique 21

3.1 Stacked FSMD Model . 25

3.2 Timing Diagram for Procedure Call and Return operations 28

3.3 An Introductory Example . 29

3.4 Procedure Inlining: (A) State table, (B) Design 30

3.5 SFSMD Controller: (A) State table for Main Block (B) State table for

Procedure (C) and Design . 32

3.6 Stack Controller Block Diagram . 33

3.7 Bit-Vector Representation of Memory . 37

3.8 Memory Allocator Block Diagram . 38

4.1 Region Based Partitioning . 42

4.2 Inlining and Exlining Transformations. (a) Original Specification, (b) Af-

ter inlining foo, (c) After loop exlining. 43

4.3 Some possible ways of partitioning code 44

4.4 Tree Representation of Partitioning . 45

4.5 Clock-Gating (a) Regular circuitry for disabling registers, (b) Using clock-

gating, (c) Timing diagram for clock-gating 48

viii

4.6 Blackjack Controller State-Diagram . 51

4.7 Blackjack State-diagram of Loop Region After Extraction 53

4.8 Blackjack Sate-diagram of Main Controller Region After Extraction . . . 53

5.1 Partitions Considered . 61

5.2 Tree-Representation of Partitions Considered 62

5.3 Power Reduction for Partition Level 1 . 67

5.4 Power Reduction for Partition Levels 1 and 2 68

5.5 Power Reduction for Partition Levels 1, 2 and 3 68

5.6 Power for Partition Level 1 . 71

5.7 Power-Index for Partition Level 1 . 71

5.8 Power for Partition Levels 1 and 2 . 72

5.9 Power-Index for Partition Levels 1 and 2 72

5.10 Power for Partition Levels 1,2 and 3 . 73

5.11 Power-Index for Partition Levels 1,2 and 3 73

5.12 Area Overhead for Partition Level 1 . 75

5.13 Area Overhead for Partition Levels 1 and 2 75

5.14 Area Overhead for Partition Levels 1, 2 and 3 76

5.15 Area Vs. Bit-Vector Size . 79

5.16 Critical Path Delay Vs. Bit-Vector Size 80

5.17 Compile Time Vs. Bit-Vector Size . 81

ix

Chapter 1

Introduction

With transistor densities of over one hundred million gates and clock frequencies in the

gigahertz range, digital systems today are truly complex. Systems of such complexity

are very difficult to design by hand-crafting each transistor or by defining each signal in

terms of logic gates [10]. To cope with this ever increasing complexity, automation tools

will need to work at higher levels of abstraction [10] [18].

Working at higher levels of abstraction provides several advantages: firstly, working at

lower levels makes a problem humanly intractable and time consuming. This is because

at low levels there are too many components and interactions for the human mind to

comprehend. At higher levels of abstraction, the number of objects to consider is reduced

by orders of magnitude, which allows the designer to design and explore more complicated

designs in less time. Secondly, the designer’s way of thinking is analogous to higher-level

design methodologies. While designing a multi-million gate chip, it is hard to imagine

a designer thinking in terms of register-transfer level (RTL) components such as ALUs,

multiplexors, registers, memories, etc. Higher algorithmic and process level descriptions

are required to comprehend and specify the design. High-level synthesis facilitates the

implementation of digital designs at this higher level of abstraction.

High-level synthesis is an automated refining process, from an abstract description of

1

Chapter 1. Introduction 2

a digital design to a detailed one [18]. One of the first steps in the creation of a digital

system is the modeling of the intended design. Today, most modeling is done using

Hardware Description Languages or HDLs. The HDL is used to capture the intended

functionality of the circuit and it provides the abstract basis on which the high-level

synthesis tool operates. Other modeling tools exist such as graphical models, which

support flow diagrams, schematic entry and geometric layout. However, the very-large

scale nature of the problem forces the modeling to be one that supports hierarchy and

high-level of abstraction, and consequently HDL modeling is used for most large-scale

designs.

Conceiving an HDL model has similarities to writing a software program. The con-

ciseness of HDL models has made them preferable to the corresponding graphical models

[18]. Today, VHDL and Verilog are the most commonly used HDLs. Both languages

offer similar functionalities: both HDLs support both behavioral and structural views of

a design, i.e, a circuit can be described in terms of its functionality, or can be described

as a an interconnection of sub-components. Also, both languages specify semantics that

allows circuits to operate in parallel. Having evolved from programming languages [31],

both languages support features such as data abstraction (data-types and variables),

behavioral operators for transforming data, assignment operators to change values of op-

erators, and control and execution ordering constructs in order to specify flow of control

[10].

The next logical evolution for synthesis tools is the support for standard high-level

languages (HLLs) such as C,C++, or Java. HLLs have been used for functional validation

such as functional modeling of processors, but only recently have tools been available

that allows the generation of hardware directly from a high-level language such as C

[13]. HDLs offer constructs for the control of execution ordering that are lacking in

HLLs, however, enhancements to the languages can be made to support these features.

Examples are new HDL languages based on C such as ESIM [9], HardwareC [19], SpecC

Chapter 1. Introduction 3

[11], and SystemC [33].

The primary advantage of supporting synthesis from an HLL is the higher-level of

abstraction offered over HDLs. HLLs offer constructs for data-encapsulation (structs and

classes in C++) and method/procedure calls that are more flexible and powerful than

corresponding implementations in VHDL or Verilog. They also support constructs that

are non-existent in the HDL domain, such as dynamic memory allocation. Additionally,

HLLs have the benefit of being familiar to more designers than standard HDLs. Com-

pared to C, less are familiar with VHDL or Verilog. The ability to design hardware

directly in C provides a definite advantage to a designer, who otherwise would need to

familiarize himself with the semantics/syntax of VHDL.

Typically, a design is coded in an HLL in order to verify functionality. The code is

then given to a hardware designer who is responsible for understanding the code and

translating it into an HDL description suitable for synthesis. Being able to synthesize

hardware directly from the HLL eliminates the later step and consequently shortens the

design cycle, a critical factor in today’s competitive electronics industry.

Despite the intensive research efforts invested in the last decade, the notion of high-

level synthesis from HLLs unfortunately remains in the hands of academia and a few

EDA companies, rather than the design community. The reason for such a reluctance is

mainly because the size or complexity of the application that current high-level synthesis

tools can accept is too small.

Two main areas need to be examined in order to improve support for synthesis from

HLLs : 1) The effective handling of the increased complexity introduced by these lan-

guages and, 2) the power-efficiency of the synthesized designs. The study of these two

aspects form the basis of this thesis and are described in the next section.

Chapter 1. Introduction 4

1.1 Motivation

The motivation for this study is to explore the key issues involved in the support of

high-level synthesis from HLLs. These issues are described below.

1.1.1 Support for Higher Levels of Abstraction

Supporting synthesis for HLLs requires the ability to efficiently cope with additional

abstraction layers. We identify two main areas of abstraction which are not handled

effectively by current high-level synthesis tools. These are 1) procedure abstraction and

2) memory abstraction.

All HLLs and to some level, HDLs, support the concept of procedure and function

calls. These constructs allow for program modularity and aid in design reuse. Most

current high-level synthesis tools handle procedures by inlining them. By inlining, all

calls to a procedure are replaced by the body of the procedure. In some cases this

can improve the performance of the final design because the synthesis tool can optimize

the procedure with the rest of the code. However, for multiple procedure calls, inlining

can result in the undesirable effect of increased code size. Furthermore, indiscriminate

inlining can place prohibitive demands on memory and runtime.

The inlining of procedures creates a monolithic finite state machine with datapath

(FSMD) at the microarchitectural level. As mentioned earlier, high-level synthesis is a

refinement process, and the microarchitecture level (also known as the Register Transfer

Level) is a “view” of the design at a lower abstraction level. The FSMD consists of

two parts, the controller and the datapath. The datapath circuit is used to store and

manipulate data and to transfer data from one part of the system to another [3]. The

datapath circuit is comprised of components such as registers, latches, multiplexors,

counters, decoders, adders, and so on. The controller circuit is a finite state machine

that controls the operation of the datapath circuit.

Chapter 1. Introduction 5

We extend the notion of this traditional simplistic FSMD model of RTL hardware

into a stacked FSMD model (SFSMD) that supports procedure abstraction. In this

view, each procedure is implemented as a separate controller with a common datapath

shared amongst all the controllers. A hardware stack mechanism is used to control

the flow of procedure calls and to allow the datapath to be shared. This approach

has several advantages: First, by handling each procedure separately, the divide-and-

conquer approach is utilized which reduces the memory and run-time requirements on

the synthesis tools. Furthermore, implementing each procedure as a separate controller

can simplify the control logic [26], possibly resulting in a smaller and/or faster circuit.

Also, significant power savings can be introduced by observing that while one controller is

running, the other controllers can be shutdown by stopping their clocks. Lastly, sharing

a common datapath introduces opportunities for global optimizations and helps improve

circuit performance.

The other abstraction layer studied is memory abstraction, specifically dynamic mem-

ory allocation. Support for dynamic memory allocation by current high-level synthesis

tools is virtually non existent. Current tools only deal with simple variables and arrays

that are statically mapped to registers files and memories in the RTL domain. Memory

allocation is traditionally carried out in software, however, the ability to synthesize a

dynamic memory allocator can have several benefits: First, a hardware allocator can run

much faster than software, and can free up CPU cycles for a software application [14]

- in certain memory-intensive garbage collection based programs, memory management

can take up to one-third of program time [35]. Second, the abundance of silicon area

available in current VLSI technology makes the option of implementing a memory allo-

cator in hardware very attractive. Third, support for dynamic memory allocation would

be indispensable for hardware applications that require dynamic memory management

such as a TCP protocol engine described in C. Finally, dynamic memory management

is an integral part of HLLs - this makes the case for hardware allocation all the more

Chapter 1. Introduction 6

compelling since useful constructs, such as pointers, could be supported.

In this thesis, we study and describe the implementation of a hardware memory alloca-

tor. The allocator operates in conjunction with memory devices at the microarchitecture

level. The memory allocator is described as a soft IP core. Its quality, performance, and

scalability is studied under modern process technologies.

1.1.2 Generation of Power Efficient Designs

Power efficient circuits are an important goal for high-level synthesis tools and much

work has been done in this area, as surveyed in [7]. It is well known that by partitioning

a large circuit in an intelligent way, power consumption can be reduced. However, such

partitioning is traditionally performed at the logic level, or structural RTL level, where

information of the application is somewhat lost. Recently, focus has switched to power

reduction at the higher levels where large power savings are possible merely by cutting

down on wasted switching activities [30] [17] [2]. This can be accomplished by shut-

ting down unnecessary portions of circuits, and the new SFSMD model that has been

introduced is very suitable for this type of optimization.

As mentioned earlier, the SFSMD model uses procedures as controller boundaries.

It consists of multiple controllers interacting with each other via a stack-controller with

a shared datapath. The ability to shutdown inactive controllers is inherent in the SF-

SMD model, since as each procedure executes, only the controller associated with that

procedure is active. However, designers use procedures to enhance readability and main-

tainability, and the resulting SFSMD circuit from such procedures may not result in the

best synthesized design for power. Power consumption can be reduced by intelligently

redefining the procedure boundaries of the original specification.

The observation that 10% of a program’s instructions account for 90% of its execution

time has been used in the context of high-performance processor and compiler design [12]

[16]. These observations are due to the prevalence of loops in programs. We introduce

Chapter 1. Introduction 7

a high-level partitioning scheme which aggressively transforms the original design by

discovering regions, which can be considered as frequently executed loop kernels. Each

region is exlined into separate procedures in order to redefine the procedure boundaries

of the original specification. By implementing each procedure as separate controllers

in the SFSMD model, power consumption can be effectively reduced. This is because

the controller for each loop is smaller than the single controller implementing the entire

system, and since only one controller is running at any given time, the remaining ones

can be deactivated [30].

1.2 Objectives

The goal of this research is to improve synthesis from HLLs by studying and modifying

the underlying microarchitecture. The main objectives of this thesis are listed below:

1. To improve support for procedure abstraction in high-level synthesis. This is per-

formed by studying the microarchitecture model and extending it to support pro-

cedures by introducing the concept of the stacked FSMD (SFSMD).

2. To add support for dynamic memory allocation in high-level synthesis. This is

accomplished by designing and implementing a memory allocator IP core.

3. To investigate partitioning techniques at the behavioral level for the reduction of

power. Frequently executed regions of code, such as loops, are extracted to be

implemented as separate controllers in the SFSMD model. By implementing the

loops as separate controllers, power can be reduced since inactive controllers can

be shut-down.

1.3 Contributions

The contributions of this thesis are summarized below:

Chapter 1. Introduction 8

• The concept of the SFSMD is introduced for the support of procedure abstraction.

The SFSMD model is described in detail along with an example. The example is

used to highlight the features and functionality of the SFSMD model.

• A memory allocator IP core is described. The quality of the core is evaluated by

studying how well it scales with modern process technologies. This is achieved

by examining the effects of varying the heap size of the memory controller and

employing various compile strategies to synthesize it. The following parameters of

the synthesized deign are measured 1) the area, 2) the speed, 3) and the synthesis

time.

• A behavioral partitioning technique aimed at reducing power consumption is intro-

duced. A detailed example is used to demonstrate the partitioning methodology

along with the resulting power saving figures. The partitioning scheme is also tested

on loop-intensive C benchmark kernels to demonstrate its effectiveness for designs

described in HLLs. Finally, a power-index is developed that can be used to estimate

and compare the power of different partitioning styles prior to synthesis.

1.4 Thesis Organization

This thesis is divided into six chapters. Chapter 2 provides background information

and reviews related work. Chapter 3 describes the SFSMD microarchitecture and shows

how it can be used to support procedure and memory abstraction. Chapter 4 provides a

description of the region based partitioning technique. Chapter 5 applies this partitioning

technique to various benchmark programs and reviews the experimental results. Also,

synthesis results of the memory allocator are presented. Finally, chapter 6 concludes

with suggestions for future work.

Chapter 2

Background and Related Work

2.1 Introduction

This section provides background information for the ideas presented in this thesis. It also

summarizes related work that has been performed and compares it to the work done in

this study. First, an overview of high-level synthesis is presented to familiarize the reader

with the synthesis process, issues, and terminology. Then, related work performed in the

areas of procedure and memory abstraction is presented and compared. Finally, previous

research performed on partitioning techniques for the reduction of power consumption is

summarized.

2.2 Overview of High-Level Synthesis

Synthesis can be described as a translation process from a behavioral description to

a structural one [10]. The representation of a circuit, or its modeling, is simply an

abstraction that shows relevant features without associated details. The task of high

level synthesis is to refine a model of higher abstraction into a lower one.

9

Chapter 2. Background and Related Work 10

2.2.1 Abstraction Levels

The circuit models can be categorized into different abstraction levels and views. Four

main levels of abstraction are traditionally defined, namely: system level, microarchitec-

tural level, logic level, and circuit level. The levels can be visualized as follows: At system

level, the circuit can be represented by a set of processes defined typically by an HDL.

The processes communicate with each other via shared variables or message passing.

At the microarchitecture level circuits perform a set of operations, such as computation

and transfers at the register level. The logic level defines a circuit in terms of boolean

equations and logic functions, and the circuit level is composed of transistors and other

geometric entities [10].

Each abstraction level can be seen under different views as listed in table 2.1 [10]. The

views are classified as: behavioral, structural, and physical. The behavioral view describes

only the function of the intended design without regard as to how the function is imple-

mented. The structural view defines the design as an interconnection of components, and

the physical view defines the design in terms of physical entities (eg. chips, transistors,

etc) [18].

Level Behavioral Structural Physical
Name Representation Representation Representation
System Algorithms Processors PC Boards
level Processes Controllers Chips

Flowcharts Memories
Buses

Microarchitecture Register Registers Chips
level transfer ALUs Floorplans

Memories
MUXs

Logic Boolean functions Logic Gates Cells
level Flip-flops Modules

Circuit Transfer functions Transistors Transitory Layouts
level Equations Schematic Traces

Contacts

Table 2.1: Abstraction Levels in High-Level Synthesis

Chapter 2. Background and Related Work 11

Transfer functions, equations, and timing diagrams are used to describe behavior at

the circuit level. The behavioral view at the logic level consists of boolean equations

and state diagrams. At the microarchitectural level, behavior is defined in terms of

register transfers. Execution is divided up into discrete intervals called control states

or steps. The register-transfer description is used to specify for each control state 1)

what conditions are to be tested 2) which register-transfers are to be executed 3) and

the next control state to be entered [10]. The system level behavior is typically defined

using HDLs that use algorithms, language operators, processes, and variables to specify

functionality. At this level, variables have not been assigned to registers or memories,

and operations have not been bound to functional units or control steps. Furthermore,

the concept of time is further abstracted to the order in which variable assignments are

executed [10].

The structural representation bridges the behavioral and physical representation [10]

- it is a mapping of the behavioral view into structural level components. At the circuit

level, it consists of circuit level components such as transistors, resistors, capacitors.

Logic level components consist of elements such as logic gates, registers, and latches.

Memories, multiplexors, ALUs, and registers are used to represent microarchitectural

level components, while controllers, memories, processors, and busses are used on the

system level.

The physical representation maps the design to space or silicon. Examples are poly-

gons, cells, floorplans, chips, and PC boards.

2.2.2 Definition of High-Level Synthesis

Based on the abstraction levels, synthesis can be defined for each level of abstraction, for

example, system level synthesis converts system level behavioral specification to a struc-

tural one, while microarchitectural synthesis converts an RTL description into a series

of interconnected registers, ALUs, and multiplexors. At each level, the corresponding

Chapter 2. Background and Related Work 12

synthesis tool adds a level of detail and information that can be used by the next lower

level synthesis tools.

High-level synthesis generally spans the first two levels of abstraction - it transforms

a behavioral system-level description into a microarchitectural structural representation

output. Lower level synthesis tools, such as a logic synthesis tools, further transform this

output to make it suitable for circuit level synthesis, and so on, until the design is fully

specified in silicon. This can be depicted graphically on what is often referred to as a

Gajski and Kuhn’s Y-Chart [6] in figure 2.1.

Behavioral
Domain

Structural
Domain

Physical
Domain

Register−Transfer Synthesis

Logic Synthesis

Circuit Synthesis

System Synthesis S−Level

RT−Level

C−Level

L−Level

High−Level Synthesis

Figure 2.1: Y-Chart

Chapter 2. Background and Related Work 13

High-level synthesis takes a description in terms of processes communicating via vari-

ables. From this, a series of interconnected memories, busses, processors, and controllers

are generated, each of which can be described by a register-transfer description. From the

register-transfer description, the following two structures are generated: 1) the datapath,

which consists of storage and functional components used for the processing and transfer

of data, and the 2) controller, the finite-state machine that controls the operation of the

datapath. This structure is collectively known as the finite-state machine with datapath

(FSMD).

The steps involved in transforming a high-level behavioral description into the FSMD

model are listed below:

1. Compilation - Translation of original code into an intermediate format such as

control flow graph (CFG). Control-flow and data-flow dependencies are explicitly

obtained from the CFG.

2. Partitioning - The dividing of the design into sub-groups, each of which can be

implemented using a FSMD model. Partitioning is performed to satisfy constraints

such as minimizing chip size, power dissipation, speed, etc.

3. Scheduling - Specifies the assignment of variables and operations into discrete time-

intervals. Control-flow and data-flow dependencies dictate the order of the assign-

ments, amongst other external constraints such as speed and latency requirements.

4. Allocation - Assigns variables and operators to storage and functional units.

Chapter 2. Background and Related Work 14

2.2.3 Definition of FSMD

This section defines the FSMD. The FSMD model is used to describe a digital design at

the register-transfer level. Unlike a simple finite state machine, an FSMD is more powerful

in that it may include variables with data types, as well as complex data operations in

its actions. The FSMD can be formally defined by a 6-tuple as follows: [10] [30]

P =< S, I ∪ STAT, O ∪ A, f, h >

where:

• S = {s0, . . . , sn} is a set of states.

• I = {ij} is a set of primary inputs.

• O = {ok} is a set of primary outputs.

• V AR is a set of all storage variables.

• EXP = {f(x, y, z, . . .) : x, y, z, . . . ∈ V AR} is a set of expressions.

• STAT = {Rel(a, b) : a, b ∈ EXP} is a set of status signals expressed as a logical

relation between two expressions from the set EXP .

• A = {x ⇐ e : x ∈ V AR, e ∈ EXP} is a set of storage assignments.

• f is a state transition function that maps a cross product of S and I ∪ STAT into

S.

• h is the output function that maps a cross product of S and I ∪ STAT into O ∪A

for Mealy models or S into O ∪ A for Moore models.

Chapter 2. Background and Related Work 15

The general structure of the FSMD is depicted in figure 2.2 [10]. It consists of two

main units, the datapath and the control. The control unit consists of three main blocks:

the state registers to hold the state information, the next-state logic block to generate

new state inputs for the state registers, and output logic block to generate the outputs.

The control unit controls the datapath via datapath control signals and receives feedback

signals from the status bits. Both control and datapath units receive external inputs and

can generate external outputs. The datapath external inputs and external outputs tend

to be words, while for the controller they are single bits.

Datapath Unit

Status

Datapath Outputs

Datapath Inputs

Datapath
ControlNext−State

Logic
Output
Logic

State Register

Control Unit

Control Outputs

Control Inputs

Figure 2.2: FSMD Block Diagram

Chapter 2. Background and Related Work 16

2.3 Procedure Abstraction

This section reviews previously studied procedure abstraction techniques. A survey of

previous techniques shows that procedures are handled in one of two ways: (1) each

procedure is treated as a single instance, or (2) each procedure-call is expanded into the

calling process [29] - this is also known as inlining. Both techniques have merits and

demerits. A procedure treated as an instance can represent a basic indivisible compu-

tation, thus defining the granularity of functional partitioning [26]. Also, by processing

procedures separately, run times and memory requirements can be decreased by an order

of magnitude since synthesis tool heuristics are usually non-linear [28] [5]. An instance of

a procedure can be used multiple times, hence aiding in design reuse and area reduction,

and in some cases improving performance. Disadvantages are the possible overhead in the

call and parameter passing mechanisms and the loss of optimizations over the boundaries

[4].

Inlining has several advantages. Firstly, inlining maximizes the opportunities for allo-

cation and scheduling tools to generate a concurrent design [26]. Secondly, performance

may also be improved since operations in the main body and procedure can be over-

lapped. However, if a procedure is called numerous times, inlining can greatly increase

the number of control steps in the controller thus increasing the controller area signifi-

cantly. Also, inlining can create a large design for which scheduling and allocation must

be performed, which may exceed the time or memory limitations of a high-level synthesis

tool [21].

The procedure abstraction technique presented in this thesis is a compromise between

the methods described above : procedures are implemented as separate controllers with

a shared datapath. A stack mechanism is used to control the flow of procedure calls and

to share access to the common datapath. The stack keeps track of the “address” of the

calling and called modules. This stacked FSMD model provides a natural solution for the

handling of nested and multiple procedure calls - a common occurrence in HLLs - and it

Chapter 2. Background and Related Work 17

can also be extended to handle recursive calls. The model also produces power efficient

designs due to its ability to shut-down controllers that are not in use. Furthermore,

having a common datapath increases concurrency by allowing the sharing of resources,

and can improve circuit performance.

Previous work has been done to examine the synthesis of descriptions containing pro-

cedure and function calls. In [4], procedures are synthesized as independent hardware

modules, with the calling mechanism implemented by introducing a wait state in the

control unit of the calling module. A similar technique is used in [5] - procedures are

implemented as separate modules that share the same clock as the calling module. Re-

cursion is not allowed. Dedicated ports generated for each procedure are used to pass

parameters between the calling and called modules. Handshaking signals are used to

perform procedure calls and returns. This scheme can have a negative impact on the

final design due to high interconnection cost and increased controller complexity if many

handshaking signaling schemes are required. Furthermore, since each procedure is im-

plemented as an independent module, the scope for concurrent optimizations is reduced

as only local optimizations are possible.

In [21], four different methods of procedure implementation are described and com-

pared: (1) A fixed-delay macro method is described in which a procedure of fixed delay

is synthesized as an independent macro module and directly instantiated as a datapath

component of the calling module. (2) In the variable-delay macro, a procedure of variable

delay is synthesized and instantiated in the datapath of the calling module. Due to the

variable delay of the procedure, a handshake mechanism is required for the communica-

tion between the main controller and the variable delay macro. (3) Inlining is described

in which each call to the procedure is replaced by the body of the procedure, and finally,

(4) a control subroutine method is described where the controller of the procedure is

incorporated with the main controller. Each procedure occupies a portion of the main

controller state-table and each call to the procedure transfers control to this portion of

Chapter 2. Background and Related Work 18

the state table. After the procedure finishes execution, control is transfered to the state

following the procedure call. The return state is stored in a special variable, and interest-

ingly enough, the paper mentions the possibility of implementing the variable as a stack

for nested calls. This method shares similarities with the SFSMD model in that both use

a stack to keep track of the return address and only one datapath unit is used. However,

the SFSMD differs in that each procedure is implemented as a separate controller, with

the ability to shutdown unused controllers for power savings. The control subroutine

method, on the other hand, generates a monolithic controller which cannot be power

efficient in this way.

In [27], procedures are implemented as separate modules and a common bus is used to

transfer address and parameter information between them. A procedure call is initiated

by transferring the address of the called procedure, possibly the address of the calling

procedure, followed by any parameter data. Called modules are responsible for latching

this data. A procedure return is implemented by transmitting the return address (that

was latched earlier) and output parameters. Transmission of the calling address by

the calling procedure, and return address by the called procedure adds overhead to the

controllers compared to the SFSMD model. As will be shown in later chapters, in the

SFSMD model, this information is inherent in the stack and is not required to be explicitly

transfered by each controller. Furthermore, implementing each procedure separately

results in loss of optimizations over the boundaries.

Chapter 2. Background and Related Work 19

2.4 Memory Abstraction

Dynamic memory allocation is not a supported feature in high-level synthesis. One of

the main reasons for this has been the lack of a hardware mechanism to perform dynamic

memory allocation. Initial studies on hardware allocation were performed by Puttkamer

[20] who used a shift-register based design to implement a buddy-system based allocation.

That design was later modified by Chang and Gehringer [15] by using pure combinational

logic for speed improvements. However, the design was never implemented or synthesized,

so its performance under modern VLSI technology was never investigated.

The memory allocator implemented and studied in this thesis is based on the design

proposed by Chang and Gehringer [15] and is described in the next chapter. The next

section provides a brief overview of memory allocation techniques.

2.4.1 Memory Allocation Techniques

Memory allocators are used for general purpose heap (memory pool) storage, where a

program can request a block of memory to store a program object, and free that block at

any time [34]. Examples of software implementation of memory allocators are the malloc

and free routines found in the standard C library.

The allocator must keep track of which blocks of memory are free and which are in use.

Any blocks of memory that are returned must be made available for reuse. The allocator

must balance the execution speed with the minimization of wasted memory. Due to the

nature of programs, memory blocks can be freed in any order, thereby creating holes

within the free memory. The accumulation of holes is known as fragmentation, and it

can prevent the allocation of memory for larger blocks and is one of the major problems

that allocators have to deal with [14].

Different memory allocation techniques have been developed to balance efficient mem-

ory usage with execution speed. These techniques are described below:

Chapter 2. Background and Related Work 20

Sequential First Fit

This allocation technique belongs to a general class of allocation algorithms known as

sequential fits. In this algorithm, free blocks are connected in a doubly linked list. During

allocation, the free block is scanned and the first block that is sufficiently large is returned

[8]. If the chosen block is larger than requested, it is split and the unused portion is added

back to the free list. If a block that is freed is next to an already free block, the two

blocks are coalesced into one big free block.

This technique generally exhibits good memory usage, however, suffers from increased

search time due to fragmentation that occurs at the head of the list [34]. This is because

search for free blocks must skip past those whose sizes are smaller than requested [14].

Segregated Free Lists

This technique uses an array of free lists, where each free lists holds free blocks of a par-

ticular size, usually based on powers of two. Memory requests are serviced by returning

a block from a free list of suitable size, and memory is freed by returning the block to its

appropriate list.

This is usually a very fast technique since relatively shorter lists have to be traversed

compared with the sequential first fit mechanism. However, space is wasted since requests

are rounded up to powers of two. This phenomenon is known as internal fragmentation.

This technique also suffers from severe external fragmentation since blocks of a particular

size cannot be used for another.

Buddy-System

This technique is a variation of the segregated free list. It supports a limited amount of

splitting and coalescing. This scheme conceptually splits the entire heap area into two

large areas, and those areas are further split up into two smaller areas, and so on. This

hierarchical division constrains where memory objects are allocated [34]. Essentially,

Chapter 2. Background and Related Work 21

the permitted sizes are powers of two, such that any block, except the smallest, can be

divided into two smaller blocks of permitted sizes [14]. An example of the buddy-system

is illustrated in figure 2.3. It shows the allocation of an 8K block of memory, followed by

the allocation of a 10K block. Notice that after allocation of the 10K block, 6K of space

is wasted due to internal fragmentation.

The performance of the buddy-system is a compromise between the earlier techniques.

It is fast like the segregated free list technique, and it can also coalesce memory to

save space like the sequential fit mechanism. However, the rounding leads to internal

fragmentation.

The hierarchical sub-division of the memory heap into powers of two allows it to

be naturally represented by a tree-structure. The tree-structure forms the basis of the

hardware memory allocator described later in this thesis.

Memory Heap Before Allocation

64K Free Block

After Allocating 8K

32K Free16K Free8K
Allocated

8K Free

After Allocating 10K

32K Free10K
Allocated

8K
Allocated

6K
Wasted

8K Free

Figure 2.3: Example of a Buddy-System Memory Allocation Technique

Chapter 2. Background and Related Work 22

2.5 Partitioning for Low Power

Recently, much work has been done in the reduction of power by focusing on higher levels

of abstraction. This reduction has been possible by shutting down inactive portions of

the circuits.

In [1] a method of precomputing is presented in which the output of a combinational

logic block in the datapath is precomputed one clock cycle before the output is required.

Power can be saved in the succeeding clock cycle by turning off the circuit since its value

is already known. [24] presents a guarded evaluation technique which tries to determine,

on a per clock cycle basis, which parts of a circuit are computing results that will be

used, and which are not. The sections that are not needed are the shut off, thus saving

power used in all the useless transitions in the part of the circuit.

In [2], a controller shutdown technique is presented. The control flow of the specifi-

cation model is analyzed to detect mutually exclusive sections of the computation, and

corresponding interacting FSMD are generated with selectively gated clocks. Only one of

the interacting FSMDs is active at any given clock cycle, while all the others are idle and

their clock is stopped. This work is extended in [30] by considering both the controller

and datapath simultaneously, and shutting down both inactive pairs.

This thesis presents a new controller shutdown technique based on the SFSMD model.

It operates at a higher abstraction level than the techniques surveyed earlier by directly

targeting loops at the behavioral level. It is a well known fact that due to loops in pro-

grams, a small set of computations often account for most of the execution time. By

extracting such loop regions and implementing them as separate controllers in the SF-

SMD model, power can be reduced significantly. This is because the controller of each

loop kernel is much smaller than the original one implementing the entire process, and

only one controller is operating at any give time, while the remaining controllers will be

idle [30].

Chapter 2. Background and Related Work 23

This region based partitioning has some possible advantages over the controller shut-

down technique described in [2]. In [2], mutually exclusive controllers are extracted by

(i) partitioning of states of the original behavioral description by the construction of

mutual exclusiveness relation between basic blocks, and (ii) clustering the blocks of the

partition to increase the granularity. Step (ii) is done because it is possible the first

step may generate too many components resulting in high power overhead due to the

interaction between components. By working at the loop level instead of the basic block

level, the region based partitioning scheme automatically achieves a higher level of gran-

ularity since there are fewer loops in a program than the set of mutually exclusive basic

blocks. Furthermore, loop identification and optimizations are standard tasks handled

by a compiler and obtained for“free” by the synthesis tools - additional basic block level

analysis performed in (i) is not required.

Chapter 3

The Stacked FSMD

Microarchitecture

3.1 Introduction

This chapter describes the stacked FSMD microarchitecture. The first portion of the

chapter gives a detailed description of the SFSMD architecture and shows how it can be

applied for procedure abstraction. The second part of the chapter extends the SFSMD

model to include support for memory abstraction by incorporating a dynamic memory

allocation unit.

3.2 The SFSMD Model and Procedure Abstraction

The SFSMD model extends the classic FSMD microarchitecture model to include support

for procedure abstraction. Specifically, this model supports sequential procedures (in the

sense of a sequential programming languages like C). Sequential procedures have the

characteristic that only one of them is active at any given time [5].

In the SFSMD model, procedures are implemented as separate controllers (FSMs)

sharing a common datapath unit. The key feature is a special stack controller that

24

Chapter 3. The Stacked FSMD Microarchitecture 25

controls the interactions between the controllers and also allows the datapath unit to

be shared. The structure of the SFSMD model is shown in figure 3.1. All components

share the same clock. Note, the figure omits the external input and output signals of the

controllers and datapaths for clarification purposes only.

CONTROLLER 1

Address

Call

Return

Enable

Datapath
Control

Status

Address

Call

Return

Enable

Datapath
Control

Status

CONTROLLER 2

Address

Call

Return

Enable

Datapath
Control

Status

CONTROLLER n

A
D

D
R

E
S

S
 B

U
S

C
A

LL
 S

IG
N

A
L

R
E

T
U

R
N

 S
IG

N
A

L

Status

Control

Address

Call

Return

STACK
CONTROLLER

TRI−STATE
BUFFERS

Ctrl #n
Enable

Cntll #2
Enable

Cntrl #1
Enable

DATAPATH

Figure 3.1: Stacked FSMD Model

Chapter 3. The Stacked FSMD Microarchitecture 26

The stack controller is used to handle procedure calls and returns in an analogous

fashion to how stack mechanisms are used for subroutine linkage in microprocessors.

The value stored on the top of the stack represents the address of the currently active

FSM. This allows the stack controller to activate that particular FSM and halt the rest.

Procedure calls are performed by pushing the address of the called FSM onto the stack,

and returns are made by popping the stack so that control can be passed back to the

caller FSM.

The stack controller controls the activation of the FSMs through the use of enable

signals. It decodes the address value at the top of its stack to generate a dedicated enable

signal for each FSM. Each enable signal is connected to the enable inputs of the state-

registers of its corresponding FSM. When the enable signal is asserted, the FSM is able

to operate normally, but when the signal is negated, the FSM is halted at the current

state since its state-registers are unable to update. Only one enable signal is active at

any time due to the sequential nature of procedures.

The enable signals are also used to control access to the datapath unit. Each FSM’s

datapath control signals are tri-state buffered to the inputs of the datapath unit. The

enable signals are used to activate the tri-state buffer for the corresponding FSM so

that the datapath components can be accessed. Again, due to the sequential nature

of the procedures, only one set of datapath control signal is always active and driving

the datapath components. The sharing of the datapath can also be implemented by

a multiplexor, in which case encoded values of the enable signals are needed to drive

the select inputs of the multiplexor. All controllers have access to the status signals

of the datapath. Unshared datapath components can be directly controlled by their

corresponding FSMs - these connections are not indicated in figure 3.1.

The FSMs transmit data to the Stack Controller via a shared unidirectional bus

consisting of an address bus, a call line, and a return line. If the design consists of N

FSMs, then address bus consists of dlog2Ne lines, and is used to transfer the address

Chapter 3. The Stacked FSMD Microarchitecture 27

of the called FSM to the stack controller. Call is a single line used to indicate a valid

address on the address bus for a procedure call. Return is a single line used to indicate

a procedure return. For procedure returns, only the return signal is used, the address

lines are not driven. Only one FSM controls the bus at a time, with the others providing

high-impedance values. For the call and return signals, external pull-up or downs can be

used to provide valid logic levels for the inputs of the stack controller when these signals

are not being driven. The stack controller generates N dedicated enable signals, one for

each FSM and its corresponding datapath control tri-state buffer.

In summary, the SFSMD model adds address, call, return, and enable signals to the

controller of the FSMD model. The original datapath control and status signals serve

the same purpose as originally described in Section 2.2.3. The address and call ports are

required only on those FSMs that perform function calls, and the return port only on

those that perform function returns.

Initially when FSM1 is operating, its address is at the top of the stack. When it needs

to pass control to FSM2, it places the address of FSM2 on address bus and strobes the

call signal indicating a procedure call. The stack controller pushes this address on to

its stack causing FSM2 to activate and FSM1 to halt at its current state. After FSM2

completes its operations, it strobes the return signal to indicate a procedure return back

to FSM1. This causes the stack controller pops its stack so that the address of FSM1

is back at the top of the stack. This activates FSM1 and it resumes execution. This

mechanism can handle both multiple procedure calls and nested calls.

Support for recursion would require a modification: A calling FSM would need to

additionally stack the identity of the control-step succeeding a procedure call and the

the identity of the control-step in the called procedure. The stack-controller can be used

to stack this information or a memory device can be instantiated in the datapath to im-

plement the stack. Obviously, support for recursion makes the design more complicated,

but it is nevertheless possible in the SFSMD model.

Chapter 3. The Stacked FSMD Microarchitecture 28

Clock

Caller
Enable

Caller
State−Reg

Next
State

Callee
Enable

Callee
State−Reg

Present
State

Procedure Return Timing

Return

Present
State

Next
State

Clock

Callee
AddrAddress

Call

Caller
Enable

Caller
State−Reg

Next
State

Callee
Enable

Callee
State−Reg

Present
State

Procedure Call Timing

Present
State

Next
State

Figure 3.2: Timing Diagram for Procedure Call and Return operations

The timing of the signals involved in procedure calls and returns is indicated in

figure 3.2. As indicated by the timing diagram, for procedure calls, the calling FSM halts

at a state that immediately succeeds the state in which the call strobe was generated,

and it resumes operation from that state when control is passed back. This implies that

every function call must be followed by a wait state into which the FSM enters and idles.

Extra states for driving the address lines and generating the call signal are not required.

They can be generated by Moore-assignments in states that immediately precede the

inserted wait state. This means that a calling procedure incurs the penalty of only one

extra state due to the wait state.

Similarly, for procedure returns, a wait state needs to be inserted immediately after

the state that generated the return signal. Since like procedures calls, an extra state is

not required to drive the return signal, a procedure return operation requires only an

extra state.

Since procedures may require the passing and returning of parameters, a set of input

and output registers can be defined for each procedure. Prior to each procedure call,

an additional control step may be required to copy the actual parameters to the input

register, and another control step to receive any outputs stored by the procedure. In

order to support recursion, the parameters will need to be stacked in memory.

Chapter 3. The Stacked FSMD Microarchitecture 29

3.2.1 SFSMD Design Example

An example is used to illustrate the SFSMD architecture as shown in figure 3.3. A simple

procedural design written in VHDL describing SumOfCubes is used. This is similar to a

design example used in [21]. The evaluation is performed by implementing SumOfCubes

as an inlined procedure which uses the FSMD model, and comparing it to the SFSMD

style in which it is described as a separate controller. Design tradeoffs between the two

styles are presented and discussed.

entity EXAMPLE is

port(IN1 : in std_logic_vector (3 downto 0) ;

IN2 : in std_logic_vector (3 downto 0) ;

OUT1 : out std_logic_vector (3 downto 0)

);

end ;

architecture BEHAVIOR of EXAMPLE is

begin

process

procedure SumOfCubes(I,J: in std_logic_vector(3 downto 0);

K: out std_logic_vector(3 downto 0)) is

variable II, JJ : std_logic_vector(3 downto 0) ;

begin

II := I * I * I ;

JJ := J * J * J;

K := II + JJ ;

end SumOfCubes ;

variables A, B, C, D, E, F, G : std_logic_vector(3 downto 0) ;

begin

A := IN1 ; B := IN2 ;

D := A + B ;

SumOfCubes(A,B,C) ;

E := C + 2 ;

F := D + 2 ;

SumOfCubes(F,E,G) ;

OUT1 <= G + 5 ;

end process ;

end BEHAVIOR ;

Figure 3.3: An Introductory Example

Chapter 3. The Stacked FSMD Microarchitecture 30

FSMD Implementation of SumOfCubes

When inlining, calls to a procedure are replaced by the body of procedure, resulting

in a single FSMD structure. The synthesis results of the example after inlining both

procedure calls is shown in figure 3.4. The status signals from the datapath unit are not

required in this design and so are omitted. The advantages of inlining are apparent, as

operations in the main body and the procedure are overlapped resulting in an 8 control

step design.

S
T

A
T

E
−

R
E

G
IS

T
E

R

C
O

N
T

R
O

L
T

A
B

LE

DATAPATH
CONTROL

(A)

(B)

CONTROL UNIT DATAPATH UNIT

IN1

IN2

OUT1

A

B

C

D

E

F

G

II

JJ

5

2

M
UX

M
UX

M
UX

MUL

ALU

O

JJ := B * B; F := D + 2;

A := IN1; B := IN2;

C := II + JJ;

JJ := E * E ;

G := II + JJ ;

OUT1 := G + 5 ;

PRESENT STATE NEXT STATE ACTIONS

State0

State1

State2

State3

State4

State5

State6

State7

State1

State2

State3

State4

State5

State6

State7

State0

D := A + B; II := A * A * A;

E := C + 2; II := F * F * F;

MUL

Figure 3.4: Procedure Inlining: (A) State table, (B) Design

We can now discuss the characteristics of the design in terms of resources and the

Chapter 3. The Stacked FSMD Microarchitecture 31

number of control steps.

Functional Units: Due to the sharing of resource between the main body and the

procedure, at least one functional unit of each operation type that exists in either the

main body or the procedure is required.

Number Of Registers: Since the procedure is inlined with the main body, in the

worst case, the total number of registers required is equal to the number of variables in

the procedure plus the number of variables in the main body. This can be reduced if the

synthesis tool is able to perform optimizations.

Number Of Control Steps: The number of control steps for procedure inlining

can be very high if none of the operations of the procedure can be overlapped with the

main block. In this case, the total number of control steps will be the number of control

steps in the main block, plus n times the number of control steps in the procedure, where

n is the number of times the procedure is called. High values of n could result in a

significantly complicated controller.

SFSMD Implementation of SumOfCubes

Figure 3.5 shows the implementation of SumOfCubes as a separate controller using the

SFSMD model. This method can significantly reduce the size of the controller compared

with inlining in cases where multiple procedures are called numerous times.

Procedure SumOfCubes is called from States 1 and 5 in the main controller FSM.

These states are also used to store input parameters into registers P1 and P2. States 3

and 7 are used to read the output data from register R1. Implementation of the design

requires a total of 17 clock cycles.

Functional Units: As in the inlining case, the main block and procedures share

the functional units, requiring one functional unit for each operation type that exists in

either the main body or the procedure.

Number of Registers: An additional register is required for each parameter that

Chapter 3. The Stacked FSMD Microarchitecture 32

is passed to and from a procedure. Therefore, the total number of registers required is

equal to the combined number of variables in the main block and the procedures, plus

the number of parameters passed to and from each procedure.

PRESENT STATE NEXT STATE ACTIONS

State0

State1

State2

State3

State4

State5

State6

State7

State1

State2

State3

State4

State5

State6

State7

E := C + 2 ; P1 := F;

Wait ;

Wait ;

G := R1 ;

OUT1 := G + 5 ;

C := R1 ; F := D + 2;

P2 := E ; Drive ADDRESS; Assert CALL;

D := A + B; P1 := A; P2 := B; Drive ADDRESS; Assert CALL;

A := IN1t; B := IN2 ;

State8

State8 State0

(A)

S
T

A
T

E
−

R
E

G
IS

T
E

R

C
O

N
T

R
O

L
T

A
B

LE

S
T

A
T

E
−

R
E

G
IS

T
E

R

C
O

N
T

R
O

L
T

A
B

LE

STACK
CONTROLLER

D
A

T
A

P
A

T
H

 C
O

N
T

R
O

L

FSM
ENABLE
SIGNALS

S
T

A
C

K
 C

O
M

M
U

N
IC

A
T

IO
N

 S
IG

N
A

LS

MAIN CONTROLLER

SumOfSquares
CONTROLLER

(C)

ALU

C

D

A

II

JJ

R1

P1

P2

2

B

E

F

G

5

M
UX

M
UX

O

M
U

X

M
U

X
M

U
X

IN1

IN2

OUT1

DATAPATH UNIT

(B)

ACTIONSNEXT STATEPRESENT STATE

State0

State1

State2

State1

State2

State0 Wait;

R1 := II + JJ ; Assert RETURN;State3

State3

II := P1 * P1 * P1;

JJ := P2 * P2 * P2;

MUL

MUL

Figure 3.5: SFSMD Controller: (A) State table for Main Block (B) State table for
Procedure (C) and Design

Control Steps: A procedure call incurs an overhead of two cycles - one for the wait

state required after a procedure call, and one for the return. Additionally, parameter

passing between the main body and the procedure, also requires extra cycles. This

overhead, p, is dependent on the procedure call and is: 0 if no input or output parameters

are used, 1 if either input or output parameters are used, of 2 if both input and output

parameters are used. If there are n calls to a procedure then n∗ (p+2) steps are required

Chapter 3. The Stacked FSMD Microarchitecture 33

in addition to the number of steps in the main block and procedures.

3.2.2 Stack Controller

The stack controller is used to handle the flow of procedure calls between the FSMs. A

block diagram of the stack controller is shown in Figure 3.6. Control is passed to an FSM

by pushing its address value onto the stack of the stack controller. This is accomplished

by placing the address value on the address port of the stack controller and raising the

CALL signal. This causes the address value to be pushed to the top of the stack and

the corresponding FSM enable signal to be generated. The RETURN signal is used to

pop the stack in order to return control back to the calling FSM. Both, pop and push

operations take one clock cycle to complete.

D[]

Enable
Clk

Q[]

INC/
DEC

Ctrl

CALL

RETURN

TOP OF STACK

N
E

X
T

 S
T

A
C

K
P

O
IN

T
E

R
 V

A
LU

E

CTRL0
ENABLE

PRESENT STACK
POINTER VALUE

W[n−1 .. 0]

Y2 − 1
n

DECODER

Y0
.
.
.

n input to
2^n output
Decoder

LoadEnable
LoadRegNum

Clk

DriveRegNum

REGISTER FILE

m Register Deep
n Bit wide

D[] Q[]

CTRL
ENABLE

2 − 1
n

ADDRESS OF CALLED
FSM [n−1...0]

Stack Pointer
Register
[log m − 1 .. 0]

2

Figure 3.6: Stack Controller Block Diagram

Chapter 3. The Stacked FSMD Microarchitecture 34

The controller is implemented as a register-file based design where the number of

registers in the file determines the size of the stack, and by extension, the maximum

allowed depth for nested procedures. For non-recursive calls, the maximum depth of

procedure calls can easily be determined during compile time and a stack controller of

the appropriate size can be synthesized.

The stack controller consists of three major parts: (1) A register-file, that implements

the stack, (2) a stack-pointer register that keeps track of the top of the stack, (3) and a

decoder, that generates the enable signals for the FSMs.

The register file is implemented as an array of m registers, each n bits wide, where m

corresponds to the maximum stack depth, and n is the number of bits required to encode

the address of the FSMs. Data is written to a specific register by placing its address

on the LoadRegNum input, and asserting the LoadEnable input. On the positive-edge of

the clock, the data present on the D[] lines gets latched into the register. Data from a

specific register is available on the Q[] lines by placing the address of that register on the

DriveRegNum input.

The stack-pointer register and its associated components allow the register-file to

be controlled as a stack. It holds the address of the register in the register-file that

corresponds to the top of the stack. It drives the DriveRegNum input of the register-file

so that the contents of the top of the stack are available at the output. The stack-

pointer is able increment or decrement by utilizing a feedback mechanism that connects

its output to its input via a controllable increment/decrement module - this feature is

used to implement stack push and stack pop operations. Through an example we see

how this is performed.

Assume initially the stack-pointer stores 0, which corresponds to the first register in

the register-file. Also assume that first register is storing the number 9. The following

sequence of operations are used to push the number 5 onto the stack: First, 5 is placed

on the D[] inputs of the register file and the CALL signal is raised at the start of a rising

Chapter 3. The Stacked FSMD Microarchitecture 35

clock edge to indicate a push operation. The increment/decrement module increments

the stack-pointer value and outputs a 1 which is fed to the LoadRegNum input of the

register-file, and the D[] input of the stack-pointer. On the next rising edge of the clock,

the register-file updates the contents of the second register with the value 5, and the

stack-pointer updates to 1. The Q[] output of the register-file now outputs 5 to reflect

the updated stack-pointer value.

For a pop operation, the CALL signal is negated and the RETURN signal is raised

at the start of a rising clock edge. The increment/decrement module now decrements

the current stack-pointer value and outputs 0. On the next rising clock-edge the stack-

pointer register updates to this value. This causes the register-file to output the contents

of the first register which is 9.

This example shows that the CALL and RETURN strobes must be active for only

one clock cycle for correct operation. If these strobes are active for multiple clock-cycles,

the stack-pointer will increment or decrement multiple times causing the wrong stack

value to be output by the register file.

Lastly, an n input to n2 output decoder unit is used to generate the enable signals for

the FSMs. Only one output is asserted at a time, and each output corresponds to one

valuation of the input. The input is connected to the output of the register-file which

corresponds to the address of FSM at the top of the stack.

Chapter 3. The Stacked FSMD Microarchitecture 36

3.3 Dynamic Memory Allocation

A dynamic memory allocation unit can be incorporated into the SFSMD model. In fact,

the allocator is general enough to be included in the FSMD architecture as well. During

high-level synthesis, variable arrays with dynamic indexing result in memories [4]. At the

RTL-level, this corresponds to memory devices instantiated as datapath components. An

additional memory device can be dedicated for dynamic memory allocation - based on the

size of this memory, an appropriate dynamic memory allocation unit can be synthesized

to handle memory allocations for it.

The memory allocation unit can either be used as a datapath component, or be

considered a separate microarchitectural component. In the SFSMD model, it would be

shared amongst the various controllers in a way similar to how the datapath components

are shared. A memory allocation operation would consist of transmitting the desired

size of memory to the allocator, and strobing an Allocate signal. After a fixed number

of cycles, the allocator would respond with a Success signal to indicate if the allocation

attempt was successful or not, followed by the transmission of the starting address of the

block for successful attempts. Memory free operations would involve transmitting the

size and address of the memory block to be freed to the allocator, and asserting a Free

strobe.

3.3.1 Description of Memory Allocator

This section provides a brief description of the dynamic memory allocation unit. It is a

buddy-system based design similar to the one described by Chang and Gehringer [15].

The hardware allocator uses a bit-vector to represent memory. Each bit in the bit-

vector represents the status of memory located at an address specified by the bit position

of that bit. For example, in an eight-bit vector, bit 0 would represent memory at address

0, bit 1 to memory at address 1, and so on. A bit in the bit-vector can represent a memory

Chapter 3. The Stacked FSMD Microarchitecture 37

block of arbitrary granularity. For example, a bit can represent a byte of memory, or it

can represent a word (2 bytes), or a long-word (4-bytes), etc.

A bit value of 0 indicates that it is free, and a bit set to 1 indicates that it is has

been allocated. This is illustrated in figure 3.7. A hardware binary-tree is maintained

that finds free blocks in the bit-vector using combinational logic.

1 1 1 0 0 001

0 0 0 0 0 0 00

MEMORY: BIT−VECTOR

Occupied

After Free Operation

Before Free Operation

Free

Free

Figure 3.7: Bit-Vector Representation of Memory

The following hardware tasks need to be performed in order to manipulate the bit-

vector:

1. Determine from bit-vector if there is a large enough space for allocation.

2. If so, find the starting address of that memory chunk.

3. Flip the corresponding bits in the bit-vector.

An or -gate tree is used to perform function (1), an and -gate tree used to perform

function (2), and bit-flipper tree circuitry is used to perform function (3). The important

aspect of this implementation is that the circuits are combinational, and therefore fast.

Figure 3.8 provides a graphical overview of the memory allocator.

A memory of 2N blocks requires a memory-allocator with trees that have 2N − 1

nodes. This indicates that the circuit size is directly proportional to the memory size.

Chapter 3. The Stacked FSMD Microarchitecture 38

1 0 1 1 0 1 1 0

BIT−FLIP CIRCUITRY

Bit − Vector

Used to determine if the space for
Used to find the address of available space

 BITS

ADDRESS

SIZE BITS

The size of memory

to be allocated

Flips the bits corresponding to the

allocation is available in bit−vector

available space in bit−vector

BIT−FLIP BITS

OR−TREE AND−TREE

Figure 3.8: Memory Allocator Block Diagram

For allocations, the requested block size is presented on the Size bits of the allocator.

The allocator returns the starting address of the free memory space that is available in the

in the bit-vector. It also generates the bits that are used to mark the the corresponding

bits in the bit-vector as occupied. Status signals are used to indicate to the user as to

the successful completion of the operation.

Free operations are carried out by presenting the allocator with the size and address

of the block of memory to be freed. The bit-flip circuitry generates the bits to mark the

corresponding bits in the bit-vector as available.

Chapter 3. The Stacked FSMD Microarchitecture 39

OR tree

The OR-tree is used to determine if a free block is available in order to accommodate an

allocation request. It consists of a complete binary tree “built on top” of the bit-vector

[15], where the nodes of the tree consist of simple OR-gates. The leaves of the tree are the

bits of the bit vector as indicated in figure 3.8. For a bit-vector with 2n bits, a tree with

2n − 1 nodes is required. The bit-vector values are propagated up through the OR-tree,

and the output value of each node provides the availability information of a memory

chunk of size 2n−l, were l is the depth-level of the node in the tree (the head node is at

level 0). This information is used by the AND-tree to generate the address location of

the memory block in the bit-vector.

AND tree

The AND-tree uses the availability information from the OR-tree along with with the

Size information provided by user to find the address of the block in the bit-vector. The

nodes of the tree are constructed out of AND gates. The node information from each

OR-gate is combined with the Size bits and is fed into the AND-tree. This information

is propagated up towards the root in such a way that the location of the corresponding

block of memory can be found by a non-backtracking search [15] of the nodes. For a

bit-vector with 2n number of bits, a tree with 2n − 1 nodes is required.

Bit-Flipper Circuitry

The bit-flipper circuitry is used to update the allocation status of the bits in the bit-

vector. For allocation, the corresponding bits must be marked as occupied (i.e, set to

1), and for free operations, they must be cleared. The inputs to the bit-flipper are the

starting address of the bits that need to be flipped (provided by the AND tree), and the

number of bits to flip (the Size bits). Unlike the previous trees, the bit-flipper propagates

signals from the root of the tree to the leaves [15]. The bit values available at the leaves

Chapter 3. The Stacked FSMD Microarchitecture 40

are used to update the status of the bit-vector. Each node in the tree consists of identical

combinational logic that allows information from the parent node to be broadcasted to

its children. For a bit-vector with 2n bits, a tree with 2n − 1 nodes is required.

The allocator implementation details and results can be found in Chapter 5.

Chapter 4

Region Based Partitioning

4.1 Introduction

This chapter describes a behavioral partitioning scheme for power reduction. It is divided

into three major sections: The first section describes the partitioning methodology. The

second section describes the clock-gating technique used to implement power-efficient

SFSMD controllers, and finally, the last section provides a design example that is used

to evaluate the effectiveness of the partitioning scheme.

4.2 Partitioning Methodology

Due to the prevalence of loops in a program, most of the execution time is spent com-

puting a small number of operations. By extracting such loops and implementing them

as separate controllers in the SFSMD model, significant power savings can be achieved.

This is because the controller for each loop is smaller than the single controller imple-

menting the entire system, and since only one controller is running at any given time,

the remaining ones can be deactivated, thus saving power [30].

We propose a partitioning scheme that operates at the behavioral level prior to syn-

thesis. The partitioner redefines the procedure boundaries for the original specification

41

Chapter 4. Region Based Partitioning 42

by first exlining loops. Exlining can be defined as the inverse of inlining in which a

sequence of statements are replaced by procedure calls [25]. Each exlined loop is then

implemented as a separate controller in the SFSMD model. Figure 4.1 illustrates this

process.

Original Specification

Loop1

Loop2

Loop3

Loop4

Call
Loop1

Call
Loop2

Call
Loop3

Call
Loop4

Loop3
Loop1

Loop2
Loop4

After Loop Exlining

Main Controller

Stack
Controller

Loop1 Controller

Loop2 Controller

Loop3 Controller

Loop4 Controller

Shared
Datapath

SFSMD Implementation

Figure 4.1: Region Based Partitioning

If the loops account for a major portion of the overall execution time, significant power

savings can be achieved since overall switching activity is reduced due to the localized

activities of each smaller individual controller for the loops [30]. The ability to localize

the controller activity is inherent in the SFSMD model where each inactive controller

can be disabled by stopping its clock.

The partitioning scheme can be generalized by defining it as a transformation of the

original design via a series of exlining and inlining operations. Inlining helps improve

Chapter 4. Region Based Partitioning 43

parallel-level optimizations by incorporating acyclic instructions from existing procedures

into the main body. Inlining also exposes loops within the procedures. The result is a

design where the main body is composed entirely of either, a series of acyclic instructions,

or procedure calls to exlined loops. This is illustrated in figure 4.2.

Call
Foo

Loop
1

Procedure
Foo

Loop
2

Main
Process

Loop
1

Loop
2

Main
Process

Loop2

Loop1

Call
Loop2

Call
Loop1

Main
Process

(a) (b) (c)

Figure 4.2: Inlining and Exlining Transformations. (a) Original Specification, (b) After
inlining foo, (c) After loop exlining.

The extraction of loops introduces extra power overhead due to inter-procedural com-

munication between the controllers and due to loss of control-step optimizations across

procedure boundaries. Communication overhead occurs due to extra states 1 that need

to be inserted to implement procedure calls and returns, switching activities involved in

the stack-controller, and the activities of tri-state buffers used for sharing the datapath.

This means that loop exlining cannot be done indiscriminantly since high-power overhead

loops can result in a design with increased power requirements. What is required is a

method for selecting a subset of loops for exlining, such that the reduction of of power

far outweighs the power increase due to communication.

1Due to the shared datapath, extra states are not required for parameter passing since all controllers
have access to the same variables.

Chapter 4. Region Based Partitioning 44

4.2.1 Partitioning Power-Index

The loops from a behavioral specification can be extracted for SFSMD implementation

in any number of ways as indicated in figure 4.3. If there are n loops at the root-level,

then there are 2n possible ways of partitioning the code - nested loops further increase

this value.

Loop3

Loop4

Loop1

Loop2

Loop3

Loop4

Loop1

Loop2

Original Specification

Loop3

Loop4

Parition 1

Loop1

Loop2

Call
Loop3

Call
Loop4

Region 1
Region 2

Region 3

Loop3

Loop4

Loop1

Call
Loop1

Loop2

Call
Loop1

Partition 2

Region 1
Region 2

Loop3

Loop4

Loop1

Call
Loop2

Loop2

Partition 3

Region 1

Region 2

Partition 4

Loop3

Loop4

Loop2

Region 2

Region 3

Region 4

Loop1

Call
Loop3

Call
Loop4

Region 1

Call
Loop2

Figure 4.3: Some possible ways of partitioning code

The partitions can be represented by a tree structure as indicated in figure 4.4. Each

node in the tree, except for the root, corresponds to a loop region. A child of a node

Chapter 4. Region Based Partitioning 45

corresponds to a nested loop within the node. The parent of a node corresponds either

to an outer loop or the main process in which the node resides. The root of the tree

always corresponds to the main process. Each edge can be weighted with the accumulated

number of iterations of the parent node. This represents the total number of calls made

to its child.

Main

Loop1 Loop2

Loop3 Loop4

Original Specification Tree

Main

Loop1 Loop2

Loop3 Loop4

Partition 1 Tree

Main

Loop1 Loop2

Loop3 Loop4

Partition 4 Tree

Main

Loop1 Loop2

Loop3 Loop4

Partition 2 Tree

Main

Loop1 Loop2

Loop3 Loop4

Partition 3 Tree

Figure 4.4: Tree Representation of Partitioning

A partition can be simply considered as a “cut” across the nodes of the tree. The

cut can be made in any direction - sideways, vertically, diagonally, etc, so there are

exponential number of partitions possible. The cuts shown in figure 4.4 correspond to

the partitions depicted in figure 4.3. The regions of a partition are formed by splitting

the tree at points where the cut intersects the edges of the nodes. At each split point, a

call instruction has to be added in the parent loop for each child. The total number of

calls made to each child is the same as the weight of the edge that was cut.

Two main observations can be made from the partitioning tree: 1) The size of the

Chapter 4. Region Based Partitioning 46

controller of a child loop is always smaller than, or equal to the size to the controller of

its parent, and 2) the number of times a child loop executes is always greater than, or

equal to the number of times its parent executes. These relations occur because the child

loops are embedded inside the parent. This means that as we traverse down the tree

starting from the root, the controller size of each node decreases monotonically while the

edge weights increases monotonically. Therefore, the leaves of the trees consist of nodes

with smallest controllers, but they are also the most often called nodes.

A method is required for selecting the most power efficient partition. Intuitively, since

overall switching activity is reduced to the localized switching activities of the individual

controllers, the partition with the lowest power would be one in which every node is

considered as a separate region. However, this type of splitting would incur the highest

communication overhead and could result in increased power consumption. For designs

in which the majority of execution time is spent in the inner-most loops, a promising

partition would be a horizontal cut at the lowest depth, as indicated by partition 4 in

figure 4.4. This partition would result in minimal power consumption as long as the

communication overhead was low. The best partition optimally balances the number of

extracted regions with communication overhead. A good partitioning algorithm would

be able to find the optimal partition by having to examine only a fraction of all the

possible partitions. It may be possible to apply the monotonic qualities of the tree to

develop such an algorithm. This, however, is considered future work material and is not

investigated in this thesis.

Assuming a set of candidate partitions exist, the problem then is of selecting one that

maximizes power reduction. Formally, a partition is defined as a collection of k regions

R.

P (S) = {R1, R2, . . . , Rk} such that Ri ∩ Rj = ? for i 6= j, and
k∪

i=1
Ri = S.

Where Ri consists of the set of basic-blocks corresponding to an exlined loop or main

process.

Chapter 4. Region Based Partitioning 47

For each partition Pj, a power index is defined as:

Pj =

k∑

i=1

|States(Ri)| · Cycles(Ri) + K · Calls(Ri) (4.1)

where Ri ∈ Pj

|States(Ri)| is the number of control-steps used in the FSM of the controller for region

i. It is used to represent the relative “power complexity” of the region. Generating

control-steps requires that scheduling be performed on the basic-blocks of the region.

Scheduling is typically performed at a later stage during high-level synthesis, and is

strongly intertwined with with the allocation phase. However, fast scheduling can be

performed at the behavioral level which does not require allocation. For example, “as

soon as possible” (ASAP) scheduling can be used to get a quick estimate of the number of

control-steps. It does not take resource constraints into consideration (assumes unlimited

resources) and follows a simple rule that an assignment to a variable can execute only

after the values of its operands have been computed. Cycles(Ri) is the accumulated

number of control-cycles spent in region i and can be determined by simulating the

original specification. Calls(Ri) represents the number of calls made to region i, and K

is a constant for controlling the relative weight of the contribution. Calls(Ri) can be

computed by simply simulating the original specification and measuring the frequency of

transitions to the region.

Since the regions are active only one at a time, the index expresses the total power

of a partition as a sum of the “energy” contributions of the individual regions. The first

term represents the energy expended by the controller of the region, and the second term

adds the energy for communication. The partition with the lowest power index should

be chosen for SFSMD implementation.

Chapter 4. Region Based Partitioning 48

4.3 Power Reduction through Clock Gating

The clock gating technique is used to provide a power-efficient implementation of register

banks that are disabled in the SFSMD controllers.

Controllers in the SFSMD model are deactivated through the use of enable signals.

The enable signal is connected to the enable input of the control-state registers of the

corresponding controller. When the enable signal is unasserted, the registers are disabled.

Without clock gating, the enable circuitry for the register-banks is implemented by a

feedback loop via a multiplexor as shown in figure 4.5 (a).

Q[] D[]

REGISTER
BANK

CONTROL
LOGIC

MUX

O

1

Q[] D[]

CONTROL
FLIP−FLOPS

DATA−IN

DATAOUT

CLK

ENB

CONTROL
LOGIC

Q[] D[]

CONTROL
FLIP−FLOPS

Q[] D[]

REGISTER
BANK

DATA−IN
DATAOUT

CLK

LATCH

 LD[] LQ[]

 LG

ENB
ENCLK

ENBL

CLK

CLK

ENB

ENBL

ENCLK

(a)

(b)

(c)

Figure 4.5: Clock-Gating (a) Regular circuitry for disabling registers, (b) Using clock-
gating, (c) Timing diagram for clock-gating

When registers maintain the same value for successive clock signals, unnecessary

power is expended because the capacitance on the clock net and clock pins of the registers

Chapter 4. Region Based Partitioning 49

are still being driven [23]. Furthermore, even though the outputs of the registers do not

change, power is still expended due to internal switching within the registers.

Clock-gating handles the enabling of registers by directly controlling the clock of the

register banks. It eliminates the need for reloading the same value in the register through

multiple clock cycles. Power is saved by eliminating the unnecessary activity associated

with reloading register banks and minimizing switching activity on the clock nets and

pins.

As shown in figure 4.5 (b), clock-gating eliminates the feedback net and multiplexor by

inserting an AND gate in the clock net of the register along with a latch. The waveforms

of the signals are shown in figure 4.5 (c). The clock input to the register-bank, ENCLK

is gated through the AND gate. The gating is controlled by the ENBL signal which is

derived from the original ENB signal. Positive-edge transitions on the ENCLK allow

the register-bank to be triggered.

The latch prevents glitches on the ENB signal from propagating to the register’s clock

pin. Without the latch, during the logic 1 state of the CLK pulse, any glitches on the

ENB line could propagate and corrupt the register clock signal. The latch eliminates

this possibility by blocking signal changes when the clock is at logic state 1 [23].

For designs that have large multibit-registers, such as state-registers of controllers

and the register-file of the stack-controller, clock-gating can save power and reduce the

number of gates in the design. However, for smaller register-banks, the overhead of adding

logic to the clock tree might not compare favorably to the power saved by eliminating a

feedback nets and multiplexors [23].

4.4 Design Example

A blackjack gaming machine [22] design example is used to illustrate the concept of the

region based partitioning. The blackjack machine is first implemented using a regular

Chapter 4. Region Based Partitioning 50

FSMD model, in which a control unit and a datapath unit is used. Baseline power

and area measurements are taken for this implementation. Then, a loop region in the

controller is extracted from the main body resulting in two separate controllers (plus the

datapath). This configuration is implemented using the SFSMD model. Power and area

measurements for this implementation are compared with the FSMD measurements.

4.4.1 Blackjack Controller

Blackjack is a popular card game played at casinos. It uses the standard 52 card deck, in

which the suits of the cards, i.e, spades, clubs, hearts, and diamonds, have no significance

and are ignored. The value of the card is important, where the face cards, i.e, Jacks,

Queens, and Kings, all have the value 10 and Aces have the value of 1 or 11, depending

on what the player chooses.

In blackjack, the highest total value of cards that can be held is 21. The goal of the

game is to beat the dealer, who has no other objective than to follow the rules of the

casino, which are to hold on hands of 17 or higher, and to draw another card on hands

of 16 or less.

If a player’s card value is over 21 or less than that of the dealer, he has to declare a

bust and he loses. A player can improve his hand by requesting another card from he

dealer. This is called drawing. He can hold if he is satisfied with his current hand.

The state-diagram of the blackjack machine is shown in figure 4.6. It is similar to a

design described in the book HDL Chip Design [22].

Chapter 4. Region Based Partitioning 51

Reset
0

WaitCard1
1

Card1Delt
2

Card1Pic
4

Card1Ace
3

Card1_2to10
5

TestGE16
11

TestGE22
12

AcesAs1
13

ShowHold
14

ShowBust
15

DrawNextCard
6

NextCardDelt

NextCardPic
9

NextCard_2to10
10

NextCardAce
8

16

Reset

CardDelt

Ace Jack, Queen
or King

Two − Ten

GE16

CardDelt

Ace Two − Ten

GE16

Jack, Queen
or King

TestNextGE16

not GE22

GE22 and
not AcesAs11

GE22 and
AcesAs11

7

Figure 4.6: Blackjack Controller State-Diagram

Chapter 4. Region Based Partitioning 52

The state-diagram defines the controller portion of the FSMD model. The datapath

circuit is not shown. For region based partitioning, we need to extract a loop portion for

separate implementation that can potentially result in power savings. The highlighted

region in the figure is selected. It enters into the DrawNextCard state in which the next

card is drawn. If the updated total card-value is less than 16, control is passed back to

DrawNextCard, else it exits out of the region into state TestGE22. The loop is formed

by the back edge from state TestNextGE16 to state DrawNextCard.

Intuitively, if this region were to be extracted and implemented as a separate con-

troller, maximum power-savings would result if low valued cards were drawn. This is

because low valued cards would ensure that most of the execution time is spent within

the smaller controller. On the other hand, drawing a sequence of Aces could have an

adverse effect on power due to increased interactions between the main controller and

the extracted controller.

State-diagrams for the two controllers generated after loop region extraction are shown

in figures 4.8 and 4.7. The controllers can be implemented using the SFSMD model which

allows the sharing of a common datapath. The datapath is identical to the one used for

the FSMD implementation. State Wait After Call has been added to the main controller

to handle calls to the extracted controller, and state Wait After Return has been added

to the extracted controller to handle returns.

Chapter 4. Region Based Partitioning 53

DrawNextCard

NextCardDelt

NextCardPic NextCard_2to10NextCardAce

CardDelt

Ace Two − Ten

GE16

Jack, Queen
or King

TestNextGE16

0

1

2 3 4

5

6
Wait After Return

Figure 4.7: Blackjack State-diagram of Loop Region After Extraction

Reset
0

WaitCard1
1

Card1Delt
2

Card1Pic
4

Card1Ace
3

Card1_2to10
5

TestGE16

TestGE22

AcesAs1

ShowHold ShowBust

Reset

CardDelt

Ace Jack, Queen
or King

Two − Ten

Wait After Call GE16

GE22 and
AcesAs11

GE22 and
not AcesAs11not GE22

6

7

8

9

10 11

Figure 4.8: Blackjack Sate-diagram of Main Controller Region After Extraction

Chapter 4. Region Based Partitioning 54

4.4.2 Implementation Methodology

The design was implemented as follows:

1. For the FSMD implementation, the state-diagram from figure 4.6 was used to de-

scribe the controller unit with a corresponding datapath.

The partitioned design was implemented using an SFSMD model.

Separate controllers specified by state-diagrams in figure 4.8 and figure 4.7 were

described and the appropriate control signals for SFSMD operation were added.

Additional components required for SFSMD implementation such as the stack con-

troller and tri-state buffers were also described. The same datapath unit from the

FSMD implementation was used. All designs were described in VHDL.

2. The designs were simulated to verify correct operation.

3. The designs were synthesized into gates using the Design-Compiler tool of Syn-

opsys2. The designs were synthesized using two methods: in the first method,

the disabling of register-banks was handled in the standard way, i.e, a multiplexor

was used to feed-back outputs to hold the current value. In the second method,

clock-gating was used to control the disabling of registers. In the FSMD model,

clock-gating is only relevant for datapath registers, since the controller registers are

never disabled. In the SFSMD model, clock-gating effects registers in the datapath

unit, the partitioned controllers, and the stack controller.

4. The synthesized designs were re-simulated to verify correct functionality, and to

capture the switching activity of the gates.

5. Data from switching activity captured during gate-level simulation was used by the

Power Compiler tool of Synopsys to report power. In addition, area measurements

of the design were also made.
2The wcells CMOSP35 0.35 micron library provided by the Canadian Micro-Electronic Corporation

(CMC) was used.

Chapter 4. Region Based Partitioning 55

4.4.3 Results of Design Example

The results of the Blackjack controller are tabulated in table 4.1. The power figures are

based on switching activity captured by simulating the drawing of low value cards.

As per the results, appreciable power savings due to partitioning occurred only when

clock gating was used to control the disabling of registers. Furthermore, clock gating

also decreased the area overhead compared with the non-gated implementation. In this

example, the SFSMD implementation achieves a maximum 11.6% improvement in power

over the FSMD approach, with an area overhead of 26.8%, and execution time overhead

of 5.7 %.

Clock Gating FSMD SFSMD
Used Implementation Implementation

Power Area Power Area % Power % Area
(µ Watt) (µ Watt) Reduction Overhead

No 248.9 22447 240.2 29322 3.5% 30.7%
Yes 217.7 21907 192.5 27784 11.6% 26.8%

Table 4.1: Power and Area Results for Blackjack Game Machine

The area break down of the FSMD and SFSMD implementations in terms of internal

components is shown in tables 4.2 and 4.3 respectively.

Clock Gating Component Area % of
Used Total Area

Controller 10004 44.6%
No Datapath 12443 55.4%

Total 22447 100%
Controller 10004 45.7%

Yes Datapath 11903 54.3%
Total 21907 100%

Table 4.2: Area Break-Down For FSMD Implementation

Chapter 4. Region Based Partitioning 56

Clock Gating Component Area % of
Used Total Area

Main Controller 7766 26.5%
Loop Controller 4887 16.7%

No Stack Controller 2850 9.7%
Tri-State Buffers 12443 4.7%

Datapath 12443 42.4%
Total 29322 100%

Main Controller 7116 25.6%
Loop Controller 4539 16.3%

Yes Stack Controller 2850 10.2%
Tri-State Buffers 1376 4.9%

Datapath 11903 42.8%
Total 27784 100%

Table 4.3: Area Break-Down For SFSMD Implementation

Table 4.4 shows results in which the power figures are based on the switching activity

captured by simulating the drawing of Aces. As expected, due to the increased commu-

nication between the extracted loop and the main body, the SFSMD implementation is

not able to reduce power.

This highlights the importance of profiling the application prior to loop extraction,

since clues may be revealed regarding the amount of inter-controller switching activity.

This information can aid in the decision to extract loops.

Clock Gating FSMD SFSMD
Used Implementation Implementation

Power Power % Power
(µ Watt) (µ Watt) Reduction

No 251.5 271.1 -1.1%
Yes 217.1 216.3 0.4%

Table 4.4: Power Results Based on High Controller Inter-Communication

Chapter 4. Region Based Partitioning 57

Dramatic power reduction through region partitioning can be demonstrated by mod-

ifying the blackjack controller. Let us suppose the blackjack controller described in

figure 4.6 is changed so that while its waiting for cards to be dealt in states WaitCard1

and DrawNextCard, it generates output pulses. These output pulses could be used to

indicate to an external source that the controller is waiting for a card to be dealt. The

generation of pulses would require additional states to be added, into which WaitCard1

and DrawNextCard toggle in and out. This modification forms a loop which can be

extracted for implementation as a separate controller. Also, assume the blackjack con-

troller is playing with a human dealer, whose response to card requests is several orders

of magnitude slower than the controller. Therefore, most of the time is spent toggling in

the loops described.

The results of SFSMD implementation based on the extraction of the loop described

is presented in table 4.5. Power figures are based on the switching-activity captured by

simulating the slow servicing of cards. A power reduction of over 53% is obtained for

this design.

Clock Gating FSMD SFSMD
Used Implementation Implementation

Power Area Power Area % Power % Area
(µ Watt) (µ Watt) Reduction Overhead

No 208.5 22355 160.9 29046 22.8% 29.9%
Yes 208.3 22809 97.0 27868 53.4% 22.2%

Table 4.5: Dramatic Power Savings by Region Partitioning

In this example, significant gains in power reductions are made because compared

with the original controller, the extracted loop is tiny, and most of the time is spent

running this loop.

Chapter 5

Experiments and Results

5.1 Introduction

This chapter describes region based partitioning experiments performed on loop-intensive

C benchmark kernels. The results are used to evaluate the effectiveness of applying this

technique to substantial designs described in HLLs. The experiments are also used to

determine how well the values of the power-index equation correlate with the actual power

of the partitions. Additionally, the synthesis results of the dynamic memory allocation

core are also studied. The quality of the core is evaluated by studying how well it scales

with modern process technologies.

5.2 Region Partitioning Experiments

The region based partitioning was applied to various C benchmark kernels in order to

evaluate its impact on power consumption. The benchmarks used were based on the

Livermore kernels [32]. These kernels were chosen because their loop-intensive nature

made them appropriate for loop extraction, and also because they could be synthesized

in reasonable amounts of time. Minor modifications were made to some of the kernels in

order to make them suitable for the experiments. These modifications included adding

58

Chapter 5. Experiments and Results 59

initialization code to the beginning of the benchmarks in order to initialize variables and

arrays, and in some cases, removing a level of loop nesting in order to reduce synthesis

time.

Ideally, an automated tool would have been used to partition the kernels and to gen-

erate the appropriate SFSMD structure for synthesis. However, due to the lack of such

automation, generating the complete SFSMD structure for each partition of a kernel was

infeasible. In the blackjack controller example of chapter 4, a full manual implementation

of the SFSMD model was possible because of the manageable size of the design and be-

cause only one partition was investigated. The C kernels, however, result in much larger

designs with hundreds of control-states, and multiple partitions have to be considered.

Since power measurements of complete SFSMD implementations were not possible, indi-

rect measurements were made by summing up the power contributions of the component

regions that comprise a partition. As will be explained later, this is a reasonable approach

since in the SFSMD model, only one region controller is active at any time. Furthermore,

since the partitioning technique is used for reducing the controller power, only controller

power figures are compared - the datapath power is not considered since it is the same

for both FSMD and SFSMD implementations (both use identical datapaths). Therefore,

these experiments compare the reduction in controller power of region based partitioned

designs over unpartitioned ones.

The experimental methodology is summarized below:

1. Each C kernel was first profiled to determine the potential loop regions and the

number of calls made to each region.

2. The kernel was then compiled into VHDL using the eXcite synthesis tool from Y-

Explorations Inc. It generates an FSMD structure with a separate controller and

datapath. It also reports design statistics such as the total number of states in the

controller.

Chapter 5. Experiments and Results 60

3. The VHDL design was simulated in order to verify correct functionality and to cap-

ture switching activity. Additionally, the total number of cycles required to com-

plete the simulation and the number of cycles spent in each region were recorded.

4. The controller portion of the VHDL design was synthesized into gates using the

Design Compiler tool from Synopsys. Data from switching activity captured during

simulations was used by the Power Compiler tool of Synopsys to report power. Area

measurements of the design were also recorded. These measurements formed the

base-line results for the unpartitioned design.

5. Each kernel was then manually split up into various partitions. This was done by

studying the kernels, and manually extracting the region portions of the code into

separate C files.

6. The different regions corresponding to each partition were compiled into VHDL.

7. The controller portion of each of the region was synthesized into gates using Design

compiler. Power and area measurements of the region were made.

8. The total effective controller power for each partition was calculated by summing

up the energy contributions of each region, and dividing that by the total exe-

cution time. The area of each partition was calculated by summing the areas of

the component regions. These power and area figures were compared against the

unpartitioned design.

The wcells CMOSP35 0.35 micron library provided by the Canadian Micro-Electronic

Corporation (CMC) was used by Design compiler to synthesize the design.

5.2.1 Partitioning Methodology

As discussed earlier, the number of partitions of a program is exponential in the number

of loops present. Since we were manually extracting and processing the partitions, the

Chapter 5. Experiments and Results 61

search space had to be decreased due to time constraints. This was done by limiting the

number of partitions of a kernel to the maximum loop depth in the specification. For

example, in a design with three root-level loops, only two partitions would be considered

: The first partition would consist of only one region - the original specification without

exlining. The second partition would be composed of four regions consisting of three

exlined loops along with the main procedure which calls the loops.

In general, if the maximum nesting-level of a loop in a specification was m (where

root level loops are considered to be at level 1), the number of partitions considered

were m + 1, where each partition would exline nested loops at the corresponding level.

Figure 5.1 shows an example of three partitions resulting from a specification with a level

2 nested loop. Partition 0 always corresponds to the unpartitioned design. In order to

reduce communication overhead, the parents of nested loops were not exlined as the loop

depth was traversed - this is indicated in Partition 2 of the figure.

Loop3

Loop1

Loop3

Loop1

Loop2Loop2

Original Specification

Loop3

Loop1

Loop3

Loop1

Loop2Loop2

Original Specification

Region 1

Call
Loop1

Call
Loop2

Main
Controller

Region 1

Loop3Loop3

Loop1

Region 2

Loop2

Region 3

Only loops at root−level (level 1) have
been exlined

Loop1Loop1

Call
Loop3

Call
Loop2

Main
Controller

Loop3

Region 2

Loop2

Region 3

Region 1

Consists of the original specification
Partition 0

Partition 1

Partition 2
Level−2 nested loop has been exlined. Parent loop
of nested loop has been retained with main
controller.

Figure 5.1: Partitions Considered

Chapter 5. Experiments and Results 62

The partitioning strategy can also be visualized by using the tree-representation that

was described in the previous chapter. The partitions are formed by making horizontal

cuts across the tree as each depth level is traversed as indicated in figure 5.2. Due to the

tree-structure, horizontal cuts allow the widest range of region-granularity to be exercised

in the shortest number of steps. Therefore, for each kernel, power figures are available

for partitions with regions ranging from the highest granularity (unpartitioned) all the

way to very low (the deepest level nested loop have been exlined).

Main

Loop1 Loop2

Loop3

Main

Loop1 Loop2

Loop3

Main

Loop1 Loop2

Loop3

Partition 0 Partition 1 Partition 2

Figure 5.2: Tree-Representation of Partitions Considered

This strategy is effective in finding low power partitions for designs in which most of

the execution time is spent in the inner most loops. This is because the horizontal cuts

insure that the deepest nested level loops will be ultimately extracted and implemented

as separate controllers. Since these controllers represent regions of the finest granularity,

their power consumption will be very low.

5.2.2 Measuring Power Of The Partitions

The power of a partitioned design was calculated by summing the energy contributions of

the individual regions and dividing it by the total time of the simulation. The equation

used to calculate the power for each partition is shown:

Chapter 5. Experiments and Results 63

Power =
1

CyclesTot

k∑

i=1

CyclesRi · PwrRi + PwrStack · CallsRi (5.1)

where Ri is a region of the partition

CyclesTot: This is the total number of cycles used to complete the simulation of the

unpartitioned design. Cycle overhead for regions calls and returns were added for the

different partitions.

CyclesRi: This is the accumulated number of cycles spent executing region i. This

was obtained from simulations of the unpartitioned design. Cycle overhead for region

calls and returns were added for the different partitions.

PwrRi: This is the intrinsic power of the controller associated with region i. This

value was obtained by using Power Analyzer to report power for the synthesized controller

of the region. Power Analyzer calculates power based on the switching activity of the

nets in the design. If the primary inputs of the design are not annotated, is assumes a

certain toggle rate and switching probability in order to propagate switching activity to

the unannotated nets. This is reasonable for data bus lines, however, inappropriate for

FSMs, since in FSMs, certain input signals such as Reset, tend to stay idle for long periods

of time. The power accuracy can be improved by annotating the primary inputs of the

design with switching activity captured during simulation. Power analyzer then uses

internal zero-delay simulation to propagate switching activity through the unannotated

nets. For highest power accuracy, all the gates in the design can be annotated with

switching activity captured during simulation.

In these experiments, since only the unpartitioned design could be fully simulated, it

was not possible to fully annotate all the gates of the partitioned controllers. Instead,

only the primary inputs of the partitioned controllers were annotated from the switching

activity captured during simulations. The accuracy of this method was confirmed to be

Chapter 5. Experiments and Results 64

within 6% of the full gate annotation method. This was done by comparing the power

results of the full gate annotation with the primary input annotation for the unpartitioned

designs.

PwrStack: This is the intrinsic power of the Stack controller. It was obtained by

synthesizing a Stack controller and measuring its power with Power Analyzer.

CallsRi: This is the number of calls made to region i. This was obtained by profiling

the kernels.

The value in the summation represents the total energy contributed by each region i.

The first term represents the energy expended exclusively by the region’s controller, and

the second term adds the energy overhead of calling the region. Adding up the energy

contributions of all the regions and dividing it by the total number of cycles gives the

effective power of the partition. Notice that for the unpartitioned design, this equation

is simply equal to the power of the unpartitioned controller. The equation assumes

that while one controller is active, the energy contributions from all other controllers

are negligible. This is reasonable since in the SFSMD model, the power consumption

of all inactive controllers are reduced through clock-gating. This can be even further

reduced by employing the well known technique of operand isolation: since power can

be consumed due to the propagation of switching activities on its inputs (via changes

on status and external input lines), additional isolation logic (AND or OR gates) can be

inserted along with the enable signal to hold the inputs stable whenever the controller is

not being used. The energy expenditure of the SFSMD tri-state buffers is not considered

in this equation because their power consumption would normally be very low.

5.2.3 Power Results

The power results for partition levels 1, 2, and 3 are shown in tables 5.1, 5.2, and 5.3,

respectively. The first column lists the benchmark kernels used. The increase in execution

time for each partition over the unpartitioned implementation is shown in the second

Chapter 5. Experiments and Results 65

column. The next two columns list the power and energy values of the partitions, and

the last two columns show the power and energy decrease over the unpartitioned design.

Partition 1 consists of designs in which root level loops have been extracted for separate

implementation. Of the twenty-three benchmarks1, only thirteen had nested loops, and

were hence, able to be partitioned into level 2. Of these, five kernels had another level of

loop nesting, and were able to be partitioned into level 3. In this partition, the deepest

nested loops were extracted and implemented as separate controllers.

Benchmark Partition 1
Time Power Energy Power Energy

Increase (mWatt) (nJoule) Decrease Decrease
(%) (%) (%)

LL1 int 4.6 1.1 10.3 13.2 9.2
LL2 int 0.7 2.7 154.7 12.0 11.4
LL3 int 7.0 1.2 7.1 19.2 13.6
LL4 int 1.7 2.0 47.7 14.6 13.1
LL5 int 3.4 1.2 13.9 16.5 13.6
LL6 int 1.1 1.9 69.9 12.3 11.4
LL7 int 2.1 2.0 38.4 33.6 32.2
LL8 int 1.8 6.9 511.6 20.0 18.6
LL9 int 5.0 2.8 47.0 19.6 15.6
LL10 int 1.6 3.3 85.0 31.4 30.3
LL11 int 6.3 1.0 6.4 31.9 27.6
LL12 int 6.5 1.0 6.4 33.4 29.1
LL13 int 1.1 2.7 104.8 32.9 32.1
LL14 int 0.8 1.5 85.0 42.7 42.2
LL15 int 1.3 2.3 73.0 48.7 48.1
LL16 int 6.0 2.5 26.2 56.7 54.1
LL18 int 0.3 6.5 1028.0 13.0 12.8
LL19 int 1.5 1.9 49.4 14.2 12.9
LL20 int 0.3 3.1 469.9 16.0 15.8
LL21 int 0.9 2.0 99.1 24.5 23.8
LL22 int 1.7 1.1 25.9 45.3 44.4
LL23 int 1.7 3.4 82.7 20.6 19.3
LL24 int 5.0 1.5 12.5 29.9 26.4
Average 2.7 2.4 132.8 26.2 24.2

Table 5.1: Controller Power Results for Partition Level 1

The reduction in power consumption across all partitions ranged between 12.0 % and

67.7 %, with a corresponding reduction in energy ranging between 11.4 % and 67.1 %.

1LL17 int was not synthesized since the entire kernel consists of just one loop and so partitioning
cannot be applied.

Chapter 5. Experiments and Results 66

Benchmark Partition 2
Time Power Energy Power Energy

Increase (mWatt) (nJoule) Decrease Decrease
(%) (%) (%)

LL2 int 1.4 2.4 138.4 21.8 20.7
LL4 int 4.8 1.9 457.5 20.5 16.7
LL6 int 1.1 1.6 57.8 27.5 26.7
LL8 int 2.6 6.3 471.4 26.9 25.0
LL14 int 3.8 1.7 102.6 32.8 30.3
LL15 int 2.6 2.1 66.4 53.3 52.7
LL18 int 1.8 2.4 387.8 67.7 67.1
LL19 int 5.4 1.6 44.6 25.4 21.4
LL20 int 0.5 2.8 426.6 24.0 23.6
LL21 int 1.3 1.9 94.9 28.0 27.1
LL22 int 2.5 1.0 24.1 49.5 48.2
LL23 int 2.1 3.3 79.4 24.2 22.6
LL24 int 7.5 1.3 10.9 40.4 36.0
Average 2.9 2.3 150.0 34.0 32.1

Table 5.2: Controller Power Results for Partition Level 2

Benchmark Partition 3
Time Power Energy Power Energy

Increase (mWatt) (nJoule) Decrease Decrease
(%) (%) (%)

LL2 int 3.9 1.5 87.9 51.5 49.7
LL6 int 5.0 1.4 51.9 37.3 34.2
LL15 int 2.5 2.1 67.5 53.1 51.9
LL21 int 1.7 1.7 84.4 36.2 35.1
LL23 int 2.5 3.0 72.9 30.6 28.9
Average 3.1 1.9 72.9 41.8 40.0

Table 5.3: Controller Power Results for Partition Level 3

The average power reduction for partition levels 1, 2, and 3, were 26.2 %, 34.0 %, and

41.8 %, respectively, while the energy reduction for the partitions were 24.2 %, 32.1 %,

and 40.0 %. Due to the low cycle-time overhead for call and return operations, the

energy reduction for each benchmark was very close to its power reduction (averaging

within 2 %). As per the results, power reduction improves with increased partitioning

levels. This makes sense because the majority of execution time for the kernels was

spent in the inner-most loops. Since these loops represent the finest-grained regions,

they have the smallest controllers and consequently consume the least amount of energy.

Chapter 5. Experiments and Results 67

Furthermore, the power contribution of the stack controller was found to be very small,

so the communication overhead for the higher partition were insignificant.

Power reduction plots in figures 5.3, 5.4, and 5.5 illustrate the effects of the different

partitioning levels on power consumption. By comparing the power reductions between

partitions 1 and 2, we see that for all benchmarks, except LL14 int, partition 2 always

out-performs partition 1. LL14 int produces different results because for that benchmark

the power of the root-level loop region (partition 1) is slightly lower than the power of the

nested loop regions (partition 2). This occurred because a larger design got synthesized

for the nested loop region and so it consumed more power. For benchmark LL18 int,

partition 2 shows a dramatic power reduction over partition 1. This is because the nested

loops in partition 2 are much smaller and consume less power than the root level loop.

Power Reduction
Partition Level 1

13 12

19

15
16

12

34

20 20

31 32 33 33

43

49

57

13 14
16

24

45

21

30

0

10

20

30

40

50

60

L L
1 _

in
t

L L
2 _

in
t

L L
3 _

in
t

L L
4 _

in
t

L L
5 _

in
t

L L
6 _

in
t

L L
7 _

in
t

L L
8 _

in
t

L L
9 _

in
t

L L
1 0

_ i
n t

L L
1 1

_ i
n t

L L
1 2

_ i
n t

L L
1 3

_ i
n t

L L
1 4

_ i
n t

L L
1 5

_ i
n t

L L
1 6

_ i
n t

L L
1 8

_ i
n t

L L
1 9

_ i
n t

L L
2 0

_ i
n t

L L
2 1

_ i
n t

L L
2 2

_ i
n t

L L
2 3

_ i
n t

L L
2 4

_ i
n t

Benchmarks

%R
edu

cti
on

Power Reduction

Figure 5.3: Power Reduction for Partition Level 1

Chapter 5. Experiments and Results 68

Power Reduction
Partition Levels 1 & 2

12
15

12

20

43

49

13 14 16

24

45

21

30

22 20

27 27

33

53

68

25 24
28

49

24

40

0

10

20

30

40

50

60

70

80

LL
2 _int

LL
4 _int

LL
6 _int

LL
8 _int

LL
1 4_in

t

LL
1 5_in

t

LL
1 8_in

t

LL
1 9_in

t

LL
2 0_in

t

LL
2 1_in

t

LL
2 2_in

t

LL
2 3_in

t

LL
2 4_in

t

Benchmarks

%R
edu

cti
on

Power Reduction - Partition 1 Power Reduction - Partition 2

Figure 5.4: Power Reduction for Partition Levels 1 and 2

Power Reduction
Partition Levels 1, 2 & 3

12 12

49

24
2122

27

53

28
24

52

37

53

36

31

0

10

20

30

40

50

60

LL2_int LL6_int LL15_int LL21_int LL23_int

Benchmarks

%R
edu

cti
on

Power Reduction - Partition 1 Power Reduction - Partition 2
Power Reduction - Partition 3

Figure 5.5: Power Reduction for Partition Levels 1, 2 and 3

Chapter 5. Experiments and Results 69

As per figure 5.5, partition level 3 out-performs partition level 2 for majority of the

benchmarks. Once exception is benchmark LL15 int, in which partition level 2 results

are slightly better than level 3. This is a situation in which the power figure reported for

a larger circuit (partition 2) is lower than the power reported for a smaller one (partition

3). This anomaly is generated because the power values happen to be outside the noise-

margins of the power measurement technique.

The fidelity of the power-index that was introduced in chapter 4 is also evaluated.

We define the fidelity as a measure of how well the calculated power index value of a

partition correlates with its actual power. This is done by comparing the power plots

of the partitions against the power-index plots. Fidelity is checked by confirming that

for each benchmark, the ordering of the relative increase or decrease of the partitions in

the index matches the ordering of the partitions in the power plots. These are indicated

in figures 5.6, 5.7, 5.8, 5.9, 5.10, and 5.11. The value of 0.74 was used for constant K

in the power-index equation (4.1). This value was determined by using the following

formula:

K =
PwrStack

< PwrRegion >
· < |States(Region)| >

PwrStack is the power of the stack-controller, < PwrRegion > is the average power of

the considered regions, and < |States(Region)| > is the average number of ASAP sched-

uled control-steps in the FSMs of the considered regions. The resulting value represents

the “power-complexity” of the stack-controller as an equivalent number of control-steps

which is consistent with the equation 4.1. For these benchmarks, the first two terms were

obtained from the power measurements of the stack controller and the various regions.

However, in order to apply the power-index equation at the behavioral level, these values

must be known a priori to synthesis. They can be obtained by synthesizing a set of

sample circuits and making the appropriate power measurements.

In the majority of the cases, the results of the power-index matched the partitioned

Chapter 5. Experiments and Results 70

power results. An exception was LL15 int, for which the power index choose the wrong

partition due to the anomaly mentioned earlier for this particular benchmark. Also,

for benchmarks LL14 int and LL18 int, the power-index ordering for partitions 1 and 2

did not match the power results. Higher values for K were also tested for the power-

index equation with no significant reduction in fidelity. This was due to the low power

consumption of the stack-controller and the relatively few number of calls that were

made.

Chapter 5. Experiments and Results 71

Power
Partition Level 1

1.3

3.1

1.4

2.4

1.4

2.2

3.0

3.5

4.9

1.4 1.4

4.0

2.6

4.5

5.7

7.5

2.2

3.7

2.6

1.9

4.3

2.1

1.1

2.7

1.2

2.0

1.2

1.9 2.0

6.9

2.8

3.3

1.0 1.0

2.7

1.5

2.3 2.5

6.5

1.9

3.1

2.0

1.1

3.4

1.5

8.6

0
1
2
3
4
5
6
7
8
9

10

LL1
_

in
t

LL2
_

in
t

LL3
_

in
t

LL4
_

in
t

LL5
_

in
t

LL6
_

in
t

LL7
_

in
t

LL8
_

in
t

LL9
_

in
t

LL1
0

_i
nt

LL1
1

_i
nt

LL1
2

_i
nt

LL1
3

_i
nt

LL1
4

_i
nt

LL1
5

_i
nt

LL1
6

_i
nt

LL1
8

_i
nt

LL1
9

_i
nt

LL2
0

_i
nt

LL2
1

_i
nt

LL2
2

_i
nt

LL2
3

_i
nt

LL2
4

_i
nt

Benchmarks

Pow
er

(mW
att

)

Unpartitioned Power Partition Level 1 Power

Figure 5.6: Power for Partition Level 1

Power Index
Partition Level 1

0

100000

200000

300000

400000

500000

600000

700000

800000

L L
1 _

in
t

L L
2 _

in
t

L L
3 _

in
t

L L
4 _

in
t

L L
5 _

in
t

L L
6 _

in
t

L L
7 _

in
t

L L
8 _

in
t

L L
9 _

in
t

L L
1 0

_ i
n t

L L
1 1

_ i
n t

L L
1 2

_ i
n t

L L
1 3

_ i
n t

L L
1 4

_ i
n t

L L
1 5

_ i
n t

L L
1 6

_ i
n t

L L
1 8

_ i
n t

L L
1 9

_ i
n t

L L
2 0

_ i
n t

L L
2 1

_ i
n t

L L
2 2

_ i
n t

L L
2 3

_ i
n t

L L
2 4

_ i
n t

Benchmark

Pow
er

Ind
ex

Unpartioned Power Index Partition 1 Power Index

Figure 5.7: Power-Index for Partition Level 1

Chapter 5. Experiments and Results 72

Power
Partition Levels 1 & 2

3.1

2.4 2.2

8.6

2.6

4.5

7.5

2.2

3.7

2.6

1.9

4.3

2.1

2.7

2.0 1.9

6.9

1.5

2.3

6.5

1.9

3.1

2.0

1.1

3.4

1.5

2.4

1.9

1.6

6.3

1.7

2.1

2.4

1.6

2.8

1.9

1.0

3.3

1.3

0
1
2
3
4
5
6
7
8
9

10

LL
2_i

nt

LL
4_i

nt

LL
6_i

nt

LL
8_i

nt

LL
14_i

n t

LL
15_i

n t

LL
18_i

n t

LL
19_i

n t

LL
20_i

n t

LL
21_i

n t

LL
22_i

n t

LL
23_i

n t

LL
24_i

n t

Benchmarks

Pow
er

(mW
att

)

Unpartitioned Power Partition Level 1 Power Partition Level 2 Power

Figure 5.8: Power for Partition Levels 1 and 2

Power Index
Partition Levels 1 & 2

0

100000

200000

300000

400000

500000

600000

700000

800000

LL
2_i

nt

LL
4_i

nt

LL
6_i

nt

LL
8_i

nt

LL
14_i

n t

LL
15_i

n t

LL
18_i

n t

LL
19_i

n t

LL
20_i

n t

LL
21_i

n t

LL
22_i

n t

LL
23_i

n t

LL
24_i

n t

Benchmarks

Pow
er

Ind
ex

Unpartitioned Power Index Partition 1 Power Index
Partition 2 Power Index

Figure 5.9: Power-Index for Partition Levels 1 and 2

Chapter 5. Experiments and Results 73

Power for
Partition Levels 1, 2 & 3

3.0
7

2.1
8

4.4
7

2.6
0

4.3
3

2.7
0

1.9
1

2.2
9

1.9
6

3.4
3

2.4
0

1.5
8

2.0
9

1.8
7

3.2
8

1.4
9

1.3
7

2.1
0

1.6
6

3.0
0

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

LL2_int LL6_int LL15_int LL21_int LL23_int

Benchmarks

Pow
er

(mW
att

)

Unpartitioned Power Partition 1 Power
Partition 2 Power Partition 3 Power

Figure 5.10: Power for Partition Levels 1,2 and 3

Power Index
Partitions 1, 2 & 3

0

50000

100000

150000

200000

250000

300000

350000

LL2_int LL6_int LL15_int LL21_int LL23_int

Benchmarks

Pow
er

Ind
ex

Unpartitioned Power Index Partition 1 Power Index
Partition 2 Power Index Partition 3 Power Index

Figure 5.11: Power-Index for Partition Levels 1,2 and 3

Chapter 5. Experiments and Results 74

5.2.4 Area Results

The area results of the partitioned controllers are listed in table 5.4. The average area

increase for partitions 1, 2, and 3 over the unpartitioned design are 5.96%, 6.70%, and

3.96%, respectively.

Benchmark Unpartitioned Partition 1 Partition 2 Partition 3
Area Area Area Area Area Area Area

Increase Increase Increase
(%) (%) (%)

LL1 int 142356 196773 38.23 - - - -
LL2 int 330894 352402 6.5 137088 4.92 320350 -3.19
LL3 int 112583 141155 25.38 - - - -
LL4 int 268111 291021 8.54 291295 8.65 - -
LL5 int 138117 162227 17.46 - - - -
LL6 int 249298 286685 15.00 290745 16.63 275813 10.63
LL7 int 316115 423938 34.11 - - - -
LL8 int 1421889 1355959 -4.62 1295958 -8.86 - -
LL9 int 427026 481570 12.77 - - - -
LL10 int 603090 617211 2.34 - - - -
LL11 int 127339 128141 0.63 - - - -
LL12 int 126425 127538 0.88 - - - -
LL13 int 539627 553208 2.52 - - - -
LL14 int 426624 367535 -13.85 435819 2.16 - -
LL15 int 715232 554828 -22.43 570866 -20.18 556350 -22.21
LL16 int 671323 524760 -21.83 - - - -
LL18 int 1366023 1414442 3.54 1310792 -4.04 - -
LL19 int 259396 273544 5.45 376897 45.30 - -
LL20 int 506722 493998 -2.51 502666 -0.80 - -
LL21 int 316029 393438 24.49 410840 30.00 402585 27.38
LL22 int 199219 183992 -7.64 186619 -6.32 - -
LL23 int 602398 648684 7.68 665963 10.55 645557 7.16
LL24 int 172040 179850 4.54 187663 9.08 - -

Average Area Increase: 5.96 % 6.70 % 3.96 %

Table 5.4: Controller Area Results of Partitioning

Chapter 5. Experiments and Results 75

The area overhead plots for the different partitions have been included below:

Area Increase
Partition Level 1

38

6

25

9

17
15

34

-5

13

2 1 1 3

-22 -22

4 5

-3

24

-8

8
5

-14

-30

-20

-10

0

10

20

30

40

50

L L
1 _

in
t

L L
2 _

in
t

L L
3 _

in
t

L L
4 _

in
t

L L
5 _

in
t

L L
6 _

in
t

L L
7 _

in
t

L L
8 _

in
t

L L
9 _

in
t

L L
1 0

_ i
n t

L L
1 1

_ i
n t

L L
1 2

_ i
n t

L L
1 3

_ i
n t

L L
1 4

_ i
n t

L L
1 5

_ i
n t

L L
1 6

_ i
n t

L L
1 8

_ i
n t

L L
1 9

_ i
n t

L L
2 0

_ i
n t

L L
2 1

_ i
n t

L L
2 2

_ i
n t

L L
2 3

_ i
n t

L L
2 4

_ i
n t

Benchmarks

%I
ncr

eas
e

Area Increase

Figure 5.12: Area Overhead for Partition Level 1

Area Increase
Partition Levels 1 & 2

6
9

15

-5

-14

-22

4
5

-3

24

-8

8
55

9

17

-9

2

-20

-4

45

-1

30

-6

11 9

-30

-20

-10

0

10

20

30

40

50

LL
2 _int

LL
4 _int

LL
6 _int

LL
8 _int

LL
1 4_in

t

LL
1 5_in

t

LL
1 8_in

t

LL
1 9_in

t

LL
2 0_in

t

LL
2 1_in

t

LL
2 2_in

t

LL
2 3_in

t

LL
2 4_in

t

Benchmarks

%I
ncr

eas
e

Area Increase - Partition 1 Area Increase - Partition 2

Figure 5.13: Area Overhead for Partition Levels 1 and 2

Chapter 5. Experiments and Results 76

Area Increase Partition Levels 1, 2 & 3

6

15

-22

24

8
5

17

-20

30

11

-3

11

-22

27

7

-30

-20

-10

0

10

20

30

40

LL2_int LL6_int LL15_int LL21_int LL23_int

Benchmarks

%I
ncr

eas
e

Area Increase - Parition 1 Area Increase - Partition 2
Area Increase - Partition 3

Figure 5.14: Area Overhead for Partition Levels 1, 2 and 3

Interestingly enough, partitions for benchmarks LL8 int, LL14 int, LL15 int, LL16 int,

LL20 int, and LL22 int, result in area decrease over the unpartitioned design. One pos-

sible explanation for this phenomenon is that since the synthesis tool is dealing with

smaller designs, it can to a better job in terms of resource sharing due to the smaller

search space it has to deal with.

5.3 Memory Allocator Implementation

The suitability of the memory allocator core as a microarchitectural component is eval-

uated by studying its synthesis results. The goal is to determine the scalability of the

core as a function of the memory heap size it works with. The implementation details of

the core are provided below:

1. A parameterized memory allocator was described in VHDL. It was coded in a

hierarchical fashion in order to facilitate modularity and bottom-up compilation.

Chapter 5. Experiments and Results 77

The size 2 of the memory allocator was defined as a parameter in the top-level

design using the VHDL generic statement. The top-level design passed this value

to the lower designs, which passed it further to the lower designs, and so on. Based

on the size, VHDL generate statements were used to replicate and connect basic

circuits in order to generate the complete memory allocator.

2. The VHDL code was compiled using the Design Compiler tool from Synopsys. The

compiled code was simulated to verify correct functionality.

3. The VHDL code was compiled using various compile strategies and with different

allocator size implementations. Reports were generated indicating area, speed, and

compilation times.

4. The allocator was also prototyped and tested an an Altera FLEX 10K70 Field

Programmable Gate Array (FPGA).

5.3.1 Design Synthesis

Allocators of different bit-vector sizes were compiled using a top-down and a bottom-

up approach. For each compile method, the total design area, critical path delay, and

compile times were recorded.

In the top-down approach the entire design was read-in and multiple instances of any

design reference were resolved by flattening the top-level design (removing all hierarchy).

For each bit-vector size, the design was compiled using two separate optimization con-

straints: 1) Area only - The design was optimized for smallest size, and 2) Speed and

Area - The design was optimized for smallest size and maximum speed.

For the bottom-up compile, the sub designs were first compiled independently. Then

the top-level design and any compiled sub-designs not already in memory were read in.

2This is the bit-vector size of the allocator which corresponds to the heap size the memory allocator
works with.

Chapter 5. Experiments and Results 78

Constraints were set to the top-level design and it was linked. In interests of time, the

bottom-up approach was compiled only with the speed and area constraint.

The bottom-up compilation partitioned the code in two different ways: In the first

method (low-level partition compile), only the lowest level entities of the VHDL code

were optimized. The higher level designs simply linked the optimized lower-level code as

is. This resulted in the final synthesized design, which maintained an identical structure

to the original VHDL description. This had the effect of reducing the compile times

considerably for larger designs at the expense of higher critical delays and area. In

the second method, (high-level partition compile), carefully chosen intermediate levels of

hierarchy were flattened (merged) and synthesized. The merging process increased the

scope for synthesis optimizations and produced better results.

The wcells CMOSP35 0.35 micron library provided by the Canadian Micro-Electronic

Corporation (CMC) was used to compile the design. All compilations were performed on

a Sun Ultra 5/10 workstation with an UltraSPARC-IIi 360 MHz CPU and 320 Mbytes

of RAM.

5.3.2 Synthesis Results

Area Results

The area results for the top-down and bottom-up compilation strategies are shown in

figure 5.15.

All four curves are linear (the data-sets are in fact linear even though they are plotted

on a log-scale) which indicates that the area of the memory allocator scales directly with

the bit-vector (memory) size.

As expected, the top-down (area optimization) compilation provides the lowest area

usage, while the bottom-up (low level partition) compilation provides the highest area

usage. The remaining curves are in-between. The linear relationship allows a rough

Chapter 5. Experiments and Results 79

1000

10000

100000

1e+06

1e+07

1e+08

1 4 16 64 256 1024 4096

A
re

a
(c

el
l c

om
po

ne
nt

s)

Bit-Vector Size (Bits)

Area Vs. Bit-Vector Size

Bottom-Up,low-level partition compile
Bottom-Up,high-level partition compile
Top-Down, optimized for area compile

Top-Down, optimized for speed & area compile

Figure 5.15: Area Vs. Bit-Vector Size

estimate of approximately 80 transistors/bit for the bottom-up (high-level partition)

compile. This allows us to estimate the transistor count for larger designs. As an example,

a 64 Kbit memory allocator would require:

65536 bits · 80 transistors/bit = 5, 242, 880 transistors.

As reference, this is comparable to the number of transistors in the original Intel Pentium

processor. Larger memory allocators would not be feasible as an microarchitectural

component since they would begin to dominate the chip area.

Critical Path Delay Results

The critical path delay results for the top-down and bottom up compilation strategies

are shown in figure 5.16. The critical path delay represents the time it takes to com-

plete a memory allocation or free operation. All path delays, except for the bottom-up

Chapter 5. Experiments and Results 80

(low level partition) exhibit a logarithmic trend. As expected, the top-down (speed and

area) compile has the lowest propagation delay, while the bottom-up (low level partition)

compile has the highest. The propagation delay of the bottom-up (high level partition)

compile is in between the two extremes.

1

10

100

1000

10000

1 4 16 64 256 1024 4096

C
rit

ic
al

 P
at

h
D

el
ay

 (
ns

)

Bit-Vector Size (Bits)

Critical Path Delay Vs. Bit-Vector Size

Bottom-Up,low-level partition compile
Bottom-Up,high-level partition compile
Top-Down, optimized for area compile

Top-Down, optimized for speed & area compile

Figure 5.16: Critical Path Delay Vs. Bit-Vector Size

Compile Time Results

The compile time results for the top-down and bottom-up compilation strategy are shown

in figure 5.17

As expected, the bottom-up compilation strategies have shorter compile times for

larger designs than the top-down strategies.

As per the graph, the compile time for the 4096 bit-vector for the bottom-up (high-

level partition) was 1607 minutes, or 26.8 hours 3 In contrast, the low-level partition

method took only 214 minutes to compile, or 3.6 hours. Clearly, this indicates that a

substantial allocator can only be compiled by paying careful attention to partitioning.
3Identical compilation on a SunBlade 1000 Model 2750 server with 2.5 GB RAM, and 2 Sun

UltraSpARC-III 750Mhz CPUs took only 6.9 hours to complete.

Chapter 5. Experiments and Results 81

0.1

1

10

100

1000

10000

4 16 64 256 1024 4096

T
im

e
(m

in
s)

Bit-Vector Size (Bits)

Synthesis Time Vs. Bit-Vector Size

Bottom-Up,low-level partition compile
Bottom-Up,high-level partition compile
Top-Down, optimized for area compile

Top-Down, optimized for speed & area compile

Figure 5.17: Compile Time Vs. Bit-Vector Size

FPGA Implementation

The allocator was prototyped and tested on an FPGA. The Ultragizmo board from the

University of Toronto was used as the implementation environment. The Ultragizmo

board is a printed circuit board (PCB) developed and used by the University of Toronto

as a teaching tool for its course curriculum.

The Ultragizmo board contains a Motorola MC68306 integrated processor, an Altera

10K70 FPGA and supporting hardware. The 10K70 FPGA contains the equivalent of

70,000 standard gates and 18432 bits of user programmable RAM.

A 256 bit-vector memory allocator was compiled for the FPGA using Altera’s MAX-

PLUS2 FPGA synthesis and layout tool. The device utilization of the FPGA was 44%,

with a critical path delay was around 300 ns.

A wrapper circuitry was added to the memory allocator (all within the FPGA) so

that it could be accessed by the MC68306 processor. From the processor’s point of view,

the allocator was a memory-mapped device which was accessed by reading/writing to

registers at specific addresses. malloc and free routines were written in 68000 assembly so

Chapter 5. Experiments and Results 82

that applications running on the MC68306 processor could utilize the memory allocator.

A test-bench file was generated which specified a number of memory allocation and

free operations with the expected results. This test-bench was run using the hardware

memory allocator and the results were compared to verify proper operation .

Chapter 6

Conclusion and Future Work

6.1 Conclusions

This thesis offers two main contributions. First, it introduced microarchitectural changes

that enables high-level synthesis to better cope with designs described in high-level lan-

guages. These changes included extending the FSMD model into a stacked model (SF-

SMD) to support procedure abstraction, and incorporating a dynamic memory allocation

unit to support memory abstraction. In the SFSMD model, each procedure was imple-

mented as a separate controller with a common datapath shared amongst them. A

stack-controller was used to handle the controller calls and it allowed the datapath to

be shared. A buddy-system based dynamic memory allocator core was also described

and studied. The second contribution of the thesis was the introduction of a behavioral

partitioning technique for power reduction. It operated on the basis of implementing

loop kernels as separate controller in the SFSMD model. Power savings were achieved

because the controller of each loop was smaller than the one large controller implement-

ing the entire system, and only one controller was running at any given time. Also, a

partitioning index was defined that could be used to estimate and compare the power of

different partitioning styles prior to synthesis.

83

Chapter 6. Conclusion and Future Work 84

Based on this study, we draw four main conclusions. First, the SFSMD model provides

a good basis for procedure abstraction. Secondly, the memory allocator core is shown to

be a viable solution for the implementation of dynamic memory allocation in high-level

synthesis. Since the core grows linearly with the memory heap size, a heap size of 64K,

which is sufficient for most on-chip designs, is considered as the upper limit for the core.

Allocators for larger heaps would be infeasible as microarchitectural components due to

high-area usage. The third conclusion is that region based partitioning is an effective

technique for the reduction of controller power consumption. The final conclusion is that

due to the strong correlation between the power-index values and the actual partition

power, the power-index equation can be used to effectively guide the partitioning decisions

of a high-level partitioning tool.

6.2 Future Work

There is a lot of scope for future work in this area. An important step would be the

integration of the SFSMD model into a synthesis engine. This would automate the

transformation of procedural descriptions into an SFSMD model, thereby enabling more

comprehensive studies of this model to be performed. Estimators could be developed to

directly compute the design area, speed, and power of this implementation style, provid-

ing the designers with the capability to decide how the design should be implemented.

Similarly, a tool can be developed to perform loop region based partitioning. Such a tool

would partition the code into a power optimal configuration before forwarding it to the

synthesis engine for SFSMD implementation.

Bibliography

[1] M. Alidina, J. Monteiro, S. Devadas, and A. Ghosh. Precomputation-Based Sequen-

tial Logic Optimization for Low Power. Proceedings of the International Conference

on Computer Design, pages 74–81, October 1994.

[2] L. Benini and G. De Micheli. Synthesis of Low-Power Selectively-Clocked Systems

from High-Level Specification. ACM Transactions on Design Automation of Elec-

tronic Systems, 5, No. 3:311–321, July 2000.

[3] S. Brown and Z. Vranesic. Fundamentals of Digital Logic With VHDL Design.

McGraw Hill, 2000.

[4] R. Camposano, L. Saunders, and R. Tabet. VHDL as input for high level synthesis.

IEEE Design and Test of computers, pages 43–49, March 1991.

[5] R. Camposano and J. van Eijndhoven. Partitioning a Design in Structural Synthesis.

Proceedings of the International Conference on Computer Design, 1987.

[6] Editor D. Gajski. Silicon Compilers. Addison-Wesley, 1987.

[7] S. Devadas and Sharad Malik. A Survey of Optimization Techniques Targeting

Low power VLSI Circuits. Proceedings of the Design Automation Conference, pages

242–247, 1995.

85

BIBLIOGRAPHY 86

[8] D.Grunwald, B. Zorn, and R. Henderson. Improving the Cache Locality of Mem-

ory Allocation. SIGPLAN’93 Conference on Programming Language Design and

Implementation, June 1993.

[9] E. Frey. ESIM: A Functional-Level Simulation Tool. Proceedings of the International

Conference on Computer Aided Design, pages 48–50, 1984.

[10] D. Gajski, N. Dutt, A. Wu, and S. Lin. High Level Synthesis: Introduction to Chip

and System Design. Kluwer Academic Publishers, 1992.

[11] D. Gajski, J. Zhu, R. Doemer, A. Gerstlauer, and S. Zhao. SpecC: Specification

Language and Methodology. Kluwer Academic Publishers, 2000.

[12] J.L. Hennessy and D.A. Patterson. Computer Architecture A Quantitative Approach.

Morgan Kaufmann, 2000.

[13] Y Explorations Inc. eXCite User Guide, Rev. 3. 2003.

[14] K. Jasrotia and J. Zhu. Hardware Implementation of a Memory Allocator. EU-

ROMICRO Symposium on Digital System Design, pages 355–358, September 2002.

[15] J.Change and E. Gehringer. A high-performance memory allocator for object-

oriented systems. IEEE Trans. Computers, pages 357–366, 1996.

[16] G. Lakshminarayan, A. Raghunathan, K.S. Khouri, N.K. Jha, and S. Dey. Common-

Case Computation: A High-Level Technique for Power and Performance Optimiza-

tion. Proceedings of the Design Automation Conference, June 1999.

[17] E. Macii, M. Pedram, and F. Somenzi. High-Level Power Modeling, Estimation, and

Optimzation. Proceedings of the Design Automation Conference, pages 31–38, 1997.

[18] G. De Micheli. Synthesis And Optimization of Digital Circuits. McGraw Hill, 1994.

BIBLIOGRAPHY 87

[19] G. De Micheli and D. Ku. High-Level Synthesis of ASICs under Timing and Syn-

chronization Constraints. Kluwer Academic Publishers, 1992.

[20] E. Puttkamer. A simple hardware buddy system memory allocator. IEEE Trans.

Computers, pages 953–957, October 1975.

[21] L. Ramachandran, S. Narayan, F. Vahid, and D. Gajski. Synthesis of Functions and

Procedures in Behavioral VHDL. Proceedings of the European Design Automation

Conference, 1993.

[22] D. Smith. HDL Chip Design. Doone Publications, 1996.

[23] Synopsys. Power Compiler Reference Manual,Version 2000.05. May 2000.

[24] V. Tiwari, S. Malik, and P. Ashar. Guarded Evaluation: Pushing Power Management

to Logic Synthesis Design. International Symposium on Low Power Design, 1995.

[25] F. Vahid. Procedure Exlining: A New System-Level Specification Transformation.

European Design Automation Conference, pages 508–513, September 1995.

[26] F. Vahid. Procedure Exlining: A Transformation for Improved System and Be-

havioral Synthesis. International Symposium on System Synthesis, pages 84–89,

September 1995.

[27] F. Vahid. I/O and Performance Tradeoffs with the FuctionBus during Multi-FPGA

Partitioning. International Symposium on FPGAs, pages 27–34, February 1997.

[28] F. Vahid. A Three-Step Approach to the functional Paritioning of Large Behavioral

Processes. International Symposium on System Synthesis, pages 152–157, December

1998.

[29] F. Vahid. Procedure Cloning: A Transformation for Improved System-Level Func-

tional Partitioning. ACM Transactions on Design Automation of Electronic Systems,

4, No.1:70–96, January 1999.

BIBLIOGRAPHY 88

[30] F. Vahid, E. Hwang, and Y. Hsu. FSMD Functional Partitioning for Low Power.

Design Automation and Test In Europe, pages 22–28, March 1999.

[31] R. Waxman. Hardware Design Languages for Computer Design and Test. IEEE

Design and Test for Computers, 19 no 4, April 1986.

[32] LiverMore Benchmark WebPage. http://parallel.ru/ftp/benchmarks/livermore/livermorec.c.

[33] SystemC WebPage. http://www.systemc.org/.

[34] P.R. Wilson, M.S. Johnstone, M. Neely, and D. Boles. Dynamic storage allocation:

A survey and critical review. Proc Int’l Workshop on Memory Management, pages

953–957, September 1995.

[35] B. Zorn. The measured cost of conservative garbage collection. Software-Practice

and Experience, pages 733–756, July 1993.

