
RETARGETABLE BINARY TOOLS FOR EMBEDDED SOFTWARE

by

Wai Sum Mong

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Gradudate Department of Electrical and Computer Engineering
University of Toronto

Copyright c© 2004 by Wai Sum Mong

Abstract

Retargetable Binary Tools for Embedded Software

Wai Sum Mong

Master of Applied Science

Graduate Department of Electrical and Computer Engineering

University of Toronto

2004

Equipping retargetability to the embedded software development tool suite is the enabler of ar-

chitectural exploration in the context of system-on-chip design. While the study of retargetable

compilers has been active for long, retargetting equally important binary tools, including link-

ers and micro-architecture simulators, has not received enough attention. In this thesis, we

propose a unique methodology where the architecture-dependent components of production

quality binary tools are automatically generated from abstract architectural models. Our archi-

tectural model includes not only the instruction set architecture (ISA) model, but also the appli-

cation binary interface (ABI) model, a subject not previously reported. With this methodology,

we are able to automatically port Free Software Foundation (GNU)’s Binary File Descriptor

(BFD) library and GNU linker, the de facto standard for linking, as well as SimpleScalar, the

de facto standard for micro-architecture simulation, all based on a common specification of an

arbitrary RISC-like processor.

ii

Acknowledgements

First of all, I would like to express my deepest sense of gratitude to my supervisor Professor

Jianwen Zhu for his patient guidance, assistance and encouragement. Keeping the patience to a

stubborn student is really difficult. Before joining this group, I never think anyone would give

me the opportunities that I have in this few years.

Second, I would like to acknowledge Maghsoud Abbaspour for his contribution of starting

up the retargetable binary utilities project.

My thanks also goes to every friend during my master study, special thanks to Zhong,

Khushwinder, Fang, Rami and Dennis.

Thanks to all the radio programs that keep me awake when I was working at night.

It is very important to thank my parents for all the support and the education chance they

give me. I would also like to thank all the people who have assisted me in adapting life in

Toronto, especially my uncle Peter and aunt Angela. Thank to Calven, Sam, Jenny and Vivian,

they always listen to me.

Last but certainly not least, special thank to my boy friend, Kelvin, for his love, constant

support and understanding. His driving and food delivery service is very important to my

master career.

iii

Contents

1 Introduction 1

1.1 Motivation . 3

1.1.1 Retargetable Software Development Tools 3

1.1.2 Retargetable Processor Simulators . 4

1.2 Our Approach . 5

1.3 Contributions . 7

1.4 Thesis Organization . 8

2 Background 9

2.1 Object Files . 9

2.2 Linking . 10

2.2.1 The Role of Link-editors . 10

2.2.2 Memory Address Relocation . 11

2.2.3 Symbol Resolution . 12

2.2.4 ELF Dynamic Linking . 14

3 Abstracting Embedded Processors 18

3.1 Instruction Set Architecture . 19

3.1.1 Register File Model . 20

3.1.2 Control Register Model . 27

3.1.3 Instruction Model . 28

iv

3.2 Application Binary Interface . 36

3.2.1 Relocation Model . 37

3.2.2 Global Offset Table Model . 50

3.2.3 Procedure Linkage Table Model . 53

3.2.4 Dynamic Section Model . 58

3.2.5 Stack Model . 59

3.2.6 Memory Usage Model . 63

3.2.7 Instruction Convention Model . 63

4 Retargetting GNU BFD Library and Linker 66

4.1 The GNU BFD Library . 67

4.1.1 Infrastructure . 67

4.1.2 The Internals . 68

4.1.3 Adding a New ELF-Target Backend 71

4.2 The GNU Linker . 72

4.2.1 The Dependency to the BFD Library 73

4.2.2 Linking Facilities from GNU BFD . 74

4.2.3 Emulations of the GNU Linker . 83

4.2.4 The Link-editing Algorithm . 86

4.3 Retargetting Methodology . 89

4.3.1 Generation of the elf32-myarch.c File 89

4.3.2 Generation of the Linker Emulparams Script File 100

5 Retargetting a Micro-architecture Simulator 101

5.1 The SimpleScalar Toolset . 101

5.1.1 Supported Architectures . 102

5.1.2 Infrastructure . 102

5.1.3 The Simulation Flow . 107

v

5.2 Retargetting Methodology . 108

5.2.1 Retargetting Software Program Loader 108

5.2.2 Retargetting Register Manipulation 110

5.2.3 Retargetting Instructions . 113

5.2.4 Retargetting Software Instruction Decoder 117

5.2.5 Porting System Call Emulation . 118

6 Experiments and Results 119

6.1 Implementation . 119

6.1.1 Babel Processor Model . 121

6.1.2 The GNU BFD & Linker Generator 123

6.1.3 The SimpleScalar Generator . 124

6.2 Experiments . 124

6.2.1 Testing the Retargetable BFD & Linker System 125

6.2.2 Testing the Retargetable SimpleScalar System 126

7 Conclusion and Future Work 130

Bibliography 133

Appendices 134

A Sample Babel Processor Description 135

A.1 Architecture Model in Babel - arch.bbh . 135

A.2 Behavior Domain . 140

A.2.1 rsparc.bbl . 140

A.2.2 ri386.bbl . 142

A.3 ISA Domain . 143

A.3.1 rsparc.isa.bbl . 143

A.3.2 ri386.isa.bbl . 148

vi

A.4 ABI Domain . 149

A.4.1 rsparc.abi.bbl . 149

A.4.2 ri386.abi.bbl . 154

vii

List of Tables

3.1 Symbol Notation for Table 3.3 and Table 3.2 38

3.2 i386 Processor (32-bit) Relocation Types . 39

3.3 SPARC Processor (32-bit) Relocation Types 40

3.4 The 9 Relocation Kinds in the Model . 43

3.5 The Pre-defined Variables in the Processor Model 50

4.1 A Summary of BFD Backend Data for ELF Files 70

4.2 The 9 Categories of Functions in the BFD Target Vector 71

4.3 The Parameters defined in elf32-myarch.c 91

4.4 The Backend APIs defined in elf32-myarch.c 99

6.1 Manually-made vs. Generated Files - GNU BFD & Linker 125

6.2 Manually-made vs. Generated Files - SimpleScalar 126

6.3 Number of instructions executed - SimpleScalar 127

viii

List of Figures

1.1 Automatic Generation of the GNU Binutils Package and the SimpleScalar

Toolset from a Processor Specification . 6

2.1 Compilation Steps of GNU GCC . 11

2.2 Object Files Concatenation . 12

2.3 An Example of Symbol Table Generation . 13

2.4 Unresolved Symbolic References - An Example in SPARC 14

2.5 The Use of Global Offset Table . 15

2.6 The Use of Procedure Linkage Table . 17

3.1 The SPARC Windowed Register (from [?]) 22

3.2 A Depth-4-register Window . 24

3.3 The SPARC Window Invalid Register - WIM 25

3.4 The SPARC Processor State Register - PSR 28

3.5 The Instruction Format of 32-bit SPARC (from [?]) 29

3.6 ELF Relocation Entry . 37

3.7 Definition of the r info . 37

3.8 An Example of Relocation Formula Abstraction 47

3.9 Abstracting the GOTs of i386 and SPARC . 52

3.10 The Operation of a PLT in Text Segement . 53

3.11 Abstracting the PLT of SPARC . 56

ix

3.12 ELF Dynamic Entries . 58

3.13 The Initial Process Stack from System V ABI Standard 60

3.14 Our Stack Model . 61

4.1 The Design of the GNU BFD Library . 67

4.2 Data definition of a BFD Relocation Entry . 69

4.3 The Relationship of the BFD Frontend Elements 69

4.4 The Relationship of the BFD Backend Elements for ELF files 70

4.5 The Relationship between the GNU BFD Library and the GNU Linker 73

4.6 The Link Class Hierarchies Used by the SPARC-ELF Target and the i386-ELF

Target . 75

4.7 The Structures of the Link Hash Tables . 75

4.8 The BFD Hash Table . 76

4.9 Data Structure of the BFD Hash Entry and that of the BFD Hash Table 77

4.10 The BFD Link Hash Entry Type . 78

4.11 Data Structure of the BFD Link Hash Entry and that of the BFD Link Hash Table 79

4.12 The State Table for Symbol Resolution . 80

4.13 Example of Symbol Resolution Using the BFD Link Hash Table 81

4.14 Data Structure of the ELF Link Hash Entry and that of the ELF Link Hash

Table (Partial) . 82

4.15 The GNU Linker Emulation . 84

4.16 The emulparams Script Files for SPARC-ELF and i386-ELF 85

4.17 The Overview of the GNU Link-editing Methodology 87

4.18 The Semantics of the Relocation Formula Carried in a HOWTO 88

4.19 Definition of struct reloc howto type 92

4.20 The Use of HOWTO Relocation Entry . 93

4.21 The Mapping from a Reloc to a HOWTO Entry 94

4.22 The MYARCH-ELF Link Hash Table . 95

x

4.23 The elf32 myarch reloc type lookup 96

4.24 The elf32 myarch finish dynamic symbol 97

4.25 The elf32 finish dynamic sections 98

4.26 elf32 sparc.sh . 100

4.27 elf32 i386.sh . 100

5.1 SimpleScalar Simulators . 102

5.2 SimpleScalar Infrastructure . 103

5.3 Register Definition . 104

5.4 Instruction Definition . 105

5.5 Instruction Definition Example . 105

5.6 The 3 Access Ports at a Simulator Engine . 107

5.7 The Simulation Process . 107

5.8 The Architecture-independent Program Loading Algorithm using BFD 109

5.9 The Definition of the SPARC General-purpose Register File in SimpleScalar . . 111

5.10 The Definition of the SPARC Control Registers in SimpleScalar 112

5.11 The Register Access Macros at Different Engines 112

5.12 The Definition of the Instruction Access Macros of SPARC 114

5.13 The ldsb Instruction Definition of SPARC 114

5.14 The Functional Unit Class in SimpleScalar . 117

5.15 The Instruction Flags . 117

6.1 The System Overview of the Implementation 120

6.2 Babel Language Architecture . 121

6.3 Performance of sim-safe . 128

6.4 Performance of sim-cache . 128

6.5 Performance of sim-bpred . 129

6.6 Performance of rSPARC . 129

xi

Chapter 1

Introduction

Due to the increasing market demands of innovative electronic products such as cellular phones,

digital cameras and PDAs, embedded system designers are facing challenges of handling grow-

ing system complexity under tighter time-to-market constraint. To shorten the design cycle, it

is generally conceived that pushing as much functionality as possible to software implementa-

tion is one of the must attractive. Unfortunately, this is not absolutely true unless the software

development tools including compiler, assembler, linker, debugger as well as simulator, are

always readily available.

The implementation of an embedded system can vary from constructing custom circuits in

order to fully tailor the target application (namely the hardware approach), to programming all

the functions on a standard component such as a digital signal processor (DSP) (namely the

software approach). Even though the hardware approach dominates in the past, the embedded

system design today is gradually shifting toward the software approach. This is primary due

to the fact that while chip manufacturing technologies have made dramatic advances and al-

lowed capturing more functions in one embedded system, the rapidly increasing chip design

complexity and narrow time-to-market window become the bottleneck of both productivity and

development cost. It is believed that the software approach can improve this problem for the

following reasons: 1) the immediate availability of programmable processors and hence short

1

CHAPTER 1. INTRODUCTION 2

design time, 2) the low cost due to the amortization of non-recurring engineering (NRE) cost

of processor design over large number of products, and especially 3) the flexibility, which fa-

cilitates late design changes and easy product upgrades. As a result, it is not surprising to find

that the amount of software code in embedded system implementation is doubling every two

years [16]. For this reason, the development of embedded software becomes more and more

important.

However, embedded systems often need the advantages that custom-designed processors

offer, such as enhanced performance and lower power consumption. As a compromise between

the hardware approach and the software approach, application specific instruction set proces-

sors (ASIPs), which are optimized for a particular class of applications, are widely used in such

a way that the hardware architecture and the instruction sets of the ASIP are tailored for the

critical functions of a specific application class while keeping certain degree of flexibility from

the software approach. For example, an image-processing ASIP might include special instruc-

tions to optimize the image compression function. Running software in application-specific

processors implies that processor-dependent tools including compiler, assembler, linker and

instruction-set simulator have to be developed for each architecture. This task is unfortunately

non-trivial, which we will elaborate in the next section. This therefore brings in the problem

that we tried to contribute in this thesis - What’s the methodology to develop production-quality

software development tools for application-specific embedded processor architectures in an ef-

ficient manner under time-to-market constraint?

In this thesis, we try to address the above problem by equipping a selected set of binary

tools and processor simulators, which are in de facto standard, with retargetability. Portability

denotes the ease of modifying a processor-dependent tool to support any other processor ar-

chitecture. If high effort is required to retarget a tool to a new architecture, the tool is said to

be un-portable. At the opposite extreme, the tool is said to be retargetable if the tool can be

automatically ported.

The subsequent sections of this chapter elaborate on the motivations, objectives and method-

CHAPTER 1. INTRODUCTION 3

ology, and concludes with a summary of contributions of this thesis.

1.1 Motivation

Two sets of tools play very important roles in embedded processor design; they are software

development tools and processor simulators. Enabling the automatic generation of such tools

can boost the productivity and reduce the development cost. Even though this topic has become

a very active area of research in the last few years, the problem has not yet been completely

solved.

1.1.1 Retargetable Software Development Tools

The software development toolset of a processor usually consists of the compilation tools in-

cluding the compiler, the assembler and linker, as well as utilities including the debugger and

the disassembler.

The importance of retargetable compilers has been recognized and the research of which

is becoming mature [10, 9, 13, 6]. However, few efforts have been made in the automatic

generation of equally important downstream tools such as assemblers, linkers and debuggers.

This is because that most people have such misconception - the downstream tasks, such as

assembling and linking, are trivial comparing to the advanced compiler problem of optimizing

the code quality for specific embedded application [9]. Two phenomena reflect this. First,

little treatment of the relevant techniques has appeared in the computer science curriculum in

the schools. Second, virtually no paper has discussed the techniques of the linker/assembler

construction [1]. Nevertheless, this perception is no more acceptable in the modern computer

system. Let’s take the object file linking task as an example. The traditional linker is only

responsible for threading the object files and resolving the symbols. However, the modern

linker has to handle complex features such as dynamic linking, the routine of which is however

processor-dependent.

CHAPTER 1. INTRODUCTION 4

The manual development of these downstream tools for a new processor architecture is

not easy. The most recent version of the GNU Binutils package, which delivers exactly these

downstream tools, has a daunting size of 250k lines of C code [15]. Until now, the GNU

Binutils possesses the best portability among all toolset of this kind. Without any detailed doc-

umentation and cleanly defined interface between the processor-dependent and independent

part, hacking the GNU Binutils and porting to a new processor is however non-trivial. On the

other hand, the black magic involved and the skills required to develop these tools is mastered

by a very small group of people such that it has been once asserted the population of the ex-

perts in this world could probably fit in one room [11]. Thus, we can conclude that manually

hand-crafting the downstream tools for each new application-specific processor is both inef-

ficient and expensive. Additionally that human work in highly-complexed system is always

error-prone, automation generation technique of the downstream software development tools

is therefore urgently needed.

1.1.2 Retargetable Processor Simulators

To reduce both the design time and the development cost, processor simulators have been

widely used as virtual prototypes of the target processors, in order to validate and evaluate the

embedded processor architecture without physically implementing the design at cost and risk.

Another usage of processor simulators is to test the correctness and evaluate the quality of the

compiler by virtually executing the generated code. Two classes of processor simulators are

widely used; they are namely instruction set simulators and micro-architecture simulators.

Instruction set simulation mimics the behavior of each instruction and models the effect on

the target processor state at each step. With the instruction set simulator, the instruction set of a

new processor can be functionally verified against any real program. Micro-architecture simu-

lation, in contrast, mimics the effect of a micro-architectural design to the instruction execution

process. While many retargetable instruction set simulators have been reported [8, 20, 14] , the

more relevant micro-architecture simulators, which are capable of modeling the detailed ma-

CHAPTER 1. INTRODUCTION 5

chine features such as cache organization, branch prediction and out-of-order scheduler, have

not be equipped with retargetability.

Often times, the instruction set architecture (ISA) and the micro-architecture must be de-

signed together to adapt to a specific or a family of applications, as in the case of ASIP. To

find the best solution within the design space, the system architects must perform the so-called

architecture exploration, in which the simulators are the most important, and have to be devel-

oped for each architecture configuration. It implies that instruction set simulation is no longer

enough. This is especially true for future high-end embedded processors where the abundance

of instruction-level parallelism will make the accuracy of instruction set simulation intolerable.

On the other hand, towards the growing complexity of micro-architectural designs, modeling a

detailed micro-architectural design in simulation becomes more challenging. Manually hand-

crafting the micro-architecture simulator for each configuration in architecture exploration does

hinder the productivity. This necessitates the notion of retargetable micro-architecture simula-

tors.

1.2 Our Approach

In this thesis, we present techniques that lead to automatic porting of a subset of the GNU

Binutils package and the SimpleScalar toolset [2].

The GNU Binutils package includes a suite of downstream software development tools such

as assembler, linker, library manager, profiler, object file examiner and manipulator and C++

dismangler [15]. Partly due to the fact that it is designed to be “portable” and partly because

it is free software and accessible to everyone in the world, the GNU Binutils has become a de

facto standard and there is no doubt that it has already reached the production quality stage.

Due to the high complexity of the GNU Binutils package, this thesis aims to cover only a subset

of provided tools - the GNU Binary File Descriptor Library (BFD) [3] and the GNU Linker [4].

As the heart of the GNU Binutils package, the GNU BFD library provides services on which

CHAPTER 1. INTRODUCTION 6

most other downstream tools in the package are highly dependent.

Processor

Specification

GNU Binutils

Generator

SimpleScalar

Generator

Ported GNU

Binutils Package

Ported

SimpleScalar

Toolset(subset of tools)

Figure 1.1: Automatic Generation of the GNU Binutils Package and the SimpleScalar Toolset

from a Processor Specification

Due to its micro-architectural modeling capability and extensibility, the SimpleScalar toolset

developed at University of Wisconsin emerged as the de facto standard of modern micro-

architecture simulators. With the rich set of micro-architecture components, such as mem-

ory, cache, branch predictor and scheduler, the SimpleScalar toolset can model architectures

with varying detail, ranging from the simplest unpipelined processors to the out-of-order su-

perscalar architectures. According to the statistics, more than one half of the papers published

in the last Annual International Symposium on Computer Architecture (ISCA 2002) have used

SimpleScalar tools to evaluate their designs [17]. For this reason, we can believe that the

SimpleScalar toolset provides good simulation ability and comprehensive enough to be ap-

plied on architecture exploration. Similar to the GNU Binutils package, manually porting the

SimpleScalar toolset is not easy and equipping it with retargetability is necessary. From the

author’s experience, manually porting the tool takes one month of study time of the open-

source SimpleScalar infrastructure, which has 30K lines of C code, and one additional month

CHAPTER 1. INTRODUCTION 7

of development time.

The field of retargetable compilation has evolved to the point where an architecture de-

scription language (ADL) can be used to model processor architecture, and a compiler can be

generated automatically from such an architecture specification [6, 7, 5]. Adopting the same

approach, we design a processor abstraction model to generically capture relevant architecture

information. Taking the processor specification as input, our tools (or generators) are able to

automatically port part of the GNU Binutils package and the SimpleScalar toolset (see Fig-

ure 1.1).

The work of this thesis can be divided into three parts. First, we need a processor architec-

ture model which is able to capture all necessary information required to port the GNU BFD

library, the GNU linker and the SimpleScalar toolset. Second, sophisticated study has to be

done to explore the opportunities and the methodology to retarget the GNU BFD library and

the GNU linker. Third, the same is done for the SimpleScalar toolset. Our methodology is to

enable automatically generating the processor-dependent part of the target tools (GNU Binutils

and SimpleScalar) from a processor specification abstracted in our model.

Due to the space limitation in the thesis and the complexity of the retargetting methodology,

we have difficulty to include all details of our methods to retarget both toolsets. Anyway,

the processor architecture model that is described in this thesis is the complete input of our

methodology.

1.3 Contributions

The contributions of this thesis are summarized below:

• We present a formal and abstract processor architecture model to capture the architecture

information required for retargetting different software tools, which include the GNU

Binutils package and the SimpleScalar toolset in this study. Our model is not tied to

the implementation of only one specific software tool (for example, compiler), and the

CHAPTER 1. INTRODUCTION 8

architectural specification in this model is therefore reusable.

• While application binary interface (ABI) information is essential, it has not been captured

comprehensively by previous ADLs. Our ABI model is especially capable to capture the

information required for retargetting linker editors with dynamic linking support. This

capability has not been found in any previous works.

• We made the first step of automatically generating an array of production-quality down-

stream tools by making the GNU BFD library retargetable. Our technique is verified by

successfully retargetting the GNU linker, which is highly dependent on BFD library.

• The popular SimpleScalar toolset is equipped with satisfactory retargetability by our

works. The SimpleScalar simulators are also enhanced with additional features such as

delayed branches and windowed registers.

1.4 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 provides the readers with the

background of the linking technique. Chapter 3 describes the abstraction model of embedded

processors. Chapter 4 describes our methodology of retargetting the GNU Binary File De-

scriptor Library and linker. It is followed by the methodology of retargetting the SimpleScalar

toolset in Chapter 5. Finally, the implementation and experiment results are described in Chap-

ter 6. At the end, Chapter 7 concludes the thesis along with discussion of future research

directions. The processor abstraction model discussed in Chapter 3 is supported by an ADL

called Babel. The data model written in Babel is given in Appendix A, followed by the sample

specification of the SPARC and Intel386 processors.

Chapter 2

Background

While compilers are described in many literatures, there is little about linkers. In order to

explain our methodology of retargetting the GNU linker, this chapter gives some background

material about the linking technique. We focus the discussion on a specific binary file format

called executable and linking format (ELF).

2.1 Object Files

Binary tools manipulate binary code commonly known as object files. Many formats for object

files have been devised, among them the most recent and sophisticated is called executable and

linking format or ELF.

In term of the usages, ELF object files can be categorized into the following four types:

• Relocatable file

It holds contents suitable for linking with other relocatable files or shared libraries. Com-

piling a source code file generates a relocatable file.

• Static executable

It holds binary code in ready-to-run state. A static executable is produced by linking all

associated relocatable files.

9

CHAPTER 2. BACKGROUND 10

• Dynamic executable

It might contain unresolved symbolic references, which will be resolved from the de-

pendent shared libraries at runtime. In order to execute a dynamic executable file, the

intervention of the runtime linker is required .

• Shared library

It is used in dynamic linking by those object files on which they depend. A shared library

may also depend on other shared libraries.

2.2 Linking

Generally speaking, linking is the process that integrates binary information from several pieces

into one logical piece. Two kinds of well-known linkers include:

• The link-editor processes one or more input object files (relocatable files or shared li-

braries) to generate one output file (either a relocatable file, an executable, or a shared

library).

• The runtime linker is responsible for creating process images from the associated dy-

namic executables and shared libraries at runtime. This is called dynamic linking. The

runtime linker is also called interpreter.

The link-editor is usually what we mean by linker. It is one of the downstream tools pro-

vided in the GNU Binutils package. Our discussion in the follows will focus on the link-editors.

2.2.1 The Role of Link-editors

The role played by link-editors is illustrated in the compilation process carried by the GNU

GCC compiler [18]. Being invoked to compile source code files into an executable, GCC will

in turn invoke other tools. Figure 2.1 provides an example of compiling three C source files

CHAPTER 2. BACKGROUND 11

Additional files &

default libraries

Linking
(ld)

Assembling

(as)

Compiling

(cc1)

a.out

f3.of2.of1.o

f3.sf2.sf1.s

Preprocessing

(cpp)

f3.if2.if1.i

f3.cf2.cf1.c

Figure 2.1: Compilation Steps of GNU GCC

into an executable a.out. The first set of object files (t1.o, t2.o and t3.o) generated

in the process are relocatable files, which are not yet ready to be executed. At the last step,

the relocatable files, in addition to some default object files and libraries, are linked together to

create an executable file, which can be a static executable or a dynamic executable. The linking

process consists of two tasks: memory address relocation and symbol resolution.

2.2.2 Memory Address Relocation

The assembler assumes the address of any object file starts at zero. When files are linked into

one, the sections of the same kind from the input object files will be placed one after the other

within a linear address space, as illustrated in Figure 2.2.

During relocation, the link-editor modifies the base address of each section. Each entry of

the object file keeps a relative address from the beginning of its residing section, so that the

absolute address can be obtained by simple calculation.

CHAPTER 2. BACKGROUND 12

a.out

init1

init2

init3

text1

text2

text3

bss1

bss2

bss3

data1

data2

data3

f3.o

init3

text3

bss3

data3

f2.o

init2

text2

bss2

data2

f1.o

init1

text1

bss1

data1

Figure 2.2: Object Files Concatenation

2.2.3 Symbol Resolution

Symbol Table

Each object file has a symbol table. Figure 2.3 gives an example of a symbol table. A symbol

table keeps track of all symbols defined or used in the file. In terms of scope and visibility,

symbols are categorized as local, global and weak. While local symbols have their scope inside

the object file only, global symbols are visible to all other files being processed by the linker.

Weak symbols are similar to global symbols, except that they have lower priority. For example,

a global symbol definition can override a weak symbol definition with the same name.

In term of usage, the global symbols are further classified into defined symbols, external

symbols and common symbols. A defined symbol is generated from variable definition in the

program. When a symbol is referenced (or being used) but not defined, an undefined symbol,

or the so-called external symbol is added to the symbol table. The third case is that a global

variable is defined within a file but not initialized and hence not sized. This kind of variable will

appear as a common symbol in the symbol table. No storage space is assigned to a common

CHAPTER 2. BACKGROUND 13

Symbol Table

Name Attributes Value

----- -------------- ------

test.c FILE, ABS, LOCAL 0

 SEC, LOCAL 0

 SEC, LOCAL 0

var1 OBJECT, GLOB 0

var2 OBJECT, GLOB, COM 4

f1 UND, GLOB 0

main FUNC, GLOB 0

………

………

………

test.c

int var1 = 3;

int var2;

int main() {

 int var3;

 var3 = f1(var1);

 return 0;

 }

Figure 2.3: An Example of Symbol Table Generation

symbol until the size is known.

Some symbols are generated neither for the data variables nor the functions in the program.

For example, a symbol may be generated for the source file name; as illustrated in Figure 2.3.

Also, section symbols are generated for relocation purpose. Symbol values that correspond

to neither data address nor function address will not be modified in relocation, so this kind of

symbol is called absolute symbol.

External Symbolic Reference Resolution

External symbols exist to facilitate separate compilation. It is the responsibility of the linker

to bind an external symbol to a defined one with the same name from other input files. This

process is called symbol resolution. The linker will fill the resolved symbol value (address) to

the corresponding code contents (see Figure 2.4).

Symbol resolution is usually performed on the fly by adding global symbols from each

object file into a hash table. When a global symbol is attempted to add to the hash table and it

is found that symbol with the same name exists in the hash table, resolution is performed based

on the attributes of the two symbols.

CHAPTER 2. BACKGROUND 14

To be filled by linker with

the resolved address

machine code

(SPARC)

assembly code

(SPARC)

source code

01 000000000 … 00000000

call printf, 0

printf(“”);

Figure 2.4: Unresolved Symbolic References - An Example in SPARC

2.2.4 ELF Dynamic Linking

An executable is said to be dynamically linked with a particular library (shared library) to which

it references, if they are not linked together by the link-editor at link-time. The link-editor will

write the information about the shared library into the output dynamic executable. At runtime,

the runtime linker, the path of which is recorded inside the executable, will link the executable

against the shared library on demand during execution.

The so-called dynamic linking often refers to two steps. First, the link-editor generates the

dynamic executable and the dependent shared libraries statically. Second, the runtime linker

links the dynamic executable and its dependent shared libraries together to generate process

image dynamically.

Shared Library

As its name implies, a shared library can be shared by multiple applications. The idea to allow

multiple applications to share code sections of a shared library in the process image, but each

application must hold its own copy of data sections.

In order to achieve code sharing, the shared libraries must consist of position-independent

code (PIC), which means that the code can be loaded at any address in different applications.

CHAPTER 2. BACKGROUND 15

The operation of PIC depends on two mechanisms, namely the global offset table (GOT) and

the procedure linkage table (PLT).

Global Offset Table

linking

addr of var1 is

0x20808

Fill 0x20808 to the

instructions

00 01001 … 00 .. 00 1000 0010

10 01000 … 00 .. 00 0000 1000

sethi $hi(0x20800), $o1
or $o1, 8, $o0

To be filled by linker

00 01001 … 0000…0000

10 01000 … 0000…0000

sethi $hi(0), $o1
or $o1, 0, $o0

var1 = 3; // var1 is global var

machine code

(SPARC)

assembly code

(SPARC)

source code

Using the global offset table to retrieve the absolute virtual address of ‘var1’,

off

GOT

data

segment

start

code

segment

start jmp by ‘off’

ld 0x20800

Figure 2.5: The Use of Global Offset Table

No matter whether the variables are defined inside or outside the file, no absolute virtual

addresses will be assigned to the global variables before linking. As a result, the code content

CHAPTER 2. BACKGROUND 16

is incomplete until the linker fills the absolute virtual address values to appropriate places. An

example is given in Figure 2.5.

To allow applications to share the code of a shared library, code amendment that might

happen during linking must be avoided. With the property that the offset from the instruction

to the required data is constant regardless where the program is loaded, ELF object files solve

this problem with the global offset table (Figure 2.5). The global offset table is added to

the data segment of the shared library. Any instruction requesting the absolute address of a

symbol will make through the GOT. Since the offset from the instruction to the corresponding

GOT entry can be determined at the static link time and hence a constant, the code segment

is sharable. Instead of filling in the absolute virtual addresses to the instructions, the runtime

linker fills these to the corresponding GOT entries. Each application has its own GOT, and the

GOT therefore holds different absolute virtual address values for the same set of symbols.

Procedure Linkage Table

Resolving the external references to functions defined outside the file causes the same problem.

The absolute virtual addresses of external functions are not known until the link-time (the

dynamic link-time for shared libraries). An example is given in Figure 2.6 Similar to the

GOT redirects to the absolute virtual addresses of global symbols, the procedure linkage table

redirects to the absolute locations of function calls.

CHAPTER 2. BACKGROUND 17

01 00000000 … 101110001

call 107dc ! here is 0x10218

Fill 0x171 (relative

address divided by

4) to the instruction

linking

addr of printf

is 0x107dc
To be filled by linker

01 000000000 … 00000000

call printf, 0

printf(“”);

machine code

(SPARC)

assembly code

(SPARC)

source code

Using the procedure linkage table to jump to the absolute position of ‘printf’,

off

PLT

data

segment

start

code

segment

start jmp by ‘off’

call 0x107dc

Figure 2.6: The Use of Procedure Linkage Table

Chapter 3

Abstracting Embedded Processors

To retarget the target-dependent tools, a model that holds the abstraction of the target architec-

ture is needed. This chapter will describe the embedded processor model that we use in this

thesis. The processor model proposed in this thesis is independent to the architectural descrip-

tion language (ADL) syntax. In this chapter, we will present our processor model with the

formal algorithm notation (FAN). FAN relies on a type system based on sets. In FAN, we use

the notation 〈〉A to represent the power set of A, such that any value of type 〈〉A must be a set

of type A values. Similarly, we use the notation []A to represent the set of all sequences over

elements of A, such that any value of type []A represents a sequence of type A values. Also, we

use Z to represent integer value set and B to represent boolean value set.

Definition 1 An Arch arch : Arch is a member of

Arch = tuple { 1
isa : ISA; 2
abi : ABI; 3
} 4

A processor architecture is abstracted in a Arch defined in Definition 1. An Arch consists of

two views: the instruction-set architecture (ISA) and the application binary interface (ABI);

18

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 19

they are carried by isa and abi respectively. Presented in section 3.1, the ISA view of the

processor architecture includes the register file organization and the instruction-set definition.

Following this, section 3.2 presents the ABI view, which captures calling convention informa-

tion in terms of the register semantics; as well as linking information.

3.1 Instruction Set Architecture

The abstraction of the instruction-set architecture, ISA, is defined in Definition 2. The first six

members of an ISA provide the basic information of the architecture. The cpu gives the name

of the processor architecture, while the manufacturer gives the name of the manufacturer

of the processor. The wordSize carries the word size in bits (# bits / word), the address size

in bits is carried in addrSize, and the instruction size in bits is carried in instrnSize. The

maxDataAlign gives the maximum data alignment in bytes. This value can be obtained from

ABI standard of the architecture. For example, the floating-point data type has the maximum

data alignment value in SPARC - 8 bytes (from [?]). Last but not the least, the bigEndian is

a boolean value that indicates the byte order of the processor. The rest of the members abstract

the register organization and the instruction definition, which will be elaborated in the sequel.

Definition 2 An ISA isa : ISA is a member of

ISA = tuple { 5
cpu : string; 6
manufacturer : string; 7
wordSize : Z; 8
addrSize : Z; 9
instrnSize : Z; 10
maxDataAlign : Z; 11
bigEndian : B; 12
rfiles : 〈〉RegFile; 13
ctrls : 〈〉CtrlReg; 14
instrns : 〈〉Instrn; 15
} 16

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 20

3.1.1 Register File Model

Definition 3 A register file rFile : RegFile is a member of

RegFile = tuple { 17
gran : Z; 18
size : Z; 19
win : WinRegs; 20
uses : 〈〉RegUsage; 21
cells : []RegCell ; 22
} 23

Definition 3 gives the register file model. A register file is characterized by size number of

registers, each of which has a bitwidth of gran. The uses describes the kind of data that the

register file may carry and the alignment requirement. The variables representing each register

are listed in cells in order. The model also supports Sparc-like register window organization.

If the register file has windowed characteristics, the organization is specified in win, which is a

WinRegs member. Note that win is ignored if the register file is not windowed. In the follows,

the register usage, the register cell and the register window model will be explained in detail.

Register Usage

Definition 4 A register usage rusage : RegUsage is a member of

RegUsage = tuple { 24
dataTypeKind : {int,unsigned, f loat,addr}; 25
bitSize : Z; 26
align : Z; 27
} 28

Defined in Definition 4, a register usage defines the data type and alignment restriction of a

possible kind of operands. The dataTypeKind defines the data type of the operands, it can

be signed integer (integer), unsigned integer (unsigned), floating point (float) or pointer (addr).

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 21

The data size in bit is given by bitSize. When the size of the operand is greater than the

size of one register in the file, it takes more than one consecutive registers to carry the operand.

Alignment restriction may apply in such situation, and it is carried in align. For example,

a register file with 8 32-bit registers may restrict even-odd register alignment when storing a

64-bit value. The align data is 2 in this case.

Register Cell

Definition 5 A register cell rcell : RegCell is a member of

RegCell = tuple { 29
name : string; 30
type : Type; 31
} 32

A register cell is a variable that associates with a register, which can be a cell in a register

file, a control register or even a control register field. Each register cell associates to one and

only one register, and it can be used to refer as the associated register for some other purposes

such as expressing the behavior of an instruction.

Like a variable in a program, each register cell is characterized with its name and type.

A Type abstracts data type, which is characterized with the data kind (integer or float) and the

size.

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 22

Register Window

The motivation of modeling the possible windowed organization of the register files stems

from SPARC. This is however not a unique feature for SPARC, we do also find the SPARC-

like windowed registers in other processor architectures; the Nios embedded processor from

ALTERA [?] for example.

w7 ins

w7 locals

w7 outs

w6 ins

w6 locals

w6 outs
w5 ins

w5 locals

w5 outs

w4 ins

w4 localsw4 outs

w3 ins

w3 locals

w3 outs

w2 ins

w2 locals

w2 outsw1 ins

w1 locals

w1 outs

w0 ins

w0 locals w0 outs
CWP+1

CWP
(current window)

CWP−1

WIM

RESTORE,
RETT

SAVE,
trap

Figure 3.1: The SPARC Windowed Register (from [?])

As shown in Definition 6, our register window model is based on the SPARC register win-

dow feature with added flexibility. A register window is a set of virtual registers, which is

implemented by windows of partially overlapping physical registers. The abstracted view of

the physical registers is circular such that the first window overlaps with the last window. An

example of SPARC register windows is illustrated in Figure 3.1. In SPARC, a register window

consists of 24 registers (three groups of 8 registers, the out, local and in registers). There are 8

windows in Figure 3.1, they are numbered from 0 to 7.

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 23

Definition 6 A windowed registers winRegs : WinRegs is a member of

WinRegs = tuple { 33
pos : Z × Z; 34
depth : Z; 35
overlap : Z; 36
ptr : RegCell × Dag; 37
invalid : RegCell × Dag; 38
saveDir : B; 39
overflowCond : Dag; 40
underflowCond : Dag; 41
overflowUpdate : Dag; 42
underflowUpdate : Dag; 43
} 44

Each WinRegs data is associated with a register file (RegFile). The position of the virtual

windowed registers in the register file is given in pos, which corresponds to one window. For

example, the position of the virtual windowed registers in the general purpose register file of

SPARC is <8:31>. The depth corresponds to the number of windows that make up the phys-

ical registers and the overlap specifies the number of overlapping registers between consec-

utive windows. According to the order of the physical registers, the windows are numbered

from 0 to (#window - 1). There should have two control registers that assists the operation of

the register window at runtime. One carries the number of the current window, the correspond-

ing register cell and its initial value before execution is identified by ptr. It is responsible

by the CWP register in SPARC. The other one determines whether a window overflow or un-

derflow trap is generated by the window shifting request, the corresponding register cell and

its initial setup value is identified by invalid. It is responsible by the WIM in SPARC. An

initial value is carried as an expression, which is abstracted in a type called Dag. Different to

the current window pointer, which is assumed to carry the current window ID in any architec-

ture, the interpretation of the window invalid register may be architecture-dependent and must

be specified in the model. The register window feature is to facilitate the procedure call and

return. The SAVE instruction would shift the register window by 1 for procedure call, while

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 24

the RESTORE instruction would shift the register window by 1 in the opposite direction for

procedure return. The shifting direction of SAVE is identified in saveDir. If the SAVE in-

struction causes shifting to greater ID of window (e.g. anti-clockwise in Figure 3.1, saveDir

is true. Otherwise, saveDir is false. The SAVE and the RESTORE instructions will identify

themselves in the instruction definition model.

windowed

registers

out 0

local 0

in 0 out 1

local 1

in 1 out 2

local 2

in 2 out 3

local 3

in 3

in3

ptrptr

ptrinvalid

overlap

reg file

out

local

in

restoresave

Figure 3.2: A Depth-4-register Window

Using a depth-4-register window in Figure 3.2, we explain the operation of the register

window. The current window pointer is initially pointing to window 3. The invalid pointer is

therefore initially pointing to window 0 because it is overlapping with the window 3, which

will be being used when the SAVE instruction attempts to shift to this window. The invalid

pointer is always pointing to the first invalid window. When a SAVE instruction attempts

to shift from window 1 to window 0 (invalid set), window overflow trap is generated. The

overflow trap saves the in and local registers of window 3 to the stack and moves the invalid

pointer to window 3. When the overflow trap returns, the window 0 becomes available. The

same overflow handling action will be taken if another SAVE instruction attempts to shift from

window 0 to window 3. When the procedure call returns, the RESTORE instruction shifts the

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 25

window in the opposite direction. Assuming that the invalid pointer is pointing to window

3, the window underflow is generated when a RESTORE instruction attempts to shift from

window 2 to window 3. The underflow trap restores the in and local registers that were saved

by the previous overflow trap from the stack to the corresponding physical registers. The

underflow trap also moves the invalid pointer to window 0. When the underflow trap returns,

the RESTORE is allowed to shift to window 3.

As mentioned, the register cell indicated in ptr will always carry the current window ID.

The interpretation and the use of the register cell indicated in invalid is however architecture-

dependent. This is concluded from our observation when comparing different architectures

using windowed registers. Nevertheless, the purpose served by the invalid is unique in any

architecture. Our model describes the interpretation of the window invalid register value with

its initial value, the window overflow/underflow condition expressed in terms of register value

(overflowCond and underflowCond), and the value update that is done to the regis-

ter by the window overflow/underflow trap (overflowUpdate and underflowUpdate).

The SPARC window invalid register, WIM(window invalid mask), is described in Figure 3.3.

Window invalid register: WIM

 1 0 31 30 29

 W31 W30 W29 …… W1 W0

- There is an active state bit in the WIM for each register window

- WIM[n] corresponds to the window n

- There is only one state bit in active in the WIM at any time, it

 implies that the corresponding window is invalid.

Figure 3.3: The SPARC Window Invalid Register - WIM

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 26

Example 1 shows the specification of the SPARC general-purpose register file.

Example 1 The SPARC general-purpose register file description

sparcGPR = 〈 45
gran = 32, 46
size = 32, 47
win = 〈 48

pos = 〈8,31〉, 49
depth = 32, 50
overlap = 8, 51
ptr = 〈cwp,′ 31′〉, 52
invalid = 〈wim,′ 0x1′〉, 53
saveDir = false, 54
overflowCond = ’((wim >> cwp) &1) != 0’, 55
underflowCond = ’((wim >> cwp) &1) != 0’, 56
overflowUpdate = ’((wim == 0x1)?0x80000000:(wim>>1))’, 57
underflowUpdate = ’((wim == 0x80000000)?0x1:(wim<<1))’ 58
〉, 59

uses = { 60
u8 = 〈dataTypeKind = unsigned ,bitSize = 8,align = 1〉, 61
i8 = 〈dataTypeKind = integer,bitSize = 8,align = 1〉, 62
u16 = 〈dataTypeKind = unsigned ,bitSize = 16,align = 1〉, 63
i16 = 〈dataTypeKind = integer,bitSize = 16,align = 1〉, 64
u32 = 〈dataTypeKind = unsigned ,bitSize = 32,align = 1〉, 65
i32 = 〈dataTypeKind = integer,bitSize = 32,align = 1〉, 66
u64 = 〈dataTypeKind = unsigned ,bitSize = 64,align = 2〉, 67
i64 = 〈dataTypeKind = integer,bitSize = 64,align = 1〉, 68
addr = 〈dataTypeKind = addr,bitSize = 32,align = 1〉 69
}, 70

cells = [71
g0, g1, g2, g3, g4, g5, g6, g7, 72
l0, l1, l2, l3, l4, l5, l6, l7, 73
i0, i1, i2, i3, i4, i5, i6, i7, 74
o0, o1, o2, o3, o4, o5, o6, o7 75
] 76

〉 77

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 27

3.1.2 Control Register Model

Definition 7 A control register creg : CtrlReg is a member of

CtrlReg = tuple { 78
kind : {none, pc,npc,winptr,wininvalid}; 79
cell : RegCell; 80
fields : 〈〉CtrlRegField ; 81
} 82

Definition 8 A control register field cregField : CtrlRegField is a member of

CtrlRegField = tuple { 83
pos : Z × Z; 84
creg : CtrlReg; 85
} 86

The control register model is given in Definition 7 and Definition 8. A control register is

modeled with its kind, the register cell and meaningful fields. If the control register is a program

counter, a next program counter, a register window pointer or a register window invalid pointer,

it is required to identify itself in kind. The register cell associated to the control register is

given in cell, in which we can find the name and the size of the register. If the control register

consists of fields that hold different processor status information, the hierarchical organization

can be described by fields, which is a list of control register fields. A control register field

is modeled by a CtrlReg and its position at the parent.

Example 2 shows the specification of the SPARC processor state register (PSR), which is

described in Figure 3.4.

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 28

register window pointer integer condition codes

23 22 21 20

Processor State Register: PSR

 4 0

CWP n z v c

Figure 3.4: The SPARC Processor State Register - PSR

Example 2 The SPARC processor state register (PSR) description

sparcPSR = 〈 87
kind = none, 88
cell = psr, 89
fields = { 90
〈pos = 〈23,23〉,creg = 〈kind = none,cell = icc n〉〉, 91
〈pos = 〈22,22〉,creg = 〈kind = none,cell = icc z〉〉, 92
〈pos = 〈21,21〉,creg = 〈kind = none,cell = icc v〉〉, 93
〈pos = 〈20,20〉,creg = 〈kind = none,cell = icc c〉〉, 94
〈pos = 〈4,0〉,creg = 〈kind = winptr,cell = cwp〉〉 95
} 96

〉 97

3.1.3 Instruction Model

Each instruction in ISA is modeled with an Instrn data as defined in Definition 9. An instruction

is characterized by its binary encoding format, assembly format and behavior. In the following,

we will discuss each of these by taking the SPARC instructions as modeling example.

Definition 9 An instruction instrn : Instrn is a member of

Instrn = tuple { 98
asmFormat : string; 99
opfmt : opFormat; 100
opcodes : []Z; 101
beh : InstrnBeh; 102
} 103

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 29

Instruction Format

The instruction format defines the binary encoding of an instruction. Instructions of an archi-

tecture usually share several common formats. Figure 3.5 summarizes the instruction formats

of SPARC. An instruction format consists of an sequence of instruction fields. An instruction

field is the smallest meaningful unit in the instruction, and it is characterized by its role playing

in the instruction semantics. Each instruction field falls into one of the 3 categories: opcode,

register file index and immediate value. The combination of the opcode fields is used to identify

an instruction type, while the register fields and immediate fields are operands or destinations

of the instruction behavior. Instead of abstracting the instruction formats explicitly, which is

defining each format as a sequence of instruction fields, our model abstracts the formats with

two parts: 1) identifying the opcode format in terms of the position of the opcode fields and

defining the value combination of the instruction, and 2) identifying the position and the inter-

pretation of the register fields and immediate fields, which will be operands or destinations of

the instruction behavior.

Format 1 (op = 1): CALL

op disp30
31 29 0

Format 2 (op = 0): SETHI & Branches (Bicc, FBfcc, CBccc)

op rd op2 imm22
op a cond op2 disp22
31 29 28 24 21 0

Format 3 (op = 2 or 3): Remaining instructions

op rd op3 rs1 i=0 asi rs2
op rd op3 rs1 i=1 simm13
op rd op3 rs1 opf rs2
31 29 24 18 13 12 4 0

Figure 3.5: The Instruction Format of 32-bit SPARC (from [?])

An instruction field is characterized by both of the location and the interpretation by an

instruction. To make the modeling easier, we split these two concepts in the instruction field

abstraction. The location of the instruction field is abstracted by an instruction field accessor

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 30

as defined in Definition 10. An instruction field accessor is used to extract the value of the

instruction field from an instruction. Example 3 gives t he specification of the instruction field

accessors of SPARC.

Definition 10 An instruction field accessor acc : InstrnFieldAccessor is a member of

InstrnFieldAccessor = tuple { 104
name : string; 105
pos : Z × Z; 106
} 107

Example 3 The SPARC instruction field accessors

sparcFieldAccessors = { 108
a op = 〈name = ”op”, pos = 〈31,30〉〉 , 109
a disp30 = 〈name = ”disp30”, pos = 〈29,0〉〉 , 110
a rd = 〈name = ”rd”, pos = 〈29,25〉〉 , 111
a op2 = 〈name = ”op2”, pos = 〈24,22〉〉 , 112
a imm22 = 〈name = ”imm22”, pos = 〈21,0〉〉 , 113
a a = 〈name = ”a”, pos = 〈29,29〉〉 , 114
a cond = 〈name = ”cond”, pos = 〈28,25〉〉 , 115
a disp22 = 〈name = ”disp22”, pos = 〈21,0〉〉 , 116
a op3 = 〈name = ”op3”, pos = 〈24,19〉〉 , 117
a rs1 = 〈name = ”rs1”, pos = 〈18,14〉〉 , 118
a i = 〈name = ”i”, pos = 〈13,13〉〉 , 119
a asi = 〈name = ”asi”, pos = 〈12,5〉〉 , 120
a rs2 = 〈name = ”rs2”, pos = 〈4,0〉〉 , 121
a simm13 = 〈name = ”simm13”, pos = 〈12,0〉〉 , 122
a op f = 〈name = ”op f ”, pos = 〈13,5〉〉 123
} 124

With the instruction field accessor defining the location, the instruction field is then built

upon the corresponding field accessor by adding the semantics. The opcode fields and the

register/immediate fields are handled with different ways.

The opcode fields are not defined individually in the model. Instead, the opcode format

which consists of a sequence of field accessor is defined. Defined in Definition 11, an opcode

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 31

format gives the location of the opcode fields. The identification of an instruction can further

be defined by an instruction opcode format and the values at each field. They are given by the

opfmt and the opcodes respectively in an Instrn, the definition of which can be found in

Definition 9. Example 4 gives the specification of the instruction opcode formats of SPARC.

Definition 11 An instruction opcode format opfmt : InstrnOpFmt is a member of

InstrnOpFmt = tuple { 125
opcodes : []InstrnFieldAccessor ; 126
} 127

Example 4 The SPARC instruction opcode formats

sparcOpFmts = { 128
opf1A = [a op], 129
opf2A = [a op, a op2], 130
opf2B = [a op, a a, a cond, a op2], 131
opf3A = [a op, a op3, a i], 132
opf3C = [a op, a op3, a opf], 133
opf3D = [a op, a cond, a op3, a i] 134
} 135

The register fields and the immediate fields are defined explicitly by adding the seman-

tic information upon the corresponding field accessor. The instruction field model defined in

Definition 12 is used to abstract the register/immediate fields. The kind identifies whether

it is a register field or an immediate field. The position and the name of field is then given

by the corresponding field accessor (fieldAccessor). If it is a register field, the carried

value is interpreted as a register file index, so the referenced register file has to be given by

rfile. If it is an immediate field, the signed indicates whether the immediate value has

to be sign-extended before being used as operand. Example 5 gives the specification of the

required instruction field definitions in the SPARC model.

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 32

Definition 12 An instruction field field : InstrnField is a member of

InstrnField = tuple { 136
kind : {register, immediate}; 137
accessor : InstrnFieldAccessor; 138
rfile : RegFile; 139
signed : B; 140
} 141

Example 5 The SPARC instruction fields

sparcFields = { 142
f disp30 s = 〈kind = immediate,accessor = a disp30,signed = true〉 , 143
f disp22 s = 〈kind = immediate,accessor = a disp22,signed = true〉 , 144
f imm22 = 〈kind = immediate,accessor = a imm22,signed = f alse〉 , 145
f simm13 = 〈kind = immediate,accessor = a simm13,signed = f alse〉 , 146
f simm13 s = 〈kind = immediate,accessor = a simm13,signed = true〉 , 147
f rs1 g = 〈kind = register,accessor = a rs1,r f ile = sparcGPR〉 , 148
f rs2 g = 〈kind = register,accessor = a rs2,r f ile = sparcGPR〉 , 149
f rs1 f = 〈kind = register,accessor = a rs1,r f ile = sparcFPR〉 , 150
f rs2 f = 〈kind = register,accessor = a rs2,r f ile = sparcFPR〉 , 151
f rd g = 〈kind = register,accessor = a rd,r f ile = sparcGPR〉 , 152
f rd f = 〈kind = register,accessor = a rd,r f ile = sparcFPR〉 153
} 154

Instruction Behavior

Each instruction has an assigned behavior which abstracts the operation performed by the in-

struction. An instruction behavior is abstracted in a Instrn, which is defined in Definition 13.

For some special-purpose instructions, the model requires the instruction identify its character-

istics by kind. This includes register window SAVE instructions (winsave), register window

RESTORE instructions (winrestore), delayed branch instructions (delayed) and system

call trap instructions (trap). If the instruction behavior falls into the kind of either winsave

or winrestore, the associated register file, which contains the windowed registers, must be

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 33

specified by win. The dst and the srcs identify the instruction fields which are taken as

the destination and operands respectively. The destination is normally a register field while

a source can be a register field or an immediate fields. Our model assumes there is at most

one destination in the behavior operation. In addition to the special behavior characteristics

implied by kind, the behavior operation is further described by a function given by beh. The

beh function takes the srcs as parameters in its sequence order. The taken operand values

at execution are described by each instruction field. If a source is a register field, the operand

value is taken from the corresponding register file at the index specified by the field. If a source

is an immediate field, the operand value is directly taken from the field and sign-extended if

it is specified in the InstrnField abstraction. If the dst is given, the return value of the beh

function is written to the corresponding register file at the index specified by the destination

register field.

Definition 13 An instruction behavior instrn : Instrn is a member of

InstrnBeh = tuple { 155
kind : {none,winsave,winrestore,delayed, trap}; 156
win : RegFile; 157
dst : InstrnField; 158
srcs : []InstrnField ; 159
beh : Function; 160
} 161

Assembly Format

The asmFormat of the Instrn defines the assembly syntax of the instruction. Instead of fol-

lowing the classical way that specifying the syntax of all instructions collectively with BNF

formalism, we choose a more natural approach that specifying the assembly syntax of an in-

struction in terms of the usage pattern. The assembly format given in the model is a template

which is used to disassemble the binary. No restriction is applied on the assembly syntax style,

but some rules should be followed.

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 34

The assembly syntax of an instruction is a mnemonic followed by the argument pattern.

The destination and operands are identified by the special character % for register fields and #

for immediate fields. The % and # characters are followed by a number. When the number is 0,

it is referring to the destination field which is as specified by dst of the instruction behavior.

When the number is non-zero, it is referring to a source field in srcs by assuming that the

fields in srcs are numbered from 1.

Example 6 shows the specification of 3 SPARC instructions - load signed byte (ldsb),

branch if not equal (bne) and register window SAVE (save). The description of the instruc-

tions can be found in [?]. The ldsb instruction gets a signed byte value from the address

calculated by adding the values obtained from the two specified source registers, and writes

it to the destination register. The bne is a delayed branch, which is the instruction will be

followed by a delay slot. The branch decision is made from checking whether the state value

holding in icc z is not equal to zero. If this is a delayed branch instruction, the model assumes

that the behavior operation includes appropriate update of the PC (program counter) and NPC

(next program counter). After the execution of a delayed branch, the advance of PC and NPC

can be skipped. The last instruction in the example is a register window SAVE instruction. The

register window shifting operation is implicit and should not be specified in the beh function

in the instruction behavior. However, operations other than shifting the register window should

be specified in the beh function. We assume that the source values, if any of them comes from

register fields, are obtained before window shifting and the returned value, if there is any, is

written to the destination after window shifting.

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 35

Example 6 The SPARC instructions - load signed byte (ldsb), branch if not equal (bne) and

register window SAVE (save)

ldsb = 〈 162
asmFormat = ”ldsb [%1+%2], %0”, 163
opfmt = opf3A, 164
opcodes = [0x3, 0x9, 0x0], 165
beh = 〈 166

kind = none, 167
dst = f rd g, 168
srcs = [f rs1 g, f rs2 g], 169
beh = func(src1 : Z, src2 : Z) : Z { 170

return *(src1+src2) ; 171
} 172

〉 173
〉 174

175
bne = 〈 176

asmFormat = ”bne #1”, 177
opfmt = opf2B, 178
opcodes = [0x0, 0x0, 0x9, 0x2], 179
beh = 〈 180

kind = delayed, 181
srcs = [f disp22 s], 182
beh = func(disp : Z) : � { 183

pc = npc; 184
npc = (!icc z)?(pc + (disp << 2)):(npc+4); 185
} 186

〉 187
〉 188

189
save = 〈 190

asmFormat = ”save %1,%2,%0”, 191
opfmt = opf3A, 192
opcodes = [0x2, 0x3c, 0x0], 193
beh = 〈 194

kind = winsave, 195
win = sparcGPR, 196
dst = f rd g, 197
srcs = [f rs1 g, f rs2 g], 198
beh = func(src1 : Z, src2 : Z) : Z { 199

return src1+src2 ; 200
} 201

〉 202
〉 203

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 36

3.2 Application Binary Interface

Definition 14 An ABI abi : ABI is a member of

ABI = tuple { 204
e mach : Z; 205
maxPageSize : Z; 206
pageSize : Z; 207
startAddr : Z; 208
dynLinkerPath : string; 209
reloca : B; 210
localSymPrefixes : 〈〉string; 211
zero : 〈〉RegCell ; 212
relocs : 〈〉Reloc; 213
dyns : 〈〉Dyn; 214
got : Got; 215
plt : Plt; 216
stack : Stack; 217
memUses : 〈〉memUsage; 218
convs : 〈〉InstrnConvs; 219
} 220

Definition 14 abstracts the application binary interface, ABI. The first member (e mach)

gives the ELF machine value of the architecture. A processor architecture that uses ELF as the

object file format is assigned an unique value to identify itself in the ELF files. The maxPa-

geSize holds the maximum page size in bytes. The startAddr provides the start virtual

address of the text segment. The dynLinkerPath is a string that holds the path of the dy-

namic linker (e.g. "/usr/lib/ld.so.1") in the system at which the executable file will

be running. A dynamic linker is required for supporting dynamic linking at runtime. Reloca-

tion entries of a processor architecture may be carried in one of the two different formats in

Figure 3.6. The reloca is a boolean that indicates which format is adopted by the processor

architecture. The architecture uses the addend in a relocation entry to carry the partial linking

value if reloca is true. Otherwise, the value is stored in the relocated field.

The localSymbPrefixes carries a set of local symbol prefixes. Typically, the local

symbols in an ELF file start with .L, .. or .L . However, some architecture may support

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 37

Elf32 Rel = tuple { 221
r offset : Elf32 Addr; 222
r info : Elf32 Word; 223
r addend : Elf32 Sword; 224
} 225

Figure 3.6: ELF Relocation Entry

ELF32 R SYM = func(r info : Elf32 Word) : Z { 226
return r info >> 8 ; 227
} 228

229
ELF32 R TYPE = func(r info : Elf32 Word) : Z { 230

return r info &0xf ; 231
} 232

Figure 3.7: Definition of the r info

more than these. For example, the i386 architecture also starts local symbols with .X. The

localSymbPrefixes data in the ABI of its model has the value of {“.L”, “..”, “ .L ”,

“.X”}.

The zero carries a list of registers that always hold the value ’0’.

The subsequent members of an ABI abstract relocations, the dynamic section (.dynamic)

in the binary file, the global offset table (GOT), the procedure linkage table (PLT), the initial

stack layout and the memory usage. These will be discussed in the following subsections.

3.2.1 Relocation Model

In object files that will be processed by a linker (either a link-editor or a runtime linker), there

will have some relocation entries in the content. Relocation entries instruct the linker about how

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 38

to modify the file content in the linking process. Each relocation entry corresponds to one task

for one purpose. A relocation entry is carried in a Elf32 Rel as defined in Figure 3.6 [19]. In a

Elf32 Rel, the r offset value gives the location at which to apply the relocation action. The

r info value is defined in terms of the symbol table index of the associated symbol and the

type of the relocation to apply, as in Figure 3.7. The relocation type value (ELF32 R TYPE),

which is encrypted inside the r info member, is processor-specific. Each relocation type

defines a calculation formula by using which the linker change the file content accordingly. In

other words, the relocation type value of a relocation entry implies the action that should be

taken by the linker. The r addend member carries the result value of partial linking. Some

architecture ignores the r addend and stores this value implicitly in the location as indicated

by the r offset value.

Notation Explanation
A The addend
B The base address at which a shared library object has been loaded into memory during execution
G The offset between the reloctable field and the GOT entry, at which the address of the relocation

symbol will reside during execution
GOT The address of the global offset table (GOT)
L The address of the PLT entry of the symbol
P The address of the relocated instruction (current PC)
S The value of the symbol, the index of which is provided by the relocation entry

Table 3.1: Symbol Notation for Table 3.3 and Table 3.2

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 39

Name Value Field Calculation Other action
R 386 NONE 0 none none
R 386 32 1 <31:0> S+A
R 386 PC32 2 <31:0> S+A-P
R 386 GOT32 3 <31:0> G+A-P - creates GOT if it doesn’t exist

- creates a new GOT entry
R 386 PLT32 4 <31:0> L+A-P - creates PLT if it doesn’t exist

- creates a new PLT entry
R 386 COPY 5 none none - copies the value of the associated symbol from the

shared library
R 386 GLOB DAT 6 <31:0> S - sets the designated symbol addr. to the GOT entry
R 386 JMP SLOT 7 <31:0> S - modifies the PLT entry to transfer control to the

designated symbol addr.
R 386 RELATIVE 8 <31:0> B+A - updates a relative addr.
R 386 GOTOFF 9 <31:0> S+A-GOT
R 386 GOTPC 10 <31:0> GOT+A-P

Table 3.2: i386 Processor (32-bit) Relocation Types

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 40

Name Value Field Calculation Other action / Notes
R SPARC NONE 0 none none
R SPARC 8 1 V-<7:0> S+A
R SPARC 16 2 V-<15:0> S+A
R SPARC 32 3 V-<31:0> S+A
R SPARC DISP8 4 V-<7:0> S+A-P
R SPARC DISP16 5 V-<15:0> S+A-P
R SPARC DISP32 6 V-<31:0> S+A-P
R SPARC WDISP30 7 V-<29:0> (S+A-P)>>2
R SPARC WDISP22 8 V-<21:0> (S+A-P)>>2
R SPARC HI22 9 T-<21:0> (S+A)>>10
R SPARC 22 10 V-<21:0> S+A
R SPARC 13 11 V-<12:0> S+A
R SPARC LO10 12 T-<12:0> (S+A)&0x3ff
R SPARC GOT10 13 T-<12:0> G&0x3ff - creates GOT if it doesn’t exist

- creates a new GOT entry
R SPARC GOT13 14 V-<12:0> G - creates GOT if it doesn’t exist

- creates a new GOT entry
R SPARC GOT22 15 T-<21:0> G>>10 - creates GOT if it doesn’t exist

- creates a new GOT entry
R SPARC PC10 16 T-<12:0> (S+A-P)&0x3ff
R SPARC PC22 17 V-<21:0> (S+A-P)>>10
R SPARC WPLT30 18 V-<29:0> (L+A-P)>>2 - creates PLT if it doesn’t exist

- creates a new PLT entry
R SPARC COPY 19 none none - copies the associated symbol value

from the shared library
R SPARC GLOB DAT 20 V-<31:0> S+A - sets the designated symbol addr. to

the GOT entry
R SPARC JMP SLOT 21 none see notes - modifies the PLT entry to transfer

control to the designated symbol ad-
dress

R SPARC RELATIVE 22 V-<31:0> B+A - updates a relative addr.
R SPARC UA32 23 V-<31:0> S+A - refers to an unaligned word

Table 3.3: SPARC Processor (32-bit) Relocation Types

In the ABI model as defined in Definition 14, the relocation information is abstracted in the

relocs data as a set of Reloc, which is defined in Definition 15. A Reloc is an abstraction of a

relocation type. In the rest of the description, we will take the i386 and the SPARC as examples

in the explanation. Table 3.2 and Table 3.3 list the relocation types of the i386 architecture

and the SPARC architecture respectively, and the symbols used in the Calculation column are

explained in Table 3.1. The information from both tables are taken from the ABI standards on

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 41

the System V Application Binary Interface, which are found in [?] and [?] respectively.

Definition 15 A relocation reloc : Reloc is a member of

Reloc = tuple { 233
name : string; 234
value : Z; 235
kind : {none,data, f unc,got, plt,copy,globdat, jmpslot,relative}; 236
symb : RelocSymb; 237
} 238

Definition 16 A relocation symbol rsymb : RelocSymb is a member of

RelocSymb = tuple { 239
pcRel : B; 240
gotRel : B; 241
addend : B; 242
operation : Dag; 243
extSize : Z; 244
rfield : RelocField; 245
aligned : B; 246
} 247

Definition 17 A relocated field rfield : RelocField is a member of

RelocField = tuple { 248
field : InstrnField; 249
checkOverflow : B; 250
} 251

The first column of each row in the Table 3.2 and the Table 3.3 gives the name of the reloca-

tion type while the value in the second column is the relocation type value (ELF32 R TYPE),

which identifies the relocation type in binary files. The third column provides the relocated

field, which is the location to which the calculated relocation value will be filled. The position

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 42

of the relocated field in the instruction is given. For example, the relocated field of R SPARC 8

is in the bit range of <7:0>in an 32-bit (<31:0>) instruction. In Table 3.3, the relocated fields

of SPARC have a ’V’ or ’T’ attached to the bit range. It tells whether the relocation type checks

for overflow. If the relocation value is larger than the size of the relocated field, a relocation

type may verify (V) the value fits or truncate (T) the result. To summarize the action defined by

a relocation type, the linker will calculate the relocation value with the formula defined in the

Calculation column of the table and may take some other actions as indicated in the last col-

umn. The relocation value is then filled into the relocated field after checking value overflow

if required.

In a Reloc, the name and the value correspond to the the first and the second column

respectively in Table 3.2 and Table 3.3.

It is one of our contributions in this project that we categorize relocations into 9 kinds. Our

experience proves that it facilitates retargetting the GNU BFD library. This will be discussed

in Chapter 4. The kind identifies the relocation kind to which the Reloc belongs. In addition

to the kind, the symb captures the formula that calculates the relocation value (also known

as resolved symbol value). The abstraction of a relocation symbol RelocSymb is as shown in

Definition 16. Tasks except the relocation value calculation are implicit in the relocation kind.

The relocated field (rfield) is included in the RelocSymb, and the abstraction of which,

called RelocField, is in Definition 17. In a RelocField, the field and the checkOverflow,

corresponding to the third column of the tables, give the position of the relocated field in the

instruction and the overflow checking information respectively. The field is an instruction

field defined in the ISA abstraction. The relocated field is always an immediate field, so the

field also indicates if sign-extension is required when handling the relocation value.

Although the relocation types are processor-dependent, they are actually serving several

common purposes even though they may take different action. Our study leads to the result

that the different ISA is in fact the major factor that deviates the relocation types in different

processor architecture. According to our observation, we suggest categorizing relocations sup-

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 43

Relocation Kind Handled By Purpose Implicit Tasks
NONE link-editor Taking no action
DATA link-editor Filling data symbol address
FUNC link-editor Filling funcion symbol address

info.
GOT link-editor Creating an GOT entry - creates GOT if it doesn’t exist

- creates a new GOT entry
PLT link-editor Creating an PLT entry - creates PLT if it doesn’t exist

- creates a new PLT entry
COPY runtime linker Copying data from a shared li-

brary to non-PIC dynamic exe-
cutable at dynamic linking time

- copies the value of the associ-
ated symbol from the shared li-
brary

GLOBDAT runtime linker Calculating symbol address and
filling it to the GOT entry at dy-
namic linking time

- sets the designated symbol
addr. to the GOT entry

JMPSLOT runtime linker Modifying the PLT entry to al-
low control transfer to the desig-
nated function symbol address

- modifies the PLT entry to trans-
fer control to the designated
symbol addr.

RELATIVE runtime linker Adding the base address of the
loaded shared library to a rela-
tive address

- updates a relative addr.

Table 3.4: The 9 Relocation Kinds in the Model

ported in any ELF files into the 9 different kinds as shown in Table 3.4. Each relocation kind

is characterized by its purpose. With this categorization, relocations of the same kind serve

the same target client, which is either the link-editors or the runtime linkers. Besides, they

are responsible for the same implicit tasks, which is as shown in the last column of Table 3.4.

Implicit tasks, which are relocation actions other than relocation value calculation, correspond

to what listed in the Other action/Notes columns of Table 3.2 and Table 3.3. As a result, relo-

cations of the same kind can have different relocation value calculation formula but have the

same implicit tasks.

The explanation of each kind is as follows:

• Relocation kind: NONE

Relocations in the NONE kind give no instruction to the linker. Thus, they have no

relocation value calculation formula nor relocated field information.

Both of the R 386 NONE and the R SPARC NONE belong to this kind.

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 44

• Relocation kind: DATA

Due to separate compilation, the virtual addresses of data symbols are not available until

the linking and relocation is done. As a result, instructions which take memory reference

address as operands will have incomplete content before linking and relocation. Reloca-

tions in the DATA kind instruct the linker to fill the symbol address, which is calculated

with the formula defined in corresponding relocation type, to the appropriate instruction

field (relocated field). Depending on the instruction semantics, the storage of the sym-

bol address may be different. This is the reason that relocations in this kind can have

different relocation value formula.

Examples from i386 include R 386 32, R 386 GOTOFF and R 386 GOTPC.

Examples from SPARC include R SPARC 8, R SPARC 16, R SPARC 32, R SPARC HI22,

R SPARC 22, R SPARC 13, R SPARC LO10, R SPARC PC22 and R SPARC UA32.

• Relocation kind: FUNC

This kind is similar to the DATA one, except this is for function symbol addresses instead

of data symbol addresses. Function symbol addresses are unknown until the linking and

relocation is done. Relocations in the FUNC kind instruct the linker to fill the relative

branch offset, which is from the current instruction address to the indicated function

symbol address. Also, the relocation value formula depends on the instruction semantics

and therefore varies.

R 386 PC32 is the example of such kind in the i386.

Examples from SPARC include R SPARC DISP8, R SPARC DISP16, R SPARC DISP32,

R SPARC WDISP30 and R SPARC WDISP22.

• Relocation kind: GOT

The operation of the GOT (global offset table) has been explained in 2.2.4. When com-

piling a source file with the position-independent code generation option (e.g. -fPIC),

the assembler will generate the appropriate GOT relocation to instruct the link-editor to

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 45

allocate space in the GOT for the corresponding symbol and fill the corresponding field

with the offset to the allocated GOT entry. If the GOT doesn’t exist yet, the link-editor

will also responsible for creating one. This task is usually done when the link-editor is

requested to generate a dynamic object from the PIC-compiled object file.

R 386 GOT32 is the example of such kind in the i386.

Examples from SPARC include R SPARC GOT10, R SPARC GOT13 and R SPARC GOT22.

• Relocation kind: PLT

The PLT relocations serve the same purpose as the GOT ones, except this is for creating

a PLT (procedure linkage table) entry.

The R 386 PLT32 and the R SPARC WPLT30 are examples.

• Relocation kind: COPY

Shared libraries are usually built with position-independent code, but it’s not the case for

dynamic executables. As a result, the external symbolic resolution task must be done by

code modification at dynamic linking time. The idea of COPY relocations are motivated

by the desire of avoiding text segment modification at runtime in this situation.

When the link-editor is making a dynamic executable, and a data reference is found

residing in a shared library, space will be allocated in the .dyn.bss section of the

executable. At the same time, the link-editor also generates a copy relocation that will

instruct the runtime linker copying the indicated data from the shared library to the allo-

cated space.

The R 386 COPY and the R SPARC COPY are examples of copy relocations.

• Relocation kind: GLOBDAT

For each entry in the global offset table, there has a GLOBDAT relocation, which is

responsible for instructing the runtime linker to calculate the absolute virtual address of

the associated symbol and fill the value to the GOT entry.

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 46

The R 386 GLOBDAT and the R SPARC GLOBDAT are examples.

• Relocation kind: JMPSLOT

For each entry in the procedure linkage table, there has a JMPSLOT relocation, which is

responsible for instructing the runtime linker to modify codes in the PLT entry in order

to achieve control transfer to the resolved function symbol address when the function is

invoked through the entry.

The R 386 JMPSLOT and the R SPARC JMPSLOT are examples.

• Relocation kind: RELATIVE

In a shared library, a RELATIVE relocation is created for each GOT entry. Holding

a relative address, a RELATIVE relocation instructs the runtime linker to compute the

corresponding virtual address by adding the virtual address at which the shared library

was loaded (base address) to this relative address.

The R 386 RELATIVE and the R SPARC RELATIVE are examples.

The calculation formula of a relocation type (Reloc) is abstracted in both of the kind

member, which represents the relocation kind, and the symb member, which carries informa-

tion about the symbol associated with the relocation. The relocation value calculation can be

divided into two steps: 1) resolving the desired value, and 2) transforming the resolved sym-

bol value into a form suitable to be stored in the relocated field. The value obtained from the

first step may involve the value of the symbol, the index of which is carried in the relocation

entry. In our model, the formula corresponding to the first step is abstracted by the RelocSymb

members including the pcRel, the gotRel and the addend, in addition to the relocation

kind. We use Algorithm 2 to map a Reloc into the expression corresponding to the first step.

The meanings of the variables (P, GOT, A, G and L) used in the algorithm are as explained in

Table 3.1. At the second step, the relocation value is obtained by transforming the result from

the first step into a suitable representation for storage according to the definition of the asso-

ciated instruction. This formula is carried by the operation member of the RelocSymb, in

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 47

an expression form. In the operation Dag, the value obtained at the first step is represented

as either relocValue or gotRelocValue. Using the findSymbValue() in Algorithm 2,

Algorithm 1, which corresponds to the second step, maps a Reloc into the relocation value

calculation formula abstracted in the data. At the end, the least signification number of Re-

locSymb.extSize bits are extracted from the result value of the second step. Figure 3.8

gives an example of abstracting the R SPARC WDISP22 relocation.

opcode fields

021

00 0 1001 010 disp22

relocated field

Instruction – BNE

Format :
BNE disp22

Semantics:
if (!icc_z)
 branch to PC + (4xsign_ext(disp22))

Formula Abstraction

kind = func

pcRel = true

gotRel = false

addend = true

operation = ‘relocValue >> 2’

extSize = 22

Relocation – R_SPARC_WDISP22

Calculation:
(S+A-P) >> 2

Analysis:
1. resolving desired value by (S+A-P)
2. A 32-bit address is too large for disp22, so it
 is stored as (S+A-P) >> 2

Figure 3.8: An Example of Relocation Formula Abstraction

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 48

Algorithm 1 Applying Relocation Formula

applyRelocFormula = func(252
reloc : Reloc 253
) : Z { 254
var relocValue : Z; 255
var gotRelocValue : Z; 256
var result : Z; 257

258
259

relocValue = findSymbValue(reloc, S); 260
gotRelocValue = findSymbValue(reloc, GOT); 261

262
result = applyRelocOper(reloc.operation, relocValue, gotRelocValue); 263

264
return value ; 265

} 266

Algorithm 2 Finding the Symbol Value

findSymbValue = func(267
reloc : Reloc, symbol : Z 268
) : Z { 269
var value : Z; 270

271
value = 0; 272

273
if(reloc.symb.pcRel == true) 274

value = value - P; 275
if(reloc.symb.gotRel == true) 276

value = value - GOT; 277
if(reloc.symb.addend == true) 278

value = value + A; 279
280

if(reloc.kind == data ∨ reloc.kind == func) 281
value = value + symbol; 282

if(reloc.kind == got) 283
value = value + G; 284

if(reloc.kind == plt) 285
value = value + L; 286

287
return value ; 288

} 289

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 49

To conclude the discussion of the relocation model, Example 7 gives the specification of

the i386 R 386 PC32 relocation and that of the SPARC R SPARC WDISP22 relocation.

Example 7 The description of the i386 R 386 PC32 and the SPARC R SPARC WDISP22

r 386 pc32 = 〈 290
name = ”R 386 PC32”, 291
value = 2, 292
kind = func, 293
symb = 〈 294

pcRel = true, 295
gotRel = false, 296
addend = true, 297
operation = ’relocValue’, 298
extSize = 32, 299
rfield = 〈 f word32, true〉, 300
aligned = true, 301
〉 302

〉 303
304

r sparc wdisp22 = 〈 305
name = ”R SPARC WDISP22”, 306
value = 8, 307
kind = func, 308
symb = 〈 309

pcRel = true, 310
gotRel = false, 311
addend = true, 312
operation = ’relocValue >> 2’, 313
extSize = 22, 314
rfield = 〈 f disp22 s, true〉, 315
aligned = true, 316
〉 317

〉 318

It is assumed that that operation in a RelocSymb is expressed with simple operations

(e.g. ’+’, ’-’, and ’>>’). Besides the relocValue and the gotRelocValue used in the

relocation abstraction, the other pre-defined variables which will be used in the subsequent

discussion is summarized in Table 3.5.

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 50

Variable Usage Semantics
dynSectAddr ANY address of the dynamic section (.dynamic)
pltSectAddr ANY address of the PLT section (.plt)
gotSectAddr ANY address of the GOT section (.got)
relocValue Reloc relocation value
gotRelocValue Reloc relocation value but uses the GOT section address as the symbol value
pltEntryOffset PLT the offset from the start of the PLT section to the start of the current PLT

entry (in bytes)
pltgotEntryOffset PLT the offset from the start of the .got.plt section, which is the GOT

used by PLT if the PLT resides in the text segment, to the start of the
corresponding .got.plt entry of the current PLT entry (in bytes)

jsrelEntryOffset PLT the offset from the start of the .rel.plt section to the start of the
corresponding JMPSLOT relocation of the current PLT entry (in bytes)

Table 3.5: The Pre-defined Variables in the Processor Model

3.2.2 Global Offset Table Model

Since the runtime linker is not one of our target tools so far, the global offset table (GOT) model

described in this subsection abstracts only the syntax but not the semantics of a GOT.

The global offset table is usually in a section named .got. Both of the format and the inter-

pretation of the GOTs are processor-specific. While the link-editor is responsible for building

the GOT when making dynamic object files, the runtime linker is informed with how to use it.

Responsible for holding the absolute virtual symbol addresses as discussed in 2.2.4, a GOT is

simply an array of memory addresses. A GOT entry is to hold a symbol address. Some entries

at the beginning and/or at the end of the GOT may be reserved to hold special values. For

some processor architectures, a symbol may be used to access the GOT entries from the text

segment.

Definition 18 defines the abstraction of a global offset table. The accessSymb gives the

name of the GOT access symbol if there is any. The maxSize gives the maximum size of the

table in bytes, if there exists limitation in size. The size of a GOT entry is implied by the address

size of the architecture, since each GOT entry is to store a symbol address. Some entries at the

start of at the end of the GOT are reserved to carry some important values. Carrying a sequence

of expression dags in order, the startEntries and the endEntries are for this purpose.

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 51

Each expression dag specifies a formula, which is used to calculate the value that will be stored

in the entry by the linker. Some pre-defined variables in Table 3.5 may be used to specify these

expressions.

Figure 3.9 illustrates the GOT of i386 and that of SPARC. Example 8 provides the corre-

sponding specifications.

Definition 18 A global offset table got : Got is a member of

Got = tuple { 319
accessSymb : string; 320
maxSize : Z; 321
startEntries : []Dag; 322
endEntries : []Dag; 323
} 324

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 52

Dynamic section addr.

0

0

….….
……..
…….

_GLOBAL_OFFSET_TABLE_

(a) i386

Max size:

8192 bytes

Dynamic section addr.

….….
……..
…….

_GLOBAL_OFFSET_TABLE_

(b) SPARC

Figure 3.9: Abstracting the GOTs of i386 and SPARC

Example 8 The description of the GOT of i386 and the GOT of SPARC

i386GOT = 〈 325
accessSymb = ” GLOBAL OFFSET TABLE”, 326
maxSize = -1, 327
startEntries = [’dynSectAddr’,’0’, ’0’] 328
〉 329

330
sparcGOT = 〈 331

accessSymb = ” GLOBAL OFFSET TABLE”, 332
maxSize = 8192, 333
startEntries = [’dynSectAddr’] 334
〉 335

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 53

3.2.3 Procedure Linkage Table Model

Similar to the global offset tables, procedure linkage tables are built by link-editors and oper-

ated by runtime linkers. For the same reason, our procedure linkage table (PLT) model abstracts

only syntax but not the semantics of a PLT.

The procedure linkage table is usually in a section named .plt. As discussed in 2.2.4,

each PLT entry is responsible for redirecting the function call to the runtime-resolved absolute

location. Some instructions may precede and/or the PLT entries. For some architectures, a

symbol may be used to access the PLT entries.

.got.plt – in data segment

call “addr”

jmp ….

jmp ….

PLT – in text segment

Code – in text segment
a PLT entry‘offInGot’

Figure 3.10: The Operation of a PLT in Text Segement

Although the PLT is a PIC feature, some architecture allow PLTs reside in the text segment.

We assume that the operation of the PLT in this case will need to depend on a private GOT,

usually in a section named .got.plt. Each PLT entry has a corresponding .got.plt

entry, the address of which is hold in the PLT entry. The initialized value of each .got.plt

entry holds an address pointing to some instruction in the corresponding PLT entry. So, the

.got.plt is in data segment and the PLT is in text segment. With the intervention of the

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 54

runtime linker at runtime, the .got.plt entry will hold the resolved absolute address of the

function. Figure 3.10 shows this scenario. Our model assume PLTs residing in the text segment

operate like this, but we cannot conclude that it is true for all architectures before carrying more

sophisticated study.

Our PLT model is as defined from Definition 19 to Definition 22. In a Plt, the inTextSeg

tells whether the PLT resides in the text segment. The accessSymb provides the name of the

access symbol if there is any. The maxSize gives the maximum size of the table in bytes,

if there exists limitation in size. If inTextSeg is true, then offInGot must be a non-

negative integer since it provides the offset from the start of a PLT entry to the place (inside

the entry), to which the initialized value of the corresponding .got.plt entry pointing. This

is graphically indicated in Figure 3.10. An architecture may have two different set of PLT

layouts, one for PIC-compiled files and the other one for non-PIC-compiled files. They are

hold in PICLayout and the nonPICLayout respectively. If there exists one unique PLT

layout, it will be given by the nonPICLayout.

A PltLayout consists of the specifications of the start entry and the end entry if there is any

as well as that of the normal entry, which is the PLT entry that is responsible for redirecting

call to the absolute location of a function symbol. The normalEntry is required while the

startEntry and the endEntry are optional.

A PltEntry is characterized by its size in bytes (size), a binary code template (tmpl) and

a set of PltFill members that describe how to fill the link time values to the template (toFill).

The entry template is in the form of a sequence of bytes, the instructions are placed one by one

starting from the index 0. Each PltFill consists of the bit range position to fill (pos) and the

expression formula to make the filling (filling). Remember that some pre-defined variables

in Table 3.5 may be used to specify the expression formulas.

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 55

Definition 19 A procedure linkage table plt : Plt is a member of

Plt = tuple { 336
inTextSeg : B; 337
accessSymb : string; 338
maxSize : Z; 339
offInGot : Z; 340
nonPICLayout : PltLayout; 341
PICLayout : PltLayout; 342
} 343

Definition 20 A procedure linkage table layout pltLayout : PltLayout is a member of

PltLayout = tuple { 344
startEntry : PltEntry; 345
normalEntry : PltEntry; 346
endEntry : PltEntry; 347
} 348

Definition 21 A procedure linkage table entry pltEntry : PltEntry is a member of

PltEntry = tuple { 349
size : Z; 350
tmpl : []byte; 351
toFill : 〈〉PltFill ; 352
} 353

Definition 22 A procedure linkage table fill pFill : PltFill is a member of

PltFill = tuple { 354
pos : Z × Z; 355
filling : Dag; 356
} 357

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 56

.PLT0 000000………..0000000

48 bytes of zero

….….
……..
…….

sethi (. - .PLT0), %g1
ba,a .PLT0
nop

…….

nop

Start

entry

normal

entry

end

entry

Analysis of the Normal Entry

sethi (. - .PLT0), %g1
ba,a .PLT0
nop

, which is equivalent to (in hex)

03 00 00 00 fill the offset from the start of
 PLT to the start of the current entry
30 80 00 00 encrypt the relative address of
 the start of PLT, computing as
 (relative addr. >> 2)
01 00 00 00

template = [0x03, 0x00, 0x00, 0x00, 0x30, 0x80, 0x00,
 0x00, 0x01, 0x00, 0x00, 0x00]

toFill for 1
st

 instruction
pos = [10, 31] bit 10 to bit 31, counting from the
 lowest index of the template
filling: pltEntryOffset

toFill for 2
nd

 instruction
pos = [42, 63] bit 42 to bit 63, counting from the
 lowest index of the template
filling: (-(4 + pltEntryOffset)) >> 2

Figure 3.11: Abstracting the PLT of SPARC

Figure 3.11 is the PLT layout of SPARC and the corresponding specification is given in

Example 9. The PLT starts with 48 bytes of zero and ends with a nop instruction. Initially,

each PLT entry consists of three instructions: 1) the sethi instruction computes the distance

between the start of the current entry and the start of the PLT and stores the most significant

22 bits of the result to %g1 register, 2) the ba,a instruction jumps to .PLT0, and 3) the

nop instruction. The abstraction of the normal entry consists of a template and two filling

instructions to fill the location-independent values at the PLT construction time. Figure 3.11

attaches with the detailed analysis of the normal entry abstraction.

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 57

Example 9 The description of the PLT of SPARC

sparcPLT = 〈 358
inTextSeg = false, 359
accessSymb = ” PROCEDURE LINKAGE TABLE”, 360
maxSize = -1, 361
offInGot = -1, 362
nonPICLayout = 〈 363

startEntry = 〈 364
size = 48, 365
tmpl = [366

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 367
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 368
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 369
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 370
] 371

〉 372
normalEntry = 〈 373

size = 12, 374
tmpl = [0x03, 0x00, 0x00, 0x00, 0x30, 0x80, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00] 375
toFill = 〈 376

〈pos = [10,31], f illing =′ pltEntryO f f set ′〉, 377
〈pos = [42,63], f illing =′ (−(4+ pltEntryO f f set)) >> 2′〉 378
〉 379

〉 380
EndEntry = 〈 381

size = 4, 382
tmpl = [0x01, 0x00, 0x00, 0x00] 383
〉 384

〉, 385
PICLayout = � 386
〉 387

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 58

3.2.4 Dynamic Section Model

typedef struct {
Elf32_Word d_tag; // element type
union {

Elf32_Word d_val; // an integer value
Elf32_Addr d_ptr; // an virtual address
} d_un;

} Elf32_Dyn;

Figure 3.12: ELF Dynamic Entries

The dynamic section is named as .dynamic. A special symbol, DYNAMIC, labels this

section. The dynamic section consists of an array of dynamic entries (Elf32 Dyn), the data

definition of which is as shown in Figure 3.12. The d tag of a dynamic entry identifies the

type of information that it carries. Most of the dynamic entry types are processor-independent.

So far, we find that DT PLTGOT dynamic entry, which is entry with the d tag value equals to

the identification code of DT PLTGOT, may carry the location of the PLT or that of the GOT,

depending on the choice of the architecture. As a result, our model requires the user providing

the expression of the DT PLTGOT dynamic entry. Definition 23 defines the dynamic section

entry model.

Definition 23 A dynamic section entry dyn : Dyn is a member of

Dyn = tuple { 388
kind : {pltgot}; 389
val : Dag; 390
} 391

Example 10 shows the specification of the dynamic section of SPARC and that of i386.

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 59

Example 10 The description of the dynamic section of SPARC and i386

sparcDyns = 〈 392
kind = pltgot, 393
val = ’pltSectAddr’ 394
〉 395

396
i386Dyns = 〈 397

kind = pltgot, 398
val = ’gotSectAddr’ 399
〉 400

3.2.5 Stack Model

The objective of our stack model is to describe the initial process stack setting that should be

done before execution. Initial stack layout is very important to the instruction set simulation,

because it provides access to command line and environment of a program. Please note that

our stack model carries no information about how to operate the stack at runtime. The stack

is operated by the instructions at runtime, so it is the responsibility of the compiler to generate

correct codes to manipulate the stack. Retargetable compiler is not included in this project so

far.

Our stack model is designed according to the ABI standards on System V Application

Binary Interface. The initial stack layout depends on both of the processor architecture and

the operating system environment, but the necessary data is the same. All C programs have

the interface - main(int argc, char *argv[], char *envp[]), where argc is

the argument count and argv is an array of pointers to the command-line arguments, and

the envp is an array of pointers to the environment strings. When a process is launched, the

command-line arguments including the argument counter, the environment arguments, and the

auxiliary vector, which holds startup information that should be passed by the operating system

to the runtime interpreter, are pushed onto the stack. This is the initial stack layout that should

appear before execution starts. Figure 3.13 are the initial process stack layouts of SPARC and

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 60

_ ____________________________
Unspecified High addresses_ ____________________________

Information block, including
argument strings

environment strings
auxiliary information

. . .
(size varies)_ ____________________________
Unspecified_ ____________________________

Null auxiliary vector entry_ ____________________________
Auxiliary vector

. . .
(2-word entries)_ ____________________________

0 word_ ____________________________
Environment pointers

. . .
(one word each)_ ____________________________

0 word_ ____________________________
Argument pointers

. . .
(Argument count words)_ ____________________________

%sp+64 Argument count_ ____________________________
Window save area

%sp+0 (16 words) Low addresses_ ____________________________

(a) SPARC (from [?])

Figure 3-31: Initial Process Stack
_ ____________________________

Unspecified High addresses_ ____________________________
Information block, including

argument strings,
environment strings,
auxiliary information

. . .
(size varies)_ ____________________________
Unspecified_ ____________________________

Null auxiliary vector entry_ ____________________________
Auxiliary vector

. . .
(2-word entries)_ ____________________________

0 word_ ____________________________
Environment pointers

. . .
(one word each)_ ____________________________

0 word_ ____________________________
Argument pointers

. . .
4(%esp) (Argument count words)_ ____________________________
0(%esp) Argument count_ ____________________________

Undefined Low addresses_ ____________________________

(b) i386 (from [?])

Figure 3.13: The Initial Process Stack from System V ABI Standard

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 61

i386 from the System V ABI standard.

Our stack model is so far only for retargetting the SimpleScalar simulators, in which the

input executables are assumed to be statically linked. As a result, we can ignore auxiliary

vector, which carries startup information to the dynamic linker. The stack layout template of

our model is shown in Figure 3.14 and the stack model is defined in Definition 24.

0

 Environment strings

….

0

 Argument strings

….

0

 Environment pointers (envp)

….
(envp[0] – envp[…])

0

 Argument pointers (argv)

….
(argv[0] – argv[argc-1])

 Argument count (argc)

Save area (optional)

stack base

maximum

environment

size

stack ptr

(unspecified)

(unused)

a
d

d
ress in

crea
sin

g

Figure 3.14: Our Stack Model

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 62

Definition 24 A stack stack : Stack is a member of

Stack = tuple { 401
baseAddr : Z; 402
stackPtr : RegCell; 403
align : Z; 404
maxEnviron : Z; 405
saveArea : Z; 406
} 407

In a Stack, the baseAddr gives the stack base address (highest possible address in stack),

which is OS-dependent. For example, the stack base address of SPARC running on SunOS

5.8 is 0xffbf0000. Usually, a register is responsible for holding the stack pointer value at

runtime. This register cell is indicated in stackPtr of the model. The align gives the

stack pointer value alignment in bits. For example, the stack pointer value must be guaranteed

to be doubleword aligned in SPARC. The maxEnviron gives the maximum environment

size requirement in bytes. This value would be required for the SimpleScalar simulators to

set up the environment. At startup, the SimpleScalar simulators initialize the stack pointer to

be (stack base address - maximum environment size), and then pushes the

environment data underneath. The user can increase the maxEnviron value if stack overflow

occurs. At last, the size of the optional save area (see Figure 3.14) is carried in saveArea in

byte.

Example 11 is the specification of the initial stack layout of SPARC.

Example 11 The description of the initial stack layout of SPARC

sparcStack = 〈 408
baseAddr = 0xffbf0000, 409
stackPtr = sp, 410
align = 64, 411
maxEnviron = 16384, 412
saveArea = 64 413
〉 414

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 63

3.2.6 Memory Usage Model

Definition 25 A memory usage musage : MemUsage is a member of

MemUsage = tuple { 415
dataTypeKind : {int,unsigned, f loat,addr}; 416
bitSize : Z; 417
align : Z; 418
} 419

Defined in Definition 25, each memory usage defines the type and alignment restriction of a

possible kind of data stored in memory. It works like the register usage defined in Definition 4.

The dataTypeKind defines the data type, the data size in bit is given by bitSize. The

align gives the address alignment restriction of in byte when the data of such type is stored

in memory.

Example 12 gives the memory usage specification of SPARC. The memory usage consists

of a set of MemUsage, each of which is the description of a supported data type and the corre-

sponding alignment restriction.

Example 12 The description of the initial stack layout of SPARC

sparcMemUses = 〈 420
〈unsigned,8,1〉, 〈int,8,1〉, 〈unsigned,16,2〉, 〈int,16,2〉, 421
〈unsigned,32,4〉, 〈int,32,4〉, 〈unsigned,64,8〉, 〈int,64,8〉, 422
〈 f loat,32,4〉, 〈 f loat,64,8〉, 〈addr,32,4〉 423
〉 424

3.2.7 Instruction Convention Model

The ISA model requires the users to define the rules to distinguish three kind of instructions:

function call, function return and indirect jump. The definition rules of each kind is abstracted

by a InstrnConv, which is defined in Definition 26.

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 64

In a InstrnConv, the kind identifies the kind of instructions being defined. The rules is

a set of definition rules used to distinguish the instruction of this kind. An instruction is defined

to be belonging to the kind if any rule in rules is satisfied. Each rule is abstracted by a In-

strnRule, which is defined in Definition 27. Each InstrnRule is given as the instruction type by

instrn and all the instruction field values that must be matched as given by fieldValues.

Definition 26 An instruction convention def : InstrnConv is a member of

InstrnConv = tuple { 425
kind : {call,return, indir jmp}; 426
rules : 〈〉InstrnRule; 427
} 428

Definition 27 An instruction rule rule : InstrnRule is a member of

InstrnRule = tuple { 429
instrn : Instrn; 430
fieldValues : 〈〉InstrnField×Z; 431
} 432

Example 13 shows the specification of the instruction conventions of SPARC. In the con-

vention d call, it is specified that the function call operation is done by call instructions.

The convention d return specifies that the return of a function call is done by jumpli in-

struction, but it is not the only job responsible by jumpli. A jumpli instruction is returning

from a function only if the field f rd g is 0, the field f rs1 g is 31 and the field f simm13 s

is 8. The convention d indir specifies that there are two possible cases of indirect jump. One

is done by the jmpl instruction when its field f rd g is equal to 15. The other one is done by

the jmpli instruction when its field f rd g is equal to 15.

CHAPTER 3. ABSTRACTING EMBEDDED PROCESSORS 65

Example 13 The SPARC instruction conventions

sparcConvs = { 433
d call = 〈 434

kind = call, 435
rules = { 436

〈instrn = call, f ieldValues = �〉, 437
} 438

〉, 439
d return = 〈 440

kind = return, 441
rules = { 442

〈instrn = jmpli, f ieldValues = {〈 f rd g,0〉,〈 f rs1 g,31〉,〈 f simm13 s,8〉}〉 443
} 444

〉, 445
d indir = 〈 446

kind = indir, 447
rules = { 448

〈instrn = jmpl, f ieldValues = {〈 f rd g,15〉}〉, 449
〈instrn = jmpli, f ieldValues = {〈 f rd g,15〉}〉 450
} 451

〉 452
} 453

Chapter 4

Retargetting GNU BFD Library and

Linker

Most of the downstream tools in the GNU Binutils package depend on the BFD library. To

achieve automatic porting these downstream tools, retargetting the GNU BFD library must be

the first step. Among these tools, the GNU linker is especially highly dependent on the BFD

library, such that most of the core linking functions, many of which are processor-dependent,

are provided by the BFD library. As a result, automatic generating the functions required by

the GNU linker becomes an unsplittable part of retargetting the BFD library, and we therefore

decide to enable retargetting both of the BFD library and the linker by the same tool.

In this chapter, we discuss the methodology of retargetting both of the GNU BFD library

and the GNU linker. The relevant details of both will be briefly described in order to present

our methodology. The hacking details can be found in [12]. The description provided in this

chapter and [12] is based solely on what we have been able to deduce from studying the source

code.

66

CHAPTER 4. RETARGETTING GNU BFD LIBRARY AND LINKER 67

4.1 The GNU BFD Library

The GNU BFD library provides services to manipulate object files, including the basic I/O

functions. In this section, we briefly overview the infrastructure and the internals of the BFD

library, and then conclude with the porting instructions.

4.1.1 Infrastructure

Figure 5-1: The Design of the GNU BFD Library

Application

BFD Frontend

Solaris,
ELF,

SPARC

Linux,
ELF,

SPARC

AIX,

AOU
I386

Linux,
ELF,
MIPS

L i n u x ,

E L F ,

M I P S

L i n u x ,
E L F ,

M I P S

L i n u x ,
E L F ,

M I P S

L i n u x ,

E L F ,

M I P S

AIX,
ELF,
MIPS

PowerPC

Solaris,
aout,

i386

L i n u x ,

E L F ,

M I P S

COFF,

MIPS

Linux,
aout,
MIPS

Solaris,
ELF,

i386

L i n u x ,
E L F ,

M I P S

sections
symbols

relocations

BFD Backends

Each configuration is
param eterized with:
Operating System .
Binary File Form at,
Processor Architecture

Figure 4.1: The Design of the GNU BFD Library

The object file configuration consists of three variables, namely the binary file format,

the operation system environment and the processor architecture. The BFD library allows

applications to use the same set of APIs to operate on object files in any format and for any OS

and processor architecture. To achieve this goal, the BFD library is designed to be consisting of

two parts: the frontend and a set of backends (Figure 4.1). The frontend provides an interface to

the application, so the object files configuration details is abstracted away. The real views of the

object files are handled by the BFD backends. The frontend decides which backend to use and

CHAPTER 4. RETARGETTING GNU BFD LIBRARY AND LINKER 68

when to call the backend routines to maintain its generic view. A set of pre-defined backends

exists in the BFD library. Each backend provides the data and the routines for a unique object

file configuration. By calling the routines provided from the backends, the frontend layer is able

to correctly manipulate object files in any configuration as long as the corresponding backend

exists.

4.1.2 The Internals

Each object file is abstracted as an object with the data type of struct bfd in BFD. We

call this as “bfd object” in the rest of this thesis. The users would manipulate the bfd objects

with the APIs provided by the frontend.

The Frontend Data

From the uers’s perspective, the three important object file elements, which are sections, sym-

bols and relocations, are carried at generic forms in a bfd object. This is the abstracted view of

a bfd object at the frontend layer (see Figure 4.1).

While the concept of a section in BFD is the same as that in ELF, BFD library han-

dles relocation in different way from the ELF. In ELF, if relocation information is required

by a section, another section will be created only for carrying the relocation entries. The

section pair, (.text, .rela.text), is an example. In BFD, these relocation entries are

however attached to the section in the form of a data array, each element of which has the

data type of struct reloc cache entry. Figure 4.2 is the definition of struct re-

loc cache entry along with the equivalent ELF data. Similar to the ELF32 R TYPE in

Elf32 Rel and Elf32 Rela of ELF, the howto field in reloc cache entry of BFD

has knowledge about how to process the relocatable field, and it is in fact a piece of processor-

dependent information attached by the BFD backend.

Unlike the ELF object files, the BFD library handles only one symbol table section. The

implied symbol table is the one used by the instruction content per object file basis. The other

CHAPTER 4. RETARGETTING GNU BFD LIBRARY AND LINKER 69

typedef struct reloc_cache_entry {
struct symbol_cache_entry **sym_ptr_ptr; // ELF32_R_SYM in ELF
bfd_size_type address; // r_offset in ELF
bfd_vma addend; // r_addend in ELF
reloc_howto_type *howto; // ELF32_R_TYPE in ELF
}

Figure 4.2: Data definition of a BFD Relocation Entry

symbol tables, such as dynamic symbol table, if present, are handled by the BFD backend. As

a result, the symbol table in BFD is handled per bfd object basis. The BFD symbol table is an

array of bfd symbol object. Instead of being carried inside the bfd object, the symbol table is

loaded to a specified memory location upon request.

The frontend data in the BFD frontend is summarized in Figure 4.3.

bfd object

sections

symbols

relocations

Figure 4.3: The Relationship of the BFD Frontend Elements

The Backend Data

The target-specific information, that cannot be fit into the generic form at the frontend, will be

carried by the backend data.

For each distinct BFD backend, which is a configuration consisting of the binary file format,

the OS environment and the processor architecture, a set of backend data is built and distributed

in different places inside the bfd object data. Figure 4.4 illustrates the locations of the backend

CHAPTER 4. RETARGETTING GNU BFD LIBRARY AND LINKER 70

data for ELF files, and the role played by each data is summarized in Table 4.1. Only the

backend data that is used by the ELF-targets is mentioned here.

bfd object

sections

BFD target vector

ELF section data

ELF private data

ELF backend data

ELF symbol

Figure 4.4: The Relationship of the BFD Backend Elements for ELF files

Backend Data Target Information
BFD target vector - binary file format

- processor architecture
- function pointers for frontend

ELF backend data - properties of ELF files
- processor-dependent details of ELF
- if necessary, probably OS-dependent details of ELF
- function pointers for ELF files processing routines

ELF section data - section data specific to ELF
ELF symbol - symbol data specific to ELF
ELF private data - bookkeeping data of the ELF linking process

Table 4.1: A Summary of BFD Backend Data for ELF Files

Besides identifying the binary file format and the processor architecture, the BFD target

vector holds 9 sets of function pointers, which are as listed in Table 4.2, regardless of the

binary file format. These function pointers are to redirect the invocations of the frontend APIs

to the appropriate backend implementations.

CHAPTER 4. RETARGETTING GNU BFD LIBRARY AND LINKER 71

Besides the BFD target vector, all other backend data illustrated in Figure 4.4 are ELF-

specific, which means that these data are needed if and only if the backend is specifying a

ELF-target. The ELF section data is carried by the frontend section as a supplementary of

the generic data. However, the ELF symbol is in fact the frontend symbol itself but appears

as different form at different abstraction layer. The ELF private data is used by the GNU

linker to keep track of the intermediate values in the linking process. This happens when the

GNU linker invokes the target-specific linking algorithms in the BFD library. Besides carrying

the ELF data, the ELF backend data also possesses some processor-dependent details, such

as relocations, GOTs and PLTs, as well as the OS-dependent details if it is required. These

information are carried in the form of either as data or functions.

Category Purpose
Copy copying bfd objects
Core file support manipulating core files
Archive support manipulating archive files
Symbol table support processing backend symbols
Relocation support processing relocations
Output writing out the bfd objects
Linker providing support to the GNU linker
Dynamic linking support reading dynamic linking information
Generic carrying functions which don’t fit into other categories

Table 4.2: The 9 Categories of Functions in the BFD Target Vector

4.1.3 Adding a New ELF-Target Backend

An ELF-target backend is a BFD backend which has ELF as its binary file format in the con-

figuration. In order to assist porting the BFD library to a new ELF-target, the BFD library

provides two template files, one for 32-bit machine (elf32-target.h) the other for 64-bit

(elf64-target.h), to facilitate adding new ELF-target backends. As we limit our goal to

support only 32-bit machines in this study, we will only discuss the elf32-target.h file.

We will call this file as “ELF-target template” in the rest of this thesis.

The ultimate purpose of using the ELF-target template is to build the BFD target vector

CHAPTER 4. RETARGETTING GNU BFD LIBRARY AND LINKER 72

for a new ELF-target. Referring to Table 4.1, we could find that the BFD target vector, which

contains also the ELF backend data, is the only backend data varying with more than only the

binary file format. The ELF-target template instructs the users to provide the relevant infor-

mation and uses these to overwrite the default setting in order to create the BFD target vector

for the new ELF-target. To construct a BFD target vector with the ELF-target template, these

information are written in a file which is named with the convention of elf32-myarch.c

(e.g. elf32-sparc.c for SPARC).

We can conclude that, the problem of retargetting the BFD library to a new ELF-target is

almost reduced to be the problem of automatic generating the elf32-myarch.c file for the

new target. Since all the processor-dependent linking algorithms are implemented in this file,

automatic generating this file is also helping us to retarget the GNU linker.

4.2 The GNU Linker

The GNU linker is a link-editor. Similar to the BFD library that it can be used to manipulate

object files for various targets, the GNU linker can be configured to perform linking on object

files for many different targets.

This section is organized as follows. Section 4.2.1 will overview the dependency of the

GNU linker to the BFD library. Section 4.2.2 will then describe the linking services provided

by the BFD library and required by the GNU linker. Section 4.2.3 describes the emulation,

which is the target-dependent part of the GNU linker. The ultimate goal of this section is to

bring out the target-dependent part that has to be automatically generated for the GNU linker

in the retargetting process. The understanding of this helps us to retarget a well-equipped BFD

library to a new ELF-target.

CHAPTER 4. RETARGETTING GNU BFD LIBRARY AND LINKER 73

4.2.1 The Dependency to the BFD Library

As we have mentioned, the GNU linker is highly dependent on the BFD library. This is be-

cause that the linking task requires knowledge about the binary file format in order to thread

the object files together correctly, and also some processor-dependent details about dynamic

linking in order to compose the dynamic entities such as GOTs and PLTs on the output object

file. With the BFD library providing the target-dependent linking functions, the GNU linker is

only responsible for calling these functions at appropriate time and step to handle each task. In

fact, the real jobs of linking are done inside the BFD library.

Figure 4.5 demonstrates the relationship between the BFD library and the GNU linker. To

support each target, the GNU linker requires an emulation. An emulation provides target-

dependent data and algorithms to enable the GNU linker properly handling object files for a

particular target configuration. The BFD backends to the GNU BFD library is the same as

the emulations to the GNU linker. Similar to that of the BFD library, the frontend part of the

GNU linker is machine-independent. At each linking execution, the GNU linker points to one

emulation, which contains information about the corresponding BFD backend that should be

used.

GNU BFD Library

backends

Solaris,

ELF,

SPARC

Linux,

ELF,

MIPS

Linux,

ELF,

MIPS

Linux,

ELF,

MIPS

Linux,

ELF,

MIPS

Solaris,

ELF,

i386

GNU Linker

 emulations

elf32-sparc

elf32-mips

elf32-arm

elf32-i386

coff-arm

Figure 4.5: The Relationship between the GNU BFD Library and the GNU Linker

CHAPTER 4. RETARGETTING GNU BFD LIBRARY AND LINKER 74

4.2.2 Linking Facilities from GNU BFD

The linking services provided by the BFD library range from the basic generic linking function

such as symbol resolution to the target-specific task handling such as dynamic linking. We can

consider the linking services are provided from a hierarchy of link classes, which is unique to

each target. However, the data and method members of each link class scatter over different

places in BFD. The picture of the link class hierarchy of a target is captured in its BFD backend

data. The UML diagrams in Figure 4.6 present the link class hierarchies of the SPARC-ELF 1

target and the i386-ELF target in the latest BFD library release (version 2.13).

A hash table is essential to symbol resolution, and it is thus a very important member in

any link class. Symbol resolution is usually done on the fly when the linker scans through

the global symbols in each input object file. In this thesis, we call the hash table used for the

linking purpose as “link hash table”, and the entry used in such hash table as “link hash entry”.

Any link hash table is built on a BFD hash table, which is one of the utilities provided from the

BFD library. Besides keeping track of the state (e.g. undefined) of a symbol, the link hash table

entry in the GNU linker can be customized to carry other target-specific information about a

symbol. Provided by the BFD library and being implemented in its belonging link class, the

link hash table used by the GNU linker has its ability enhanced at each level of the link class in

the hierarchy. Figure 4.7 illustrates the structures of the link hash tables used by the SPARC-

ELF target and the i386-ELF target respectively in the latest BFD library release (version 2.13).

In the current release, the SPARC-ELF target uses the ELF link hash table, while the i386-ELF

target has the ELF link hash table enhanced to facilitate some machine-specific linking jobs. It

is only a matter of choice for the authors who ported the BFD library to these targets.

The link class hierarchies of all ELF-targets follow the same pattern. Providing support to

the basic and generic linking functions, the BFD link class is always the root of any link class

hierarchy regardless of the target configuration. Subclassing from the BFD link class is usually

1Hereafter, we use the convention of arch name-binary format to represent a 32-bit target with the specified
processor type and the specified binary file format.

CHAPTER 4. RETARGETTING GNU BFD LIBRARY AND LINKER 75

(a) SPARC-ELF (b) i386-ELF

Figure 4.6: The Link Class Hierarchies Used by the SPARC-ELF Target and the i386-ELF

Target

BFD hash table

BFD link hash table

ELF link hash table

(a) SPARC-ELF

BFD hash table

BFD link hash table

i386-ELF link hash table

ELF link hash table

(b) i386-ELF

Figure 4.7: The Structures of the Link Hash Tables

CHAPTER 4. RETARGETTING GNU BFD LIBRARY AND LINKER 76

one which provides linking support to satisfy the needs of a specific binary file format. That

for the ELF-targets is what we call the ELF linker class in Figure 4.6. To be the leaf in the

hierarchy, a target-dependent link class (e.g. SPARC-ELF link class) is finally built upon the

ELF link class to provide the machine-dependent support for the corresponding ELF-target.

After a brief introduction of the BFD linker utility, in the following, we will give more details

about the link classes which contribute to the linking functions of the ELF-targets. The hash

table support provided by each link class will especially be emphasized.

The BFD Hash Table

The BFD

hash table

 0

 4 h1 “str_h1”h4 “str_h4”

 3

 2
h2 “str_h2”

 1
h3 “str_h3”h5 “str_h5”

h5

h4

h3

h2

h1insertion

order

hash table entries

Figure 4.8: The BFD Hash Table

The hash table utility provided by the BFD library consists of the data structure definitions

and a set of APIs for manipulating the BFD hash tables and their entries. As we have shown

in Figure 4.7, a special-purpose hash table can be derived from the BFD hash table. In this and

the subsequent parts, we will illustrate how it can be done.

CHAPTER 4. RETARGETTING GNU BFD LIBRARY AND LINKER 77

struct bfd_hash_entry {
struct bfd_hash_entry *next; // next entry ptr
const char *string; // string being hashed
unsigned long hash; // hash code
}

struct bfd_hash_table {
struct bfd_hash_entry **table; // array of hash entry linked list
unsigned int size; // # buckets
struct bfd_hash_entry *(*newfunc) PARAMS

((struct bfd_hash_entry *,
struct bfd_hash_table *,
const char *)); // table initialization API

PTR memory; // memory chunk
}

Figure 4.9: Data Structure of the BFD Hash Entry and that of the BFD Hash Table

First of all, Figure 4.8 provides an abstracted picture of the BFD hash table and entries.

Each BFD hash entry only carries a string (e.g. ”str h1” of entry h1 in Figure 4.8). A BFD

hash table is a fixed sized array of BFD hash entry linked list. Each element of the array

represents a bucket. The hash code, which is calculated from the string storing inside the entry,

determines the bucket into which the hash entry will be stored. The hashing collision problem

is handled by storing the collided entries in a dynamically growing linked list in the bucket.

This is as illustrated in Figure 4.8.

Figure 4.9 gives the data structure definition of the BFD hash entry and that of the BFD

hash table. When deriving a special-purpose hash table class from the BFD hash table class,

these data structures will become the parent data of the new hash table data structures. The BFD

hash utility also provides a set of API to serve hash table construction, hash entry construction,

hash table destruction, hash entry lookup, hash entry replacement, and hash table traverse. A

link hash table built on the BFD hash table will provide a similar API set, and implementation

of each will invoke the corresponding parent API to manipulate the parent data.

The BFD Link Class

Regardless of the target, the BDF link class is always the root of a link class hierarchy. The

BFD link class is to provide the most basic symbol handling services - symbol resolution.

CHAPTER 4. RETARGETTING GNU BFD LIBRARY AND LINKER 78

In this subsection, we will describe the BFD link hash table provided by the BFD link class,

as well as the services provided to do symbol resolution by manipulating the BFD link hash

tables.

enum bfd_link_hash_type {
bfd_link_hash_new, // symbol is newly created
bfd_link_hash_undefined, // undefined symbol
bfd_link_hash_undefweak, // weakly undefined symbol
bfd_link_hash_defined, // defined symbol
bfd_link_hash_defweak, // weakly defined symbol
bfd_link_hash_common, // common symbol
bfd_link_hash_indirect, // symbol is an indirect link
bfd_link_hash_warning // like indirect, but warn if referenced
}

Figure 4.10: The BFD Link Hash Entry Type

In the BFD link class, symbols are classified into 7 types: undefined, weakly undefined,

defined, weakly defined, common, indirect and warning. Section 2.2.3 has reviewed the seman-

tics of some symbol types. The external symbols mentioned in section 2.2.3 are equivalent to

the undefined symbols we discuss here. An indirect symbol is a pseudo symbol which carries a

link to a real symbol and the version information about the linking symbol. Similarly, a warn-

ing symbol carries a link to a real symbol and a string of warning message about the linking

symbol. The symbol data type is represented by enum bfd link hash type, which is

as shown in Figure 4.10. In addition to the 7 symbol types, the bfd link hash new type

of enum bfd link hash type represents that the symbol has not been added to the hash

table and it doesn’t belong to any type.

The symbol resolution function provided by the BFD link class is done on the fly when

each global symbol is added to the BFD link hash table, which is implemented and operated

in the BFD link class. Figure 4.11 gives the data structure definition of the BFD link hash

table (struct bfd link hash table) and that of the corresponding entry (struct

bfd link hash table entry). The BFD link hash table and the BFD link hash entry are

built on top of the BFD hash table and the BFD hash entry respectively (refers to Figure 4.7).

A BFD hash entry is carried as the parent data in the first element of each BFD link hash entry.

CHAPTER 4. RETARGETTING GNU BFD LIBRARY AND LINKER 79

struct bfd_link_hash_entry {
struct bfd_hash_entry root; // parent hash entry
enum bfd_link_hash_type type; // link hash entry type
struct bfd_link_hash_entry *next; // next ptr
union {

struct {
abfd *abfd; // source of the symbol
} undef; // undefined sym.

struct {
bfd_vma value; // symbol value
asection *section; // symbol section
} def; // defined sym.

struct {
struct bfd_link_hash_entry *link; // real symbol
const char *warning;
} i; // warning/indirect sym.

struct {
bfd_size_type size; // symbol size;
struct bfd_link_hash_common_entry {

unsigned int alignment_power; // alignment
asection *section; // symbol section
} *p;

} c; // common sym.
} u;

}

struct bfd_link_hash_table {
struct bfd_hash_table table; // parent hash table
const bfd_target *creator; // backend BFD target vector
struct bfd_link_hash_entry *undefs; // undefined symbols
struct bfd_link_hash_entry *undefs_tail; // tail of the above list
enum bfd_link_hash_table_type type; // link hash table type
}

Figure 4.11: Data Structure of the BFD Link Hash Entry and that of the BFD Link Hash Table

In addition to the symbol name string in the parent data, extra symbol-type-dependent infor-

mation is carried in each entry. Similarly, a BFD hash table is carried as the parent data in

the first element of each BFD link hash table. This BFD hash table is to carry a table of BFD

link hash table entries. A BFD link hash table also carries the pointer of the BFD target vector

(creator), which belongs to the backend target that creates the BFD link hash table. The

backend BFD target vector provides target-specific APIs required in the linking process.

Each BFD link hash entry identifies one symbol. While linking, the global symbols of each

input object files are added to the hash table. If no symbol with the same name is found in

the hash table before adding a symbol, a new link hash entry with the appropriate type (one

of the 7 symbol types that we have discussed) is created and added to the hash table. If the

CHAPTER 4. RETARGETTING GNU BFD LIBRARY AND LINKER 80

Previous Type

NEW UNDEF UNDEFW DEF DEFW COM INDR WARN

UNDEF UND NOACT UND REF REF NOACT REFC WARNC

UNDEFW WEAK NOACT NOACT REF REF NOACT REFC WARNC

DEF DEF DEF DEF MDEF DEF CDEF MDEF CYCLE

DEFW DEFW DEFW DEFW NOACT NOACT NOACT NOACT CYCLE

COM COM COM COM CREF COM BIG REFC WARNC

INDR IND IND IND MDEF IND CIND MIND CYCLE

WARN MWARN WARN WARN CWARN CWARN WARN CWARN NOACT

 UND Mark as undefined WEAK Mark as weak undefined

 DEF Mark as defined DEFW Mark as weak defined

 COM Mark as common REF Mark as referenced if defined

 REFC Mark the indirect and the pointing symbol as referenced

 IND Create an indirect symbol MWARN Create a warning symbol

 CIND Create an indirect symbol from a common

 CREF Handle multiple definitions with common

 CDEF Handle multiple definitions with common

 MDEF Handle multiple definitions error

 MIND Handle multiple indirect symbols

 WARN Issue warning CWARN Warn if referenced, else MWARN

 WARNC Issue warning and then CYCLE

 CYCLE Process the symbol pointed by the indirect link NOACT No action

 BIG Use the larger size of both commons

New
Type

Figure 4.12: The State Table for Symbol Resolution

a symbol with the same name is found in the hash table, symbol resolution is done according

to the type of the existing symbol and that of the new symbol. Usually, the result of symbol

resolution is simply changing the symbol type in the BFD link hash entry. The state table in

Figure 4.12 summarizes the symbol resolution process. With the existing symbol type and

the new symbol type, the state table provides the appropriate resolution action to take. The

first column of the state table, which corresponds to the bfd link hash new symbol type,

provides the resolution action when no symbol with the same name as that of the new symbol

exists in the hash table.

Figure 4.13 gives an example of symbol resolution process. There are two input object files

- main.c and sum.c in this example. We only focus on the handling of one symbol - sum.

The first input file (main.c) references the sum symbol by calling the external function. So,

an undefined sum symbol is added to the hash table. The second input file (sum.c) defines a

CHAPTER 4. RETARGETTING GNU BFD LIBRARY AND LINKER 81

int main() {

 int v;

 v=sum(1,2);

 return 0;

}

sum - undefined

main.c

int sum(

 int a,

 int b) {

 return a+b;

}

sum.c

sum – defined

Existing: NEW

New: UNDEF

Action: UND
2

sum - undefined

Existing: UNDEF

New: DEF

Action: DEF
3

sum - defined

hash table

1

undef list sum sum

in.c m.c

Description

- add the symbol sum

from su

- result: change the type of

sum as defined.

Description

- add the symbol sum

from ma

- result: add the symbol

sum as undefined.

Description

- hash table is empty

Figure 4.13: Example of Symbol Resolution Using the BFD Link Hash Table

method named sum. When processing the defined sum symbol in the second input file, symbol

resolution is done against the existing undefined sum symbol. By checking the state table, the

third row and the second column indicates the DEF action, which instructs marking the symbol

as defined.

The ELF Link Class

For all ELF-targets, the ELF link class is the second level of the link class hierarchy by sub-

classing the BFD link class (see Figure 4.6). The ELF link class provides linking services

CHAPTER 4. RETARGETTING GNU BFD LIBRARY AND LINKER 82

specifically to handle the ELF object files.

struct elf_link_hash_entry {
struct bfd_link_hash_entry root; // parent BFD link hash entry
long indx; // symbol index for output file
long dynindx; // symbol index if this is a dynamic symbol;

// -1 otherwise
union {

bfd_signed_vma refcount; // keeps track the usage of the
bfd_vma offset; // symbol if it requires an

} got; // entry in the GOT at output

union {
bfd_signed_vma refcount; // keeps track the usage of the
bfd_vma offset; // symbol if it requires an

} plt; // entry in the PLT at output

char type; // ELF symbol type (e.g. STT_OBJECT)

.......

}

struct elf_link_hash_table {
struct bfd_link_hash_table root; // parent BFD link hash table
bfd_size_type dynsymcount; // number of dynamic symbols
struct elf_link_hash_entry *hgot; // hash entry of the ‘‘__GOT_OFFSET_TABLE_’’ symbol
struct bfd_link_needed_list *needed; // list of dependent shared libraries
struct elf_link_loaded_list *loaded; // list of loaded input bfd objects

......

}

Figure 4.14: Data Structure of the ELF Link Hash Entry and that of the ELF Link Hash Table

(Partial)

The detailed description of the ELF linking services is out of scope of this thesis. However,

Figure 4.14 provides the partial data structure definition of the ELF link hash table and that

of the corresponding entry. We will leave the discussion of the relevant data usage to the

upcoming sections of this chapter when we describe the linking algorithms.

The MYARCH-ELF Link Class

To serve a ELF-target, a target-dependent link class, which is what we so-called MYARCH-ELF

link class, will be built upon the ELF link class in its link hierarchy. The SPARC-ELF link class

and the i386-ELF link class are examples for the SPARC-ELF target and the i386-ELF target

respectively (see Figure 4.6).

CHAPTER 4. RETARGETTING GNU BFD LIBRARY AND LINKER 83

The MYARCH-ELF link class provides the machine-specific linking services for ELF files.

To make it clear, the MYARCH-ELF link class contains knowledge about the machine-specific

details required for linking, with the assumption of handling only ELF files. The contribu-

tions of the MYARCH-ELF link class to the linking job are in two-fold. First, relocation is

machine-dependent and the MYARCH-ELF link class can provide service to process the relo-

cation entries in the input object files and take the appropriate action. Second, if the target

configuration requires dynamic linking support, the MYARCH-ELF link class will provide ser-

vice to compose machine-dependent dynamic entities on the output object file. For example,

the layout of the global offset table (GOT) and that of the procedure linkage table (PLT) are

both machine-dependent, and the MYARCH-ELF link class will be responsible to compose the

GOTs and the PLTs to handle the dynamic symbols.

Depending on the developers of the BFD backend, a machine-specific link hash table may

be built on the ELF link hash table, in order to facilitate the machine-specific linking jobs. The

scenario is similar to that the ELF link hash table is built on the BFD link hash table.

The implementation of the MYARCH-ELF link class resides in the corresponding elf32-

myarch.c file. We have concluded in section 4.1.3 that the elf32-myarch.c is the only

file that must be generated automatically in order retarget the BFD library to a new ELF-target.

In fact, the linking facilities of the MYARCH-ELF link is the biggest part in the elf32-

myarch.c file. Thus, automatically generating functions that play the role of the MYARCH-

ELF link class is our critical problem. This leads to the discussion of the methodology of our

solution in the subsequent section.

4.2.3 Emulations of the GNU Linker

Each GNU linker target requires an emulation [?]. An emulation contains three types of target-

dependent information as follows:

• the name of the corresponding BFD backend target, the APIs provided by which will be

used in the linking process,

CHAPTER 4. RETARGETTING GNU BFD LIBRARY AND LINKER 84

• the linker script, which provides mapping rules between sections from the input object

files and sections in the output file,

• some algorithms, which are mostly dependent on the binary file format.

GNU Linker

elf32_sparc

emulation

elf_i386

emulation

xxxxx

emulation

………

genscripts.sh

emulparams

script

(e.g. elf32_sparc.sh)

configuration

process

linking

execution

scripttempl

script

(e.g. elf.sc)

emultempl

script

(e.g. elf32.em)

Emulation Interface

Figure 4.15: The GNU Linker Emulation

Each emulation consists of only one source file. The emulation file is generated by some

scripts during the configuration process of the GNU linker. Figure 4.15 demonstrates how the

emulation is generated at the configuration time and how it is used at the execution time. At

the configuration time, the genscripts.sh is invoked with the name of the emulparams

script as parameter. The genscripts.sh script will in turn invoke three script files, namely

the emulparams script, the scripttempl script and the emultempl script. The emultempl script

file to be used is given in the input parameter, while the scripttempl script and the emulparams

script are indicated in the content of the emultempl script file. The emulparams script file is

target-dependent while both of the scripttempl script and the emultempl script varies with the

binary file format only.

CHAPTER 4. RETARGETTING GNU BFD LIBRARY AND LINKER 85

elf_i386.sh

SCRIPT_NAME lf=e

OUTPUT_FORMAT elf32-i386"="

TEXT_START_ADDR=0x08048000
MAXPAGESIZE 1000=0x

COMMONPAGESIZE=0x1000
NONPAGED_TEXT_START_ADDR=0x08048000
ARCH 86=i3

MACHINE=
NOP=0x90909090
TEMPLATE_NAME=elf32
GENERATE_SHLIB_SCRIPT=yes
NO_SMALL_DATA=yes

elf32_sparc.sh

SCRIPT_NAME lf=e

OUTPUT_FORMAT elf32-sparc"="

TEXT_START_ADDR=0x10000
MAXPAGESIZE 10000=0x

COMMONPAGESIZE=0x2000
NONPAGED_TEXT_START_ADDR=0x10000
ALIGNMENT=8
ARCH arc=sp

MACHINE=
TEMPLATE_NAME=elf32
DATA_PLT=
GENERATE_SHLIB_SCRIPT=yes
NO_SMALL_DATA=yes

Figure 4.16: The emulparams Script Files for SPARC-ELF and i386-ELF

The emulparams script is target-dependent such that each target configuration needs an

unique emulparams script. The emulparams script carries a set of parameter values which will

be used in the further emulation file generation. Figure 4.16 shows the content of the emul-

params script for the SPARC-ELF and that for the i386-ELF in the current release of the GNU

linker (version 2.13). The name of the scripttempl script is given in the SCRIPT NAME pa-

rameter. In Figure 4.16, “SCRIPT NAME = elf” appears in both emulparams scripts, so the

scripttempl script file with the name of elf.sc is used. The scripttempl script file is respon-

sible for the linker script generation. The scripttempl script file is basically only dependent

on the binary file format. In this project, we simply assume fixing the SCRIPT NAME param-

eter to be elf is enough. On the other hand, the name of the emultempl script is given in

the TEMPLATE NAME parameter. In Figure 4.16, “TEMPLATE NAME = elf32” appears in

both emulparams scripts, so the emultempl script file with the name of elf32.em is used. The

emultempl script file is used to generate the content of the emulation file. Same as the script-

templ script file, the emultempl script file is dependent on the binary file format only. We fix

the TEMPLATE NAME parameter value as elf32 in this project. Other emulparams script pa-

rameters carry some simple data such as the text segment start address (TEXT START ADDR.

CHAPTER 4. RETARGETTING GNU BFD LIBRARY AND LINKER 86

In fact, some parameter values are required and some are optional in the emulation generation

process. Please consult [?] for the detailed description of the emulparams script parameters.

Besides the BFD backend, the emulation is the other which is required to port the GNU

linker to a new target. In this subsection, we conclude that the problem of automatic generating

the emulation for a new ELF-target can be reduced to be that of automatic generating the

emulparams script file.

4.2.4 The Link-editing Algorithm

Figure 4.17 is an overview of the link-editing methodology used by the GNU linker. The GNU

linker takes two types of input - the linker script and the input object files. The linker script is

provided by the target-dependent emulation as discussed in Section 4.2.3. Generally speaking,

linking is threading the input object files together into one piece. The linker script provides the

mapping rules that instruct the linker to map each section in an input object file to one of the

sections in the output file. The names of the input object files are however provided from the

input command. The linker will build a BFD object to represent each input object file, and they

will be used in the linking process. Before the process starts, a BFD object is also constructed

to represent the output object file, and a link hash table, that will be used for symbol resolution,

is created through the backend target vector of the output BFD object. According to the user’s

request, the linking and relocation task is performed to generate a static/dynamic executable,

a relocatable file or a shared library. When the link-editing task finishes, the output BFD is

written out into to disk as a file.

The linking and relocation job performed by the GNU linker can be summarized into the

following steps:

1. Processing through each input object file.

After a BFD object is created for the input file, two tasks will be done at each iteration.

First, the global symbols in the input BFD will be added to the link hash table. The

symbol adding request will be redirected to the appropriate function in the BFD backend.

CHAPTER 4. RETARGETTING GNU BFD LIBRARY AND LINKER 87

Linking

&
Relocation

Finishing

the
Output BFD

Linker

Script

Input

Object
Files

Figure 4.17: The Overview of the GNU Link-editing Methodology

For ELF files, a symbol may come from the .symbtab section or the .dynsymb

section. If the input is a shared library, symbols from the .dynsymb (dynamic symbol

table) will be processed and they are called dynamic symbols. Remember that symbol

resolution is performed on the fly when the symbols are added to the link hash table.

Second, if the input is not a shared library, the linker will check through all relocation

entries in the file. The purpose is to allocate space in the GOT and the PLT of the output

when GOT/PLT relocation entry is found.

2. Garbage collecting unreferenced input sections.

Starting from the necessary sections as indicated by the linker script, the input sections

required in the output file are marked. A required section is one which defines any

referenced symbol in the already marked sections. In the end, the sections that are not

marked will be marked as SEC EXCLUDE, which indicates that the content of the section

can be excluded by the linker.

3. Mapping input sections to output sections.

By using the rules provided by the linker script. Each input section is mapped to a section

in the output file. After this step, the input sections will know the output section in which

they will be placed, but not the exact location.

CHAPTER 4. RETARGETTING GNU BFD LIBRARY AND LINKER 88

4. Preparing for section sizing.

It is not always the case that the content of an output section comes from the input

sections. Dynamic sections such as .plt and .got are newly created by the linker. At

this step, target-dependent functions from the BFD backend are invoked to find out the

size of the newly created dynamic sections, even though the content may be filled later.

5. Sizing up the sections.

(vma+output_offset+r_offset):

r_offset

output section

input section

vma

output offset

Figure 4.18: The Semantics of the Relocation Formula Carried in a HOWTO

At this step, the start address and the size of each output section will be set. At the same

time, each input section is assigned with the output offset, which is the offset from the

start of the corresponding output section. After this step, the input sections not only

know which output section they will be placed, but also the exact location they will be

placed. Figure 4.18 illustrates this scenario.

6. Processing input relocations.

Before this step, all the symbol values are known since every input sections have an

assigned location its output section. The relocation entries in the input object files are

processed. The relocation task is performed by functions in the BFD library. As reloca-

tion handling is target-dependent, corresponding backend function in the BFD backend

will be invoked. This step also responsible for filling entries (PLT/GOT) in the newly

created dynamic sections.

CHAPTER 4. RETARGETTING GNU BFD LIBRARY AND LINKER 89

7. Writing out the output BFD object.

Before writing the output BFD object, the content of the dynamic sections will be filled.

.

4.3 Retargetting Methodology

In the previous two sections, we analyze the architecture of the GNU BFD library and that

of the GNU linker. It has been concluded that it is necessary to automatically generate the

elf32-myarch.c file to provide a new BFD backend and the emulparams script file to

provide the new GNU linker emulation.

4.3.1 Generation of the elf32-myarch.c File

As mentioned in Section 4.1.3, a new BFD target vector is created with the ELF-target template

when we write the necessary information to the elf32-myarch.c file. The information in

the elf32-myarch.c file is to fill the processor-independent details needed by the ELF-

target template to create the BFD target vector, or it overrides some default setting filled by

the ELF-target template. We may have to override some default values initialized by the ELF-

target template if the new target has different behavior comparing to most ELF-targets do.

We study some elf32-myarch.c files for the supported targets in the BFD library, and derive

a methodology to create the elf32-myarch.c file in a systematic manner. The elf32-myarch.c file

generated by our method provides the most basic linking support such that there is no link-time

optimization and no special feature is supported.

In the following, we describe our method to generate a elf32-myarch.c file for a new ELF-

target. Constructing the BFD target vector by using the ELF-target template consists of three

parts: 1) setting/overriding parameter values, 2) defining the relocation types, and 3) defin-

ing/overriding the functions implementing the backend API.

CHAPTER 4. RETARGETTING GNU BFD LIBRARY AND LINKER 90

Setting/overriding Parameter Values

First of all, Table 4.3 summarizes the parameters that have to be set in the file. The last column

of the table also lists the values that can be used to generate the corresponding parameter value

from our processor model. The TARGET BIG SYM or the TARGET LITTLE SYM should be

set with the name of BFD target vector being constructed. The TARGET BIG SYM is defined

if the target is a big-endian machine; the TARGET LITTLE SYM is defined otherwise. Simi-

larly, the TARGET BIG NAME or the TARGET LITTLE NAME gives the name that is used to

identify the target in BFD library. The name should follow the convention of elf32-myarch.

If the relocation addend value is not stored in the relocation entry in this target, we have to

set USE REL to be 1. Otherwise, we can ignore this parameter. The ELF ARCH carries the

enumerator value that identifies the processor architecture in the BFD library. When adding

a new target, we have to add the definition of this enumerator in the the corresponding file.

The ELF MACHINE CODE should be set to be the ELF machine value of the architecture.

The ELF MAXPAGESIZE gives the maximum page size supported in byte. The rest of the

parameters are used by the ELF backend. The elf backend can gc sections acknowl-

edges the ELF backend whether functions for garbage collecting unreferenced sections will

be provided by the target. We default it to be 1 as we have method to generate the corre-

sponding functions automatically. The elf backend can refcount corresponds to the

usage of the ELF backend data in the target functions that will be defined in this file. The

elf backend plt readonly is set to be 1 if the procedure linkage table resides in the text

segment. The elf backend want plt sym is set to be 1 if there is access symbol for the

PLT. The elf backend got header size and the elf backend plt header size

defines the start entry size of the GOT and the PLT in byte.

CHAPTER 4. RETARGETTING GNU BFD LIBRARY AND LINKER 91

Parameter Description Input
TARGET BIG SYM or
TARGET LITTLE SYM

name of the BFD target vector isa.cpu
isa.bigEndian

TARGET BIG NAME or
TARGET LITTLE NAME

type of the target isa.cpu
isa.bigEndian

USE REL sets to 1 if addend is not stored
in relocation entry

abi.reloca

ELF ARCH enumerator that identifies the ar-
chitecture of this backend

isa.cpu

ELF MACHINE CODE ELF machine code value abi.e mach
ELF MAXPAGESIZE maximum page size in byte abi.maxPageSize
elf backend can gc sections sets to 1 if garbage collecting un-

referenced input section is sup-
ported

1

elf backend can refcount sets to 1 if counting number of
reference for GOT/PLT symbols

1

elf backend want got plt sets to 1 if .got.plt section is
needed

abi.plt.inTextSeg

elf backend plt readonly sets to 1 if PLT is .plt is a
readonly section

abi.plt.inTextSeg

elf backend want plt sym sets to 1 if there is PLT access
symbol

abi.plt.accessSymb

elf backend got header size size of the GOT header (start en-
try) in byte

abi.got.startEntries

elf backend plt header size size of the PLT header (start en-
try) in byte

abi.plt.nonPICLayout.startEntry

Table 4.3: The Parameters defined in elf32-myarch.c

CHAPTER 4. RETARGETTING GNU BFD LIBRARY AND LINKER 92

Defining the Relocation Types

typedef struct reloc_howto_type {
unsigned int type; // enumerator
unsigned int rightshift;
unsigned int size; // the size to be relocated
unsigned int bitsize;
unsigned int pc_relative; // making PC relative value?
unsigned int bitpos; // bit pos of the reloc value
enum complain_overflow complain_on_overflow;
bfd_reloc_status_type (*special_function)

PARAMS ((bfd *, arelent *, struct symbol_cache_entry *,
PTR, asection *, bfd *, char **)); // behavior function

char *name; // relocation name
boolean partial_inplace; // modify the relocation entry
bfd_vma src_mask; // mask to extract the addend
bfd_vma dst_mask; // mask to put the relocation value
boolean pcrel_offset;
}

Figure 4.19: Definition of struct reloc howto type

The relocation types are defined in a table which is an array of struct reloc howto type

elements. Each element in the table abstracts one relocation type of the architecture. Because

each table element is defined by macro called HOWTO, we also call it a HOWTO relocation

table. The definition of struct reloc howto type is in Figure 4.19. A HOWTO macro

will directly fill each member in a struct reloc howto type.

A relocation HOWTO entry may be used by a generic relocation algorithm in BFD to per-

form relocation. The method in Figure 4.20 shows how such generic relocation algorithm will

perform relocation with the information carried in the HOWTO entry. There are 3 input argu-

ments: the howto is the HOWTO entry of the type of relocation that will be performed, the

addend carries the addend value of the processing relocation, and value is the partial reloca-

tion value provided to the method. For most cases, the valuewould carry the resolved symbol

value. In the method, if special function is provided in the HOWTO, it will be called

to perform relocation. This approach is used to handle the relocation behavior that cannot be

described by only setting values in the HOWTO entry. Otherwise, the relocation value is calcu-

lated by 3 steps. First, it adds the addend and the value. Second, if howto.pc relative

is true, it may generate one of the two types of PC relative value. If howto.pcrel offset

CHAPTER 4. RETARGETTING GNU BFD LIBRARY AND LINKER 93

is true, the relocation value is relative to the where the relocation is applied; it is relative to

the start address of the input section otherwise. Third, the relocation value is right-shifting

by howto.rightshift. In the end, the relocation value will be placed at the relocated

field. It is done by left-shifting the relocation value by howto.bitpos, which is the bit po-

sition of the relocation value in the destination, and masking the value to the destination by

howto.src mask.

void relocation_with_howto(struct reloc_howto_type howto, bfd_vma addend, bfd_vma value,) {
bfd_vma relocation;

if(howto.special_function)
howto.special_function(...value...);

else {
relocation = value + addend;

if(howto.pc_relative) {
if(howto.pcrel_offset)

relocation -= currPC;
else

relocation -= start_addr_of_input_sec;
}

relocation = relocation >> howto.rightshift;

/* place the relocation value to the relocated field */
}

}

Figure 4.20: The Use of HOWTO Relocation Entry

To generate the relocation HOWTO table automatically, we have to be able to translate

each Reloc in our processor model into a relocation HOWTO entry. Among the 9 kinds

of relocations categorized by our model, only 5 are processed by the link-editor. They are

NONE, DATA, FUNC, GOT and PLT. The function that will use the generic relocation func-

tion, the behavior of which is described in Figure 4.20, will be defined in the elf32-myarch.c

file also. By using the notation in Table 3.1, we define that the value argument of relo-

cation with howto() is S if the relocation type is either DATA or FUNC, it is G if the

relocation type is GOT, and it is L if the relocation type is PLT. With this definition, we can

map a Reloc member to a HOWTO entry by using the algorithm described in Figure 4.21.

CHAPTER 4. RETARGETTING GNU BFD LIBRARY AND LINKER 94

struct reloc_howto_type map_Reloc_to_howto(Reloc reloc) {
struct reloc_howto_type howto;

howto.type = reloc.name;

if (reloc behavior cannot be expressed with HOWTO parameters)
howto.special_function = genRelocBehFunc(reloc);

else {
howto.rightshift = right shift amount applied on ’relocValue’ or

’gotRelocValue’ in reloc.symb.operation;

/* according to the BFD library interpretation */
if (reloc.symb.extSize <= 8)

howto.size = 0;
else if (reloc.symb.extSize == 16)

howto.size = 1;
else if (reloc.symb.extSize <= 32)

howto.size = 2;

howto.bitsize = reloc.symb.extSize;

howto.pc_relative = reloc.symb.pcRel;

howto.bitpos = reloc.symb.rfield.field.accessor.pos.right;

if(!reloc.symb.rfield.checkOverflow)
howto.complain_on_overflow = complain_overflow_dont;

else if(reloc.symb.rfield.field.signed)
howto.complain_on_overflow = complain_overflow_signed;

else
howto.complain_on_overflow = complain_overflow_bitfield;

howto.name = reloc.name;

if (addend is stored in relocation entry) {
howto.partial_inplace = false;
howto.src_mask = 0;

}
else {

howto.partial_inplace = true;
howto.src_mask = mask to extract the relocated field;

}

howto.dst_mask = mask to extract the relocated field;

/* we support only one type of relative value */
howto.pcrel_offset = reloc.symb.pcRel;

}
return howto;

}

Figure 4.21: The Mapping from a Reloc to a HOWTO Entry

CHAPTER 4. RETARGETTING GNU BFD LIBRARY AND LINKER 95

Defining/overriding the Backend API

Table 4.4 summarizes the backend APIs that the elf32-myarch.c file should implement. Among

the 15 APIs listed in the table, only bfd elf32 bfd is local label name may not be

generated, the rest are required, at least in our methodology. On the other hand, 10 out 15 of

the APIs are target-dependent function that supports linking. We can see the importance of the

BFD library to the GNU linker.

With our method, the MYARCH-ELF link hash table will be defined and used to help per-

forming target-dependent task. Except its name, the definition of the MYARCH-ELF link hash

table is the same for any architecture, it shows in Figure 4.22. The dyn relocs in a link

hash entry is a linked list of bookkeeping data, each of which describes a input relocation that

may be copied as into the output file when the linker is creating a shared library. The hash

table keeps the pointers of the output dynamic sections because they are always used in the

target-dependent linking process.

struct elf32_myarch_dyn_relocs {
struct elf32_myarch_dyn_relocs *next;
asection *sec;
bfd_size_type count;
bfd_size_type pc_count;

};

struct elf32_myarch_link_hash_entry
{

struct elf_link_hash_entry elf;
struct elf32_myarch_dyn_relocs *dyn_relocs;

};

struct elf32_myarch_link_hash_table
{

struct elf_link_hash_table elf;

asection *sgot;
asection *sgotplt;
asection *srelgot;
asection *splt;
asection *srelplt;
asection *sdynbss;
asection *srelbss;

struct sym_sec_cache sym_sec;
};

Figure 4.22: The MYARCH-ELF Link Hash Table

CHAPTER 4. RETARGETTING GNU BFD LIBRARY AND LINKER 96

Due to the space limitation, we will focus our discussion on the generation of three APIs

only - bfd elf32 bfd reloc type lookup, elf backend finish dynamic symbol

and elf backend finish dynamic sections.

reloc_howto_type *elf32_myarch_reloc_type_lookup(bfd_reloc_code_real_type code) {
switch(code) {

case BFD_RELOC_xxxx:
return &_bfd_myarch_elf_howto_table[??];

case ...
....
....
}

}

Figure 4.23: The elf32 myarch reloc type lookup

The bfd elf32 bfd reloc type lookup redirects call that lookups the relocation

HOWTO entry with the BFD generic relocation value. It will be implemented by a func-

tion called elf32 myarch reloc type lookup(), the structure of which is shown in

Figure 4.23. With the BFD generic relocation code, it is to return the appropriate reloca-

tion entry in the HOWTO table. The BFD library tries to categorize relocations and assigns

the same value to relocations with the same behavior regardless the processor type. For ex-

ample, the R SPARC NONE (in SPARC) and R 386 NONE (in i386) will be assigned with

BFD RELOC NONE in the BFD. This categorization job is maintained by the developers who

port the BFD library to a new architecture. In fact, since they are both ISA-dependent and

ABI-dependent, relocations of any two different architectures are almost never one-to-one cor-

responding to each other in terms of behavior. Most of the common relocation types have

already had their BFD generic relocation code defined. For example, BFD RELOC NONE for

relocations with no job and BFD RELOC 8 for relocations responsible for 8-bit data relocation.

When generating this algorithm, we will try to assign each relocation type with a pre-defined

BFD generic relocation code. If it fails to do so, we will define a new code in the corresponding

file. For example, we have to define a new code named as BFD RELOC SPARC WDISP22 for

the R SPARC WDISP22 relocation type in SPARC.

The elf backend finish dynamic symbol redirects call to a target-dependent func-

CHAPTER 4. RETARGETTING GNU BFD LIBRARY AND LINKER 97

boolean elf32_myarch_finish_dynamic_symbol(
bfd *output_bfd, struct bfd_link_info *info,
struct elf_link_hash_entry *h, Elf_Internal_Sym *sym) {

if(the symbol needs PLT entry) {
create one PLT normal entry;
fill the appropriate value to the new entry;
create appropriate ’JMP_SLOT’ relocation entry for the entry;
}

if(the symbol needs GOT entry) {
create a new GOT entry;
create appropriate ’GLOT_DAT’ or ’RELATIVE’ relocation entry

and fills the GOT entry address to the relocation
}

if(the symbol needs copy relocation) {
create a COPY relocation entry for the symbol
}

}
}

Figure 4.24: The elf32 myarch finish dynamic symbol

tion to fill in the information of a dynamic symbol to the appropriate dynamic section. The

pseudo code of the expected implementation of this function is shown in Figure 4.24. This

function is called before the link editor is writing out the dynamic symbol to the .dynsym

section. The symbol is checked whether a PLT entry, a GOT entry or a copy relocation has

to be created for the symbol. If a PLT entry is needed, a PLT normal entry is created accord-

ing to the the normal PLT entry described in our processor model. This can be found from

abi.Plt.nonPICLayout.normalEntry and/or abi.Plt.PICLayout.normalEntry.

The elf backend finish dynamic sections redirects call to a target-dependent

function to finalize the content of all dynamic sections. The pseudo code of the function im-

plementation is shown in Figure 4.25. There are 3 tasks in this function. The first task is to

setup the value to some special dynamic entry. The value in the DT PLTGOT is architecture

dependent. The correct setup value is abstracted in a Dyn member in the processor model.

The DT RELSZ entry is handled only if the target architecture doesn’t use addend in their

relocation entries. The second task is to finish up the procedure linkage table by filling the start

entry and the end entry of PLT if there is any. The code for this part is generated from the Plt

member in the abi. It is possible that the PLT have two different layouts. Also, the byte order

CHAPTER 4. RETARGETTING GNU BFD LIBRARY AND LINKER 98

boolean elf32_myarch_finish_dynamic_sections(
bfd *output_bfd, struct bfd_link_info *info) {

// first task
for each ’dyn’ in dynamic entries {

case DT_PLTGOT:
put the PLT or GOT section virtual addr. to the ’dyn’

break;

case DT_JMPREL:
put the ’.relplt’ section virtual addr. to the ’dyn’

break;

case DT_PLTRELSZ:
put the ’.relplt’ section size to the ’dyn’

break;

#if !RELOCA
case DT_RELSZ:

put the ’.relplt’ section size to the ’dyn’
break
#endif
}

// 2nd task
if (PLT is not empty) {

fill the content of start entry;
fill the content of end entry;
update the PLT size;
}

// 3rd task
if (GOT is not empty) {

fill the first entry of GOT
record the virtual addr. to the appropriate ELF data;
}

}
}

Figure 4.25: The elf32 finish dynamic sections

problem has to be considered when generating the filling. At the end, the global offset table is

handled with the same way that the first entry of the GOT is filled with there is any. The code

will be generated from the Got member in the abi.

CHAPTER 4. RETARGETTING GNU BFD LIBRARY AND LINKER 99

BFD Backend API Description
elf info to howto or
elf info to howto rel

- lookups the relocation type (a HOWTO entry) with
the architecture-dependent relocation value

bfd elf32 bfd reloc type lookup - lookups the relocation type (a HOWTO entry) with
the BFD generic relocation value

elf backend reloc type class - given a relocation entry, distinguishes whether it is
a RELATIVE, PLT or COPY reloation

bfd elf32 bfd is local label name - given a symbol name, checks whether it is a local
symbol
- it’s needed only if the architecture defines more
local symbol prefixes other than those used by ELF
files

bfd elf32 bfd link hash table create - constructs a link hash table
- it’s needed if MYARCH-ELF link hash table is de-
fined

elf backend copy indirect symbol - copys data from an indirect symbol hash entry to
its corresponding direct symbol hash entry
- it’s needed if MYARCH-ELF link hash table is de-
fined

elf backend create dynamic sections - creates the dynamic sections required for the link-
ing output

elf backend check relocs - checks through all relocations in a input section
and allocate space in the GOT and the PLT of the
linking output
- used by step 1 in Section 4.2.4

elf backend gc mark hook - returns the section that defines the given symbol
- used by step 2 in Section 4.2.4

elf backend gc sweep hook - discards bookkeeping information that was col-
lected for a excluded input section
- used by step 2 in Section 4.2.4

elf backend adjust dynamic symbol - adjusts a dynamic symbol before sizing output sec-
tions in the linking
- used by step 4 in Section 4.2.4

elf backend size dynamic sections - sizes up the dynamic sections created for the link-
ing output
- used by step 4 in Section 4.2.4

elf backend relocate section - processes relocation entries in an input object file
for linking
- used by step 6 in Section 4.2.4

elf backend finish dynamic symbol - fills the information of a dynamic symbol to the
appropriate dynamic section (e.g. .plt and .got)
- used by step 7 in Section 4.2.4

elf backend finish dynamic sections - finializes the content of all dynamic sections - used
by step 7 in Section 4.2.4

Table 4.4: The Backend APIs defined in elf32-myarch.c

CHAPTER 4. RETARGETTING GNU BFD LIBRARY AND LINKER 100

4.3.2 Generation of the Linker Emulparams Script File

To generate the linker emulparams script file, we find that filling values for a fixed set of pa-

rameters is enough. Figure 4.26 and Figure 4.27 present the emulparams script files generated

from the processor model for SPARC and i386. The mapping from the processor model to the

values is straightforward.

SCRIPT_NAME=elf
OUTPUT_FORMAT="elf32-sparc"
TEXT_START_ADDR=0x10000
MAXPAGESIZE=0x10000
NONPAGED_TEXT_START_ADDR=0x10000
ALIGNMENT=8
ARCH=sparc
MACHINE=
TEMPLATE_NAME=elf32
DATA_PLT=
NOP=0x01000000
GENERATE_SHLIB_SCRIPT=yes
NO_SMALL_DATA=yes

Figure 4.26: elf32 sparc.sh

SCRIPT_NAME=elf
OUTPUT_FORMAT="elf32-i386"
TEXT_START_ADDR=0x8048000
MAXPAGESIZE=0x1000
NONPAGED_TEXT_START_ADDR=0x8048000
ALIGNMENT=4
ARCH=i386
MACHINE=
TEMPLATE_NAME=elf32
NOP=0x90909090
GENERATE_SHLIB_SCRIPT=yes
NO_SMALL_DATA=yes

Figure 4.27: elf32 i386.sh

Chapter 5

Retargetting a Micro-architecture

Simulator

In this chapter, we discuss the methodology of generating retargetable processor simulators by

automatically porting the SimpleScalar toolset. After being ported, the SimpleScalar toolset

can provided processor simulators ranging from simple functional simulators to detailed micro-

architecture simulators.

In the text that follows,an anatomy of the latest SimpleScalar toolset is first described,

followed by our retargetting methodology.

5.1 The SimpleScalar Toolset

The SimpleScalar toolset [17] is an infrastructure developed at University of Wisconsin for

micro-architectural modeling and simulation. The current release (version 3.0) provides 7

simulators at different level of micro-architecture detail, as summarized in Figure 5.1.

101

CHAPTER 5. RETARGETTING A MICRO-ARCHITECTURE SIMULATOR 102

Simulator Descirption #line
sim-fast Simple functional simulator 402
sim-safe Speed-optimized functional simulator 307
sim-profile Functional simulator with profiling 812
sim-cache Hierarchical memory simulator 782
sim-cheetah Single-pass multi-configuration cache simulator 479
sim-bpred Customizable branch prediction simulator 513
sim-outorder Detailed micro-architectural simulator with dynamic

instruction scheduler and multi-memory hierarchy
4555M

ic
ro

-a
rc

hi
te

ct
ur

al
de

ta
il

Figure 5.1: SimpleScalar Simulators

5.1.1 Supported Architectures

The Portable Instruction Set Architecture (PISA), which is a derivate of the MIPS architecture,

is the primary architecture supported by SimpleScalar. Besides, Alpha is another architecture

supported in the current release.

Supporting only one real processor architecture (Alpha) until the recent release, the Sim-

pleScalar team has been spending a lot of efforts to manually port the SimpleScalar infrastruc-

ture to other processor architectures.

5.1.2 Infrastructure

Figure 5.2 shows the infrastructure of the SimpleScalar toolset. The target processor envi-

ronment is modeled in terms of 3 aspects - ISA, ABI and micro-architecture. The micro-

architecture modeling depends on the detailed level of the simulation, and it is included within

the simulator engine. The modeling of ISA and ABI is however simulator-independent; it is

the most fundamental required to construct a software processor. For example, a functional

simulator only requires the model of ISA and ABI running on a simple fetch-decode-execute

loop for each instruction, while a micro-architecture simulator adds the micro-architecture be-

havior to the simulation loop. In the follows, we will discuss the architecture modeling in

SimpleScalar.

CHAPTER 5. RETARGETTING A MICRO-ARCHITECTURE SIMULATOR 103

ISA µµµµ-architecture

ToolsSimulators sim-fast sim-profile

sim-cache sim-cheetah sim-bpred sim-outorder

sim-safe

OS System calls

B - predictor

Cache

Sc
he

du
le

r

Statistical
Package

Instructions

ABI

Loader

Register

Mem

Resources

Debugger

Tracer

Figure 5.2: SimpleScalar Infrastructure

ISA-dependent Code

The register and instruction definitions abstract the ISA.

In any simulator engine, all of the simulated target processor registers are collectively car-

ried in regs, which is a struct regs tmember (Figure 5.3). The regs carries the integer

register file, the floating point register file, all control registers as well as the program counter

and next program counter. The processor model will define the md gpr t, the md fpr t,

the md ctrl t and the md addr t data structures to define the structures of the integer reg-

ister file and floating point register file, the control registers and the size of program counter

respectively.

The simulator engine will define its own register access macros. This is to simulate the

micro-architecture behavior. For example, a functional simulator may have register access

macros as simple as directly accessing the target register in regs, but a micro-architecture

simulator with speculative execution property may carry a speculative copy of registers and the

access macros have to get value from the correct copy (regs or spec regs) based on the

execution mode.

CHAPTER 5. RETARGETTING A MICRO-ARCHITECTURE SIMULATOR 104

struct regs_t {
md_gpr_t regs_R; // integer register file
md_fpr_t regs_F; // floating point register file
md_ctrl_t regs_C; // control registers
md_addr_t regs_PC; // program counter
md_addr_t regs_NPC; // next program counter
};

Figure 5.3: Register Definition

The instruction set model include the a set of instruction definition and a software decoder.

Each instruction definition has a pre-defined (or recommended) format; each of which contains

the assembly format, execution unit component, register dependency information and instruc-

tion type as well as the semantic action statement which mimics the effect on the processor

state. This is as defined in Figure 5.4 and an example is described in Figure 5.5. The <enum>

is an enumerator that is the decoded value returned by the software decoder to access the

instruction definition. The <opname> and <assembly fmt> defines the assembly format,

which is used by the SimpleScalar debugger. The functional units available in the target proces-

sor are listed in architecture model for micro-architecture simulation, and the <func unit>

identifies the functional unit used to execute the instruction. The <inst type> is an integer

flag which describe the properties of the instruction. The <reg dependency> consists of a

list of designators, each of which gives the register input/output dependency information. The

dependency information is useful for instruction scheduling in out-of-order execution.

Access macros are also defined to access the instruction fields, and they are simulator-

independent and unique to each processor model. When expressing the instruction semantics,

accesses to the registers, memory and instruction fields are expressed with the corresponding

access macros. The purpose is to eliminate the dependency between the instruction semantic

action and the micro-architecture simulation. For example, memory access request in a cache

simulator may be served by accessing the memory hierarchy while that in a functional simulator

may accessing the simulated memory directly. Handled by the access macros defined in the

simulator engines, all of these details will be transparent to the instruction semantics.

CHAPTER 5. RETARGETTING A MICRO-ARCHITECTURE SIMULATOR 105

The instruction identification job is handled by a software decoder. At each simulation

iteration, the instruction is decoded and an enumerator is generated by the software decoder.

The generated enumerator is used to access the instruction definition and semantics in a big

switch table.

Other information in the ISA includes the address size and the instruction length.

DEFINST(<enum>, <opname>,
<assembly fmt>, <func unit>,
<inst type>, <reg dependency>)

#define <enum>_IMPL {
<semantic action>

}

Figure 5.4: Instruction Definition

 op = 0x43

decoding
ADDIU

DEFINST(ADDIU, “addiu”,
 “t,s,i”, IntALU,
 F_ICOMP|F_IMM,
 DGPR(RT), DNA, DGPR(RS),
 DNA, DNA)

#define ADDIU_IMPL
{
 SET_GPR(RT, GPR(RS)+IMM);
}

ADDIU

reg access macros

inst field access macros

Figure 5.5: Instruction Definition Example

ABI-dependent Code

Before the simulation starts, the software program loader copies the instructions reading from

the input executable into the simulated memory, and then initializing the execution environment

(e.g. stack). The input is assumed to be statically linked executable and dynamic linking is not

supported by the software program loader. In order to correctly interpret the binary stream, the

software program loader requires understanding the binary file format used by the architecture.

CHAPTER 5. RETARGETTING A MICRO-ARCHITECTURE SIMULATOR 106

Generally, the SimpleScalar simulators use the provided COFF file loader to load the PISA

executables, although these exists another choice of using the GNU’s BFD library.

Operating System-dependent Code

The behavior of trap instructions (system calls) is emulated by the system call package. Ac-

cording to the trap number carried in a destinated simulated register (e.g. GPR(2) in PISA),

the appropriate handling is selected and the required input argument values are obtained from

the simulated registers. The equivalent system call is then made at the host machine, and the

returned value is copied back to the simulated registers if there is any. Similar to accessing

registers and memory, the system call handler macro is defined in the simulator engine because

system call should not be made when simulating speculative execution.

Other OS information includes the memory page size, which is used to mimics the memory

behavior.

Micro-architecture-dependent Code

The micro-architecture affects the behavior of the simulator, so it is included in the simulator

engine. The micro-architecture model can be constructed with the components provided by

the SimpleScalar, including cache, memory, functional unit resource, scheduler and branch

predictor. As part of the micro-architecture, the memory hierarchy is simulator-dependent and

memory access macros are therefore provided by the simulator.

Figure 5.6 summarizes how a simulator engine looks like. Any simulator engine must

provide 3 ports, which are micro-architecture-dependent, to access the registers, the memory

hierarchy and the system call package.

CHAPTER 5. RETARGETTING A MICRO-ARCHITECTURE SIMULATOR 107

Simulator engine

 reg access mem access syscall access

Regs Mem Syscall

Figure 5.6: The 3 Access Ports at a Simulator Engine

5.1.3 The Simulation Flow

Target
Processor

Executable
File

Simulation
memory

0
1
2
.
.
.
.
.
n

FETCH

DECODE

EXECUTE

1

2
3

4

Figure 5.7: The Simulation Process

The SimpleScalar simulators are interpretation-based. The simulation flow of the simplest

unpipelined functional simulation is illustrated in Figure 5.7. (1) Before the simulation starts,

the instruction and data are loaded to the simulated memory. The program counter (PC) holding

at a simulated register is initialized with the program entry point address after the input binary

data is loaded. The simulator then loops through the fetch-decode-execute process at each

instruction simulation. (2) At fetch, the instruction addressed by the PC register is copied from

the simulated memory to the simulated instruction register (IR). (3) The fetched instruction is

then decoded. (4) By using the decoded value, the appropriate instruction semantics definition

is selected and executed.

CHAPTER 5. RETARGETTING A MICRO-ARCHITECTURE SIMULATOR 108

5.2 Retargetting Methodology

In this section, we present the methodology to retarget the SimpleScalar toolset from the em-

bedded processor model described in Chapter 3. In the following subsection, we will discuss

our method to retarget or handle each processor-dependent part in the SimpleScalar framework,

including the software program loader, the registers, the instructions, the software instruction

decoder and the system call emulation. Due to the space limitation, the discussion is not com-

plete.

5.2.1 Retargetting Software Program Loader

The software program loader is responsible for loading the input executable stream into the

simulated memory and initializing the execution environment.

Program Loading

The software program loader requires the understanding of the binary file format in order to

load the instructions and appropriate data to the simulated memory. Not all binary data has

to be copied to the memory. but only those in the loadable sections is copied. Therefore,

the software program loader has to know how to extract the loadable sections from the input

stream and where the section data should be loaded. We retarget the program loading task by

the retargetable BFD library as discussed in Chapter 4. By using the retargeted BFD library

generated from the same processor model, program loading can be done by an architecture-

independent algorithm, which is given in Figure 5.8. The algorithm is written with the BFD

API. Given the executable file name (input file) and the architecture BFD target name

(e.g. elf32-sparc), the binary data is read by the BFD library. If the BFD library is

able to support the target architecture, a BFD object representing the input file will be re-

turned. Then, the algorithm loops through all the sections in the file. The loadable section

can be detected by checking if the section flag indicates that memory for the section data

CHAPTER 5. RETARGETTING A MICRO-ARCHITECTURE SIMULATOR 109

void load(char *input_file) {
bfd *abfd;
asection *sect;
char *p;
struct mem_t *mem; // simulated memory

/* e.g. <arch bdf target name> = "elf32-sparc" */
abfd = bfd_openr(input_file, <arch bfd target name>);

/* read all sections in file */
for(sect = abfd->sections; sect; sect=sect->next) {

/* memory should be allocated for this section when loading */
if (bfd_get_section_flags(abfd, sect) & SEC_ALLOC) {

/* allocate memory to get section content */
p = calloc(bfd_section_size(abfd, sect), sizeof(char));

/* get the section content */
bfd_get_section_contents(abfd, sect, p, 0,

bfd_section_size(abfd, sect));

/* copy the section content to the simulated memory at
the specified virtual memory */

mem_bcopy(mem_access, mem, Write,
bfd_section_vma(abfd, sect), p,
bfd_section_size(abfd, sect));

free(p);
}

}
}

Figure 5.8: The Architecture-independent Program Loading Algorithm using BFD

should be allocated (SEC ALLOC). For each loadable section, memory as large as the section

size (bfd section size()) is allocated, and we request loading the section data to the

allocated memory by calling bfd get section contents(). Then, the data is copied

to the simulated memory at the specified virtual memory address, which is obtained from

bfd section vma(). The mem bcopy function is used to access the simulated memory in

SimpleScalar.

Setting Up Execution Environment

The execution environment has to be initialized before the simulation starts. It includes setting

up the stack at the simulated memory and initializing the register state.

With the stack (stack abstraction) of the abi member of the processor model, program code

is generated to copy the command-line arguments and environment data to the appropriate

CHAPTER 5. RETARGETTING A MICRO-ARCHITECTURE SIMULATOR 110

place of the simulated memory. Figure 3.14 shows how the stack is initialized according to the

architecture-dependent parameters in the model. After initialization, the stack pointer value

will be stored to the simulated stack pointer register, which is indicated in the stack abstraction

as well.

In addition to the stack pointer register, other simulated registers that have to be initialized

include the program counter (PC), the next program counter (NPC) and the register window

control registers if there is any windowed registers in the architecture. In the ctrls of the isa

member of the model, the PC and NPC register abstractions are identified by their kind. The

simulated PC register should be initialized with the address of the start instruction. Through

the BFD API, the start address can be obtained from the BFD object, which is generated at

program loading time. This is done by bfd get start address(abfd). Then, the NPC

is initialized to hold the address of the next instruction, which is the sum of the start address

and the instruction size as carried in instrnSize of the isa member. If any register file of the ar-

chitecture has the windowed property, we have to initialize the corresponding control registers

also. In the WinRegs of the abstraction of such register file, the window pointer register and the

window invalid register are indicated and their initial values are also included in the model.

5.2.2 Retargetting Register Manipulation

There are two aspects of retargetting registers: 1) defining the structures of the register files

and the control registers, and 2) generating register access macros for each simulator engine.

Defining Register Structure

As mentioned, the target processor registers are collectively carried in a struct regs t

member (Figure 5.3). In the SimpleScalar framework, it is assumed that the supported target

processor has at most one integer register and at most one floating point register file. The

structures of the integer register file, the floating point register file, the control registers and

the size of PC and NPC are defined by the md gpr t, the md fpr t, the md ctrl t and the

CHAPTER 5. RETARGETTING A MICRO-ARCHITECTURE SIMULATOR 111

md addr t respectively.

A register file is abstracted by a RegFile in rfiles of the isa member of the processor model.

For the integer register file, the md gpr t is defined as an array with the size as large as

the number of physical registers required including the concern of the register window. Each

element in the array represents a register, so the type of each array element is determined

by the gran of the RegFile. If the register file doesn’t have any windowed registers, the

number of physical register is equal to size of the RegFile. Otherwise, the number of physical

register corresponding to the windowed registers part is equal to (window size− overlap)×

number o f window. To facilitate the simulation, we treat the overlapping registers between the

first window and the last window as two different set of registers. When the window is shifted

from the last window to the first window or vice versa, we copy the overlapping register values

from one to another in the simulation. The register file index is directly corresponding to the

array index of the simulated register file. However, if windowed registers are contained in

the file, a mapping function must be generated to map the virtual register index to the array

index to access the appropriate physical register in the simulated register file. Figure 5.9 is

the definition of the SPARC general-purpose register file generated from model in Example 1.

MD NUM IREGS is the number of simulated physical register. The md gpr t is defined to be

an array of integer with the size of MD NUM IREGS. The REAL GPR POS() is the mapping of

the virtual register index to the array index to access the appropriate simulated register. Similar

approach is used to define the floating point register file.

/* -> size - 32
-> windowed reg

-> pos - <8, 31>
-> depth - 32
-> overlap - 8

*/
#define MD_NUM_IREGS (8 + 32 * (24-8) + 8)
typedef int md_gpr_t[MD_NUM_IREGS];

/* ’CWP’ is current window pointer */
#define REAL_GPR_POS(N) (((N)<8)? (N):(((CWP)*16)+N))

Figure 5.9: The Definition of the SPARC General-purpose Register File in SimpleScalar

CHAPTER 5. RETARGETTING A MICRO-ARCHITECTURE SIMULATOR 112

The md ctrl t is defined as a structure of simulated control registers. Except the PC

and NPC, a simulated control register is defined for each CtrlReg found in the ctrls of the isa

member. The name and the size information obtained from the cell of a CtrlReg is used to

generate the definition. Figure 5.10 is the definition of the control registers of SPARC.

The md addr t is the type of the PC and NPC. It represents the size required to hold an

address of the target processor. The address size information can be obtained from the addrSize

of isa.

typedef struct {
sword_t psr; /* processor state register */
sword_t wim; /* window invalid mask */
sword_t tbr; /* trap base register */
sword_t y; /* multiply/divide register */
sword_t fsr; /* floating-point state register */
} md_ctrl_t;

Figure 5.10: The Definition of the SPARC Control Registers in SimpleScalar

Generating Simulator-dependent Register Access Macros

/* 1. functional simulation */
#define GPR(N) (regs.regs_R[N])
#define WIM (regs->regs_C.wim)

/* 2. speculative simulation */
#define GPR(N) \

BITMAP_SET_P(use_spec_R, \
R_BMAP_SZ,(N)) \
? spec_regs_R[N] \
: regs.regs_R[N])

#define WIM \
(BITMAP_SET_P(use_spec_C, C_BMAP_SZ, 1)\

? spec_regs_C.wim \
: regs.regs_C.wim)

Figure 5.11: The Register Access Macros at Different Engines

To simulate different micro-architecture behavior, the register access macros are different

at each simulator engine. However, the access macros in each simulator engine have the same

pattern independent to the ISA. For example, Figure 5.11 shows two register access macros at

each of the two different types of simulation. To do a basic functional simulation, the first set of

CHAPTER 5. RETARGETTING A MICRO-ARCHITECTURE SIMULATOR 113

macros is to directly access the values in regs. The second set of maros is however simulating

the speculative execution behavior. Besides the regs, a speculative copy of registers is carried

by spec regs. Based on the execution mode, the access macros determine which set of

registers from which the value should obtain.

At each simulator engine, the SET and GET access macro for each register file and each

control register will be generated. If the control register consists of fields of processor status,

which means that the fields of the CtrlReg is not empty, access macros are generated for

each field to extract value from the parent register.

5.2.3 Retargetting Instructions

For each instruction, an instruction definition in the format as shown in Figure 5.4 must be

generated. The instruction semantics is expressed in terms of the access macros of registers,

memory and instruction fields. So, the retargetting task is started with generating instruction

field access macros.

Generating Instruction Field Access Macros

An instruction field access macros is simulator-independent and responsible for extracting the

field value from an instruction. This exactly matches with the instruction field accessor (In-

strnFieldAccessor) of our processor model. Therefore, this is as simple as generating an in-

struction field access macro for each InstrnFieldAccessor in the model. According to the pos

in an InstrnFieldAccessor, a mask is generated to extract the field value from an instruction.

The generated access macros is named by the name in the InstrnFieldAccessor. Figure 5.12

is the definition of the instruction field access macros of SPARC generated from the model in

Example 3.

CHAPTER 5. RETARGETTING A MICRO-ARCHITECTURE SIMULATOR 114

#define INSN_OP ((inst & 0xc0000000) >> 30)
#define INSN_DISP30 ((inst & 0x3fffffff))
#define INSN_RD ((inst & 0x3e000000) >> 25)
#define INSN_OP2 ((inst & 0x01c00000) >> 22)
#define INSN_IMM22 ((inst & 0x003fffff))
#define INSN_A ((inst & 0x20000000) >> 29)
#define INSN_COND ((inst & 0x1e000000) >> 25)
#define INSN_DISP22 ((inst & 0x003fffff))
#define INSN_OP3 ((inst & 0x01f80000) >> 19)
#define INSN_RS1 ((inst & 0x0007c000) >> 14)
#define INSN_I ((inst & 0x00002000) >> 13)
#define INSN_ASI ((inst & 0x00001fe0) >> 5)
#define INSN_RS2 ((inst & 0x0000001f))
#define INSN_SIMM13 ((inst & 0x00001fff))
#define INSN_OPF ((inst & 0x00003fe0) >> 5)

Figure 5.12: The Definition of the Instruction Access Macros of SPARC

Defining an Instruction

Referring to Figure 5.4, the values of <enum>, <opname>, <assembly fmt>, <func

unit>, <inst type>, <reg dependency> and <semantic action> are generated

for each instruction definition. In Figure 5.13 is the definition of the SPARC ldsb instruction

generated from the specification in Example 6. In the follows, we will discuss the methodology

to generate each value.

#define LDSB_IMPL \
{ \
sbyte_t _result; \
enum md_fault_type _fault; \
word_t _addr; \

\
_addr = GPR(INSN_RS1) + GPR(INSN_RS2); \
_result = READ_BYTE(_addr, _fault); \
if (_fault != md_fault_none) \

DECLARE_FAULT(_fault); \
SET_GPR(INSN_RD, (word_t)(sword_t)_result); \

}
DEFINST(LDSB, "ldsb",

"", RdPort,
F_MEM|F_LOAD|F_DISPRR,
DGPR(INSN_RD), DNA,
DNA, DGPR(INSN_RS1), DGPR(INSN_RS2))

Figure 5.13: The ldsb Instruction Definition of SPARC

• <enum>

An unique enumerator is generated from the instruction mnemonic. The instruction

CHAPTER 5. RETARGETTING A MICRO-ARCHITECTURE SIMULATOR 115

mnemonic is obtained from the first word of the asmFormat of the Instrn. In the exam-

ple, the asmFormat of the ldsb Instrn is "ldsb [%1+%2],%0", and LDSB is used

as the enumerator. The taken word is captialized. In addition, duplicated enumerator will

be prevented.

• <opname>

The <opname> value is directly taken from the mnemonic of the first word of the asm-

Format. The same <opname> value in two different instructions is allowed.

• <assembly fmt>

In SimpleScalar, the assembly format is used to instruct the debugger to do instruction

disassembly. We use different approach to disassemble instructions and we can ignore

the <assembly fmt> value.

• <func unit>

The <func unit> value identifies the functional unit used to execute the instruction.

We assume a fixed class of functional unit in any processor architecture, it is as listed in

Figure 5.14. Each instruction will be assigned with one functional unit. The assignment

decision is made from the analysis of the instruction behavior.

• <inst type>

The <inst type> is a flag which describes the properties of the instruction. The fixed

definition of instruction flags is in Figure 5.15. The <inst type> is a combination

of all instruction flags with matched properties. Similar to the generation of the <func

unit>, the <inst type> flag is generated through analysis of the instruction behav-

ior.

• <reg dependency>

The <reg dependency> is a list of designators which give the register input/output

dependency information. In Figure 5.13, the first 2 designators represent the output de-

CHAPTER 5. RETARGETTING A MICRO-ARCHITECTURE SIMULATOR 116

pendency while the rest of 3 represent the input dependency. The name of dependency

designator starts with D and followed by the corresponding GET register accessor name.

The register dependency designators are defined in the simulator engine if needed, The

sim-outorder engine is an example. The register fields used as operands and desti-

nation are identified by the srcs and the dst in the InstrnBeh member. So, dependency

information can be easily generated from the abstraction. However, the control registers

involved in the operation are not explicitly included in the srcs and the dst. We have

to traverse instructions in the beh function of the InstrnBeh member, in order to collect

the dependency information of the control registers.

• <semantic action>

The <semantic action> is a set of statements that mimics the effect of the in-

struction on the processor state. This is generated from the InstrnBeh member of the

instruction. According to the behavior kind, simulation of the implicit characteristics

is generated. For example, invocation to the system call emulation function is generated

for trap instructions. The explicit behavior is abstracted in the beh function. The opera-

tions in the beh function will be translated into corresponding statements which interact

with the simulated processor state. The accesses to the registers, memory and instruction

fields are done through the access macros. The srcs and the dst of an InstrnBeh mem-

ber identify themselves as register fields or immediate fields. The use of register fields

will lead to accessing values through register access macros with the argument obtained

from instruction access macros, while the use of immediate fields will lead to accessing

values through instruction access macros. On the other hand, the load/store operations

will done through memory access macros.

If register access or memory access is involved in the behavior, statements are also gen-

erated to verify that the register and the memory are used properly, and the binary code

produced from the compiler and assembler doesn’t break the alignment restriction. It

is the responsibility of the processor compiler to test the correctness of the compilation

CHAPTER 5. RETARGETTING A MICRO-ARCHITECTURE SIMULATOR 117

tools. The alignment requirement of the registers and memory are respectively carried in

the uses of the corresponding RegFile member and the memUses of the abi member.

enum md_fu_class {
FUClass_NA = 0, /* inst does not use a functional unit */
IntALU, /* integer ALU */
IntMULT, /* integer multiplier */
IntDIV, /* integer divider */
FloatADD, /* floating point adder/subtractor */
FloatCMP, /* floating point comparator */
FloatCVT, /* floating point<->integer converter */
FloatMULT, /* floating point multiplier */
FloatDIV, /* floating point divider */
FloatSQRT, /* floating point square root */
RdPort, /* memory read port */
WrPort, /* memory write port */
NUM_FU_CLASSES /* total functional unit classes */

};

Figure 5.14: The Functional Unit Class in SimpleScalar

#define F_ICOMP 0x00000001 /* integer computation */
#define F_FCOMP 0x00000002 /* FP computation */
#define F_CTRL 0x00000004 /* control inst */
#define F_UNCOND 0x00000008 /* unconditional change */
#define F_COND 0x00000010 /* conditional change */
#define F_MEM 0x00000020 /* memory access inst */
#define F_LOAD 0x00000040 /* load inst */
#define F_STORE 0x00000080 /* store inst */
#define F_DISP 0x00000100 /* displaced (R+C) addr mode */
#define F_RR 0x00000200 /* R+R addr mode */
#define F_DIRECT 0x00000400 /* direct addressing mode */
#define F_TRAP 0x00000800 /* traping inst */
#define F_LONGLAT 0x00001000 /* long latency inst (for sched) */
#define F_DIRJMP 0x00002000 /* direct jump */
#define F_INDIRJMP 0x00004000 /* indirect jump */
#define F_CALL 0x00008000 /* function call */
#define F_FPCOND 0x00010000 /* FP conditional branch */
#define F_IMM 0x00020000 /* instruction has immediate operand */
#define F_DELAYED 0x00040000 /* delayed execution */

Figure 5.15: The Instruction Flags

5.2.4 Retargetting Software Instruction Decoder

Software instruction decoding is done by a hierarchy of C switch statements. This is done

by constructing a decoding tree from the InstrnOpFmt members in isa and the instructions

CHAPTER 5. RETARGETTING A MICRO-ARCHITECTURE SIMULATOR 118

associating with each of them. The C switch statements are then emitted through preorder

traversal of the decoding tree.

5.2.5 Porting System Call Emulation

The system call package is the only component that fails to be retargetted from the processor

abstraction. This part must be manually ported by the user.

Chapter 6

Experiments and Results

With the methodologies discussed in Chapter 4 and Chapter 5, we implemented a system that

automatically ports the GNU BFD library and linker as well as the SimpeScalar toolset, by

taking a processor model specification that we describe in Chapter 3. This chapter describes

the implementation details of the system. In the end, we demonstrate the feasibility of our

approach with the experimental results collected from the tools generated by our system.

6.1 Implementation

Figure 6.1 illustrates the complete design of the implemented system. The processor speci-

fication is written in Babel [?], a general-purpose language that can be used as architectural

description language (ADL). The Babel language compiler compiles the input specification

into a form of internal abstract data, which can be easily accessed through an API. By ac-

cessing the architectural data captured by the internal data, the BFD & linker generator and

the SimpleScalar generator generate the processor-dependent portion of the target tools. In

the system, the retargetable BFD and linker part can be standalone. However, the retargetable

SimpleScalar tool depends on the ported GNU BFD library generated from the retargetable

BFD and linker tool. The detailed description of the processor model and both generators are

as follows:

119

CHAPTER 6. EXPERIMENTS AND RESULTS 120

Babel

Processor

Model

Babel

Compiler

Processor-dependent

Files of SimpleScalar

SimpleScalar

Generator

BFD & Linker

Generator

Processor-dependent

Files of BFD & Linker

SimpleScalar

Tool Set

BFD & Linker

Package

Ported System

Call Package

Ported SimpleScalar

simulators

templates
templates

Ported GNU Linker

Ported

GNU BFD

Figure 6.1: The System Overview of the Implementation

CHAPTER 6. EXPERIMENTS AND RESULTS 121

6.1.1 Babel Processor Model

Babel Langauge

Babel Compiler

Babel Plug-ins

Data
Model

Type
System

Spec

Expr
System

Parser

Type Inference
Engine

ISA Domain
Plug-in

ABI Domain
Plug-in

Other Domain
Plug-ins

Figure 6.2: Babel Language Architecture

The processor specification is written in Babel. Babel is general-purpose because it allows

user to define the semantics by providing a data model of arbitrary complexity. A data model

describes an abstracted view of a design component, such as ISA and ABI of a processor

architecture. The data that abstracts a view is called a domain. Babel is an extensible language

because ability of capturing a new abstracted view can be added without changing the language

syntax.

Figure 6.2 shows the architecture of the Babel language system. The user defines the data

model by using the type system of Babel. Also, Babel provides an expression system for the

specification of the actual data. The Babel compiler is designed in such a way that both of the

data model and the specification are translated into an intermediate representation, after which

the soundness of the specification data is checked against the data model through a type infer-

ence engine. The intermediate representation is compiled and captured by the corresponding

CHAPTER 6. EXPERIMENTS AND RESULTS 122

domain plug-ins, each of the which captures data of an abstracted view.

To extend Babel with a new domain, one only has to add a header file containing the

data model and corresponding domain plug-in. To define our processor abstraction model in

Babel, we built the ISA domain and the ABI domain to define the ISA (Definition 2) and the

ABI (Definition 14) respectively. The header file (arch.bbh) containing the data model of

both domains can be found in Appendix A.1. In arch.bbh, the class domain.ISA

and the class domain.ABI are the data model of the ISA domain and the ABI domain

respectively. The type system of Babel is very closed to the FAN notation, so mapping the

processor model in Chapter 3 to Babel is straightforward. On the other hand, the domain

plug-ins for ISA and ABI are also constructed to capture the processor specification.

The processor specification in Babel is distributed into three files. To abstract one view of

the processor architecture, each file carries specification of one domain. The three views are

behavior(BEH), ISA and ABI. In addition to the ISA and the ABI domains that we constructed,

the behavior domain is pre-constructed and it helps capturing computation-centric data such

as instruction semantics. As a result, the following three files are needed to construct a Babel

specification for a processor architecture myarch:

• myarch.bbl, which captures the behavior view of the architecture. It consists of the

data types of registers and complex behavioral semantics definitions on which some in-

structions in the myarch.isa.bbl file will depend.

• myarch.isa.bbl, which captures the ISA view of the architecture. It includes the

register file organization and the instruction set definition.

• myarch.abi.bbl, which captures the ABI view of the architecture. The current ABI

model gives information about the calling convention in terms of the register usage; and

on the other hand the information of linking such as relocation and dynamic linking rules.

The processor specification for SPARC and Intel386(i386) written in Babel can be found in

the Appendix: the behavior domain files are given in Appendix A.2, the ISA domain files are

CHAPTER 6. EXPERIMENTS AND RESULTS 123

given in Appendix A.3 and the ABI domain files are given in Appendix A.4. To avoid confusion

between the tools generated by our system and those already provided by the target toolset,

we rename the processor names as rsparc and ri386 respectively. The rsparc specification

is complete such that it can be used to generate ported BFD library, linker and SimpleScalar

toolset. However, the ri386 specification contains data to generate only ported BFD library and

linker. This is because that the i386 is too complex that it beyond our goal to retarget tools for

embedded processors. The reason that we choose i386 in this thesis is to study the feasibility

of our approach.

6.1.2 The GNU BFD & Linker Generator

The architectural data in the domains (BEH, ISA and ABI) can be accessed through the do-

main APIs. The GNU BFD & linker generator will load the necessary data from the domains

to its own representation, which is defined in a form that facilitates the data manipulation in-

side the generator. The generator then produces the processor-dependent portion of the code

from the architectural data with the assistance of a set of template files, which are processor-

independent. The template files include not only partial implementation, but also the place-

holders which can instruct the generator to emit codes at appropriate locations.

The output of the generator is a set of processor-dependent files, which include C headers

and source files as well as the appropriate configuration scripts. When added to the proper

place in the GNU BFD and linker package, support to the target processor architecture will

be added to the package. We also provide a script to automate this process. The GNU BFD

library and the GNU linker is only two of the tools in the GNU Binutils. We reduced the GNU

Binutils (version 2.13) into a package which includes only the BFD library and the linker.

CHAPTER 6. EXPERIMENTS AND RESULTS 124

6.1.3 The SimpleScalar Generator

The SimpleScalar generator takes exactly the same approach as the GNU BFD & linker gen-

erator. The SimpleScalar generator loads the necessary data to its own representation, that

facilitates the generation of the SimpleScalar processor-dependent files. The architectural data

required by the two generators are different. For example, the SimpleScalar generator requires

data of the instruction sets, but it is not the case for the BFD & linker generator. Incomplete

processor specification is allowed (e.g. the ri386 specification). When loading data from do-

mains, the generator will verify that all the necessary data is available.

The output of the SimpleScalar generator is also a set of processor-dependent files, which

include both the architectural definition files and the modified simulator-engines. Our tool so

far retargets three simulator engines: sim-safe, sim-cache and sim-bpred. Adding the generated

files to the SimpleScalar toolset is also automated by script. It is however not enough for

porting SimpleScalar. Besides the generated files, ported system call package must be provided

by the user and ported BFD library must be available for the ported program loading function.

Our current SimpleScalar generator supports SimpleScalar toolset 3.0.

6.2 Experiments

To verify the feasibility of our approach, we tested our implemented system with a subset of

SPEC2000 testbenches, including 3 integer benchmarks (181.mcf, 197.parser and 164.gzip)

and 3 floating-point benchmarks (183.equake, 188.ammp and 179.art). All experiments are

performed on a 750Mhz SunBlade 1000 workstation, except the testing of ri386 GNU linker.

The retargetable BFD & linker system is tested with the SPARC and i386 architectures,

while the retargetable SimpleScalar system is tested with the SPARC and PISA architectures.

The system is fully tested with the SPARC architecture, while the other two architectures

are used to test the partial system for convenience. To avoid confusion, we rename them as

rSPARC, ri386 and rPISA respectively in the experiments. The discussion of the experimental

CHAPTER 6. EXPERIMENTS AND RESULTS 125

result is follows.

6.2.1 Testing the Retargetable BFD & Linker System

We tested the retargetable BFD & linker system with rSPARC and ri386. The Table 6.1 shows

the processor-dependent files generated from the BFD & linker generator (rSPARC and ri386)

and compare them with the ones provided by the current Binutils package (SPARC and i386).

In the table, myarch represents the architecture name (e.g. rsparc). The bfd/elf32-

myarch is the most important processor-dependent file generated from the system, as the

other are either configuration scripts or files containing a few parameter files. From the ta-

ble, we can see that the bfd/elf32-myarch file generated from the system is shorter. It

is because that the generic algorithms cannot support any architecture-dependent optimization.

Also, the generated file only has basic linking functionality while the manually-crafted file may

contain special feature support.

File # lines
SPARC rSPARC i386 ri386

config.sub 1443 1451 1443 1451
include/elf/common.h 672 677 672 677
include/elf/myarch.h 152 68 67 67
bfd/Makefile.am 1566 1580 1566 1580
bfd/archures.c 1087 1096 1087 1096
bfd/config.bfd 1181 1192 1181 1192
bfd/configure 7150 7156 7150 7156
bfd/configure.in 866 871 866 871
bfd/cpu-myarch.c 169 46 101 46
bfd/elf32-myarch.c 2151 1883 3153 1908
bfd/reloc.c 3774 3807 3774 3795
bfd/targets.c 1280 1287 1280 1287
ld/Makefile.am 1393 1401 1393 1401
ld/configure.tgt 503 520 503 520
ld/emulparams/elf32 myarch.sh 13 17 12 16

Table 6.1: Manually-made vs. Generated Files - GNU BFD & Linker

To verify the automatically generated BFD library and linker, we used the generated GNU

linker to link object files of the testing benchmarks, and run the output executable. We tried

CHAPTER 6. EXPERIMENTS AND RESULTS 126

both static linking and dynamic linking. We found that the automatically generated GNU

linkers for rSPARC and ri386, which uses the corresponding automatically generated BFD

libraries, function the same as the manually-crafted ones provided by the GNU Binutils.

6.2.2 Testing the Retargetable SimpleScalar System

We tested the retargetable SimpleScalar system with rSPARC and rPISA. The Table 6.2 shows

the processor-dependent files generated from the SimpleScalar generator (rPISA and rSPARC)

and compare them with the original ones provided by SimpleScalar (PISA). In the table,

myarch represents the architecture name (e.g. rsparc).

File # lines
PISA rPISA rSPARC

target-myarch/loader.c 615 283 284
target-myarch/arch.h 737 505 473
target-myarch/arch.c 671 1014 1624
target-myarch/arch.def 2067 1863 3059
sim-safe.c 307 279 449
sim-cache.c 782 756 910
sim-bpred.c 513 490 658

Table 6.2: Manually-made vs. Generated Files - SimpleScalar

In addition to the processor-dependent files generated from the SimpleScalar generator,

we need the ported BFD library and the system call package to make the toolset completely

ported. For rSPARC, we use the BFD library generated from the retargetable BFD & linker

system. The system call package for rSPARC is manually ported. For rPISA, we use the BFD

library provided from the SimpleScalar compilation toolset. The system call package for PISA

in the original system can be used by rPISA also. In our experiments, the binary file format of

rSPARC is ELF while that of rPISA and PISA is COFF.

We compare the performance of the automatically-ported simulators with the manually-

crafted simulators provided from SimpleScalar. Also, we present some simulation data col-

lected from running the generated simulators. Our first experiment demonstrates that our tool

CHAPTER 6. EXPERIMENTS AND RESULTS 127

can successfully perform instruction set simulation. Figure 6.3 shows the simulation perfor-

mance in terms of simulated instructions per second for the rPISA and rSPARC, compared

against PISA. Table 6.3 shows the number of instructions executed for each benchmark in

terms of different ISA. It can be observed that the performance of our generated instruction

simulator is comparable to the original one provided by the SimpleScalar simulator. The per-

formance lag of the automatically generated simulator can be explained by the fact that the

PISA simulator pre-decode all the instructions at the loading time and store the decoded value

at a extra field space in the instruction. However, the automatically generated rPISA simulator

cannot take this architecture-dependent advantage, and has to do instruction decoding at each

simulation iteration.

We then demonstrate the performance of our retargeted simulator for detailed micro-architecture

simulation: Figure 6.4 for cache simulation and Figure 6.5 for branch prediction simulation.

Again, the performance of our generated simulators is comparable to the original ones. Fig-

ure 6.6 is shown to demonstrate the different simulation speed for different level of architectural

detail for the same processor.

Benchmark # instructions executed
rPISA rSPARC

181.mcf 419,091,512 497,727,974
197.parser 46,080,766,461 61,881,001,366
164.gzip 147,714,434,639 204,889,958,252
183.equake 3,277,913,476 2,927,744,817
188.ammp 25,016,922,286 16,563,751,978
179.art 28,986,818,426 36,118,444,032

Table 6.3: Number of instructions executed - SimpleScalar

CHAPTER 6. EXPERIMENTS AND RESULTS 128

sim-safe

0
200000
400000
600000
800000
1000000
1200000
1400000
1600000
1800000

18
1.
m
cf

19
7.
pa
rs
er

16
4.
gz
ip

18
3.
eq
ua
ke

18
8.
am
m
p

17
9.
ar
t

in
s
tr
n
/s PISA

rPISA

rSPARC

Figure 6.3: Performance of sim-safe

sim-cache - 2-level instruction and data caches with

unification in the 2nd level

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

18
1.
m
cf

19
7.
pa
rs
er

16
4.
gz
ip

18
3.
eq
ua
ke

18
8.
am
m
p

17
9.
ar
t

in
s

tr
n

/s

PISA

rPISA

rSPARC

Figure 6.4: Performance of sim-cache

CHAPTER 6. EXPERIMENTS AND RESULTS 129

sim-bpred - bimodal predictior with 2048 entries,

on a 4-associative BTB with 512 sets

0

200000

400000

600000

800000

1000000

1200000

1400000

18
1.
m
cf

19
7.
pa
rs
er

16
4.
gz
ip

18
3.
eq
ua
ke

18
8.
am
m
p

17
9.
ar
t

in
s

tr
n

/s PISA

rPISA

rSPARC

Figure 6.5: Performance of sim-bpred

rSPARC

0
200000
400000
600000
800000
1000000
1200000
1400000
1600000
1800000

18
1.
m
cf

19
7.
pa
rs
er

16
4.
gz
ip

18
3.
eq
ua
ke

18
8.
am
m
p

17
9.
ar
t

in
s
tr
n
/s sim-safe

sim-bpred

sim-cache

Figure 6.6: Performance of rSPARC

Chapter 7

Conclusion and Future Work

In this thesis, we have argued the importance of the role that embedded processors play in

system-on-chips of today and the future. An important characteristics of embedded processors

is the need to adapt the architecture to the application. Often times system architects have to

iterate the architectural exploration process to find the best trade-off. An enabling technology

to make rapid architecture exploration possible is the automatic generation of architecture-

dependent embedded software development tools. This thesis addresses two of such important

tools, namely linker and micro-architecture simulator.

We draw several conclusions from our experience in the study presented in this thesis.

First, our decision to conform to de facto standards of embedded software development

tools is expensive, but it leads to a practical solutions. In fact, the most time-consuming and

tedious component of this work is the understanding of the GNU code base. Perhaps due to

the continuously evolving nature of free software contributed by decentralized programmers

all over the world, the architecture-dependent interface is poorly documented. Furthermore,

the implementations of this obscure interface is ad hoc: it is not uncommon to find that seem-

ingly different implementations are performing the same job. Our contribution of identifying

and distilling a minimum architecture-dependent API from an existing but proven code base

and finding an implementation as generic as possible might not appear as elegant as the op-

130

CHAPTER 7. CONCLUSION AND FUTURE WORK 131

tion of starting completely from scratch, but it is of practical importance: Developing from

scratch a modern linker supporting modern programming languages, such as C++, and modern

operating systems, such as those with dynamic linking, will be prohibitively high. Develop-

ing from scratch a modern micro-architecture simulator supporting cache organization, branch

prediction and out-of-order issues is equally unnecessary.

Second, our decision to focus on architectural modeling proves beneficial. The architecture

descriptions of many previous work are tied to specific tools, for example, the code generator’s

generator. While intellectually involving, architectural modeling forces us to concentrate on

the semantics, rather than the utility of architectural description. Therefore, our contribution

on architectural model is not necessarily tied to our implementation. More importantly, differ-

ent retargetable tools, such as compilers, assemblers, linkers and simulators, can derive their

needed information from a single source.

Third, our decision to adopt Babel, a general-purpose language where data model can be

captured as a first-class citizen using its type system proves beneficial. In fact, as our research

proceeds, our architectural model has been refined and revamped and we do not expect the

model presented in this thesis is carved in stone. Had our architecture model been hardwired

into the ADL syntax, as all previous work do, our implementation and experiments would have

taken longer time.

Fourth, our effort on abstracting the ABI information, especially the linking related infor-

mation, is successful. A systematic treatment of ABI has not been reported before other than

our preliminary study on this subject. Our ABI model can help driving the generation of com-

pletely different tools: in this thesis linkers and simulators, and in the future register allocators

and assemblers.

Finally, our work is not without limitations. Some limitations are by design. For example,

one of the most difficult decision we made in developing the instruction set model is to give up

the modeling of x86-based processors. The decision is made to keep our model simple enough

so that all instructions can be decoded with a tree-based algorithm. The inclusion of x86-based

CHAPTER 7. CONCLUSION AND FUTURE WORK 132

processor requires a finite-state based algorithm, a complication we choose to avoid with the

assumption that an x86-based processor is unlikely used in an embedded environment, or its

development tool is unlikely unavailable.

Some limitations extend naturally to future work. We have limited our ABI model to link-

ing related information. Other important information, such as calling convention, which is

important for retargetable compiler, is not yet mature enough to be included in this thesis.

Other tools contained in the binary utilities, among the most important the GNU assembler,

are not included in this study. However, given our group’s experience in a previous study, this

retargetting task is feasible since the majority of their architecture-dependent code is within the

BFD library, a task already addressed by this thesis. Another important tool that could benefit

from the retargetting of BFD library is the GNU debugger.

After this study, we are convinced that the paradigm of retargetable development tools are

feasible. However, it is not realistic to expect all porting can be performed automatically. One

such example is the C library, which contains a minimal amount of architecture-dependent

code, typically written in assembly. Another such example is the embedded operating system.

We envision that architectural exploration should start with a base processor equipped with a

generic, base instruction set. While new instructions can be added to the processor to accom-

modate applications, the library code and the OS code can be based on the base instruction set.

The cost of porting C library and OS can therefore be amortized in this fashion.

Bibliography

[1] M. Abbaspour and J. Zhu. Retargetable binary utilities. In Proceeding of the 39th Design Au-

tomation Conference, June 2001.

[2] D. Burger and T. M. Austin. The SimpleScalar tool set, version 2.0. Technical Report #1342,

University of Wisconsin-Madison, Computer Science, June 1997.

[3] S. Chamberlain. libbfd : the Binary File Descriptor Library. Cygnus Support, Free Software

Foundation, Inc., April 1991.

[4] S. Chamberlain. Using ld : the GNU Linker. Cygnus Support, Free Software Foundation, Inc.,

January 1994.

[5] G. Hadjiyiannis, S. Hanono, and S. Devadas. ISDL: An instruction set description language for

retargetability. In Proceeding of the 34th Design Automation Conference, June 1997.

[6] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and A. Nicolau. Expression : A language for

architecture exploration through compiler/simulator retargetability. In Proceedings of the Design

Automation and Test Conference in Europe, March 1999.

[7] A. Hoffmann, T. Kogel, A. Nohl, G. Braun, O. Schliebusch, O. Wahlen, A. Wieferink, and

H. Meyr. A novel methodology for the design of application-specific instruction-set processors

(asips) using a machine description language. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 20(11):1338–1354, November 2001.

[8] R. Leupers, J. Elste, and B. Landwehr. Generation of interpretive and compiled instruction set

simulators. In Proceedings of Asian-Pacific Design Automation Conference, Hong Kong, January

1999.

[9] R. Leupers and P. Marwedel. Retargetable code generation based on structural processor descrip-

tions. Design Automation for Embedded Systems, 3(1), 1998.

133

BIBLIOGRAPHY 134

[10] R. Leupers and P. Marwedel. Retargetable Compiler Technology for Embedded Systems - Tools

and Applications. Kluwer Academic Publishers, 2001.

[11] J. R. Levine. Linkers and Loaders. Morgan Kufmann Publishers, 2000.

[12] W. S. Mong and J. Zhu. Retargetable binary utilities - a hacker’s guide. Technical Report TR-03-

05-01, University of Toronto, Electrical and Computer Engineering, May 2003.

[13] R. A. Mueller, M. R. Duda, P. H. Sweany, and J. S. Walicki. Horizon:a retargetable compiler for

horizontal microarchitectures. IEEE Transactions on Software Engineering, 14(5):575–583, May

1998.

[14] A. Nohl, G. Braun, and A. Hoffmann. A universal technique for fast and flexible instruction-set

architecture simulation. In Proceeding of the 39th Design Automation Conference, June 2001.

[15] R. H. Pesch and J. M. Osier. The GNU Binary Utilities. Cygnus Support, Free Software Founda-

tion, Inc., May 1993.

[16] G. Rozenberg and F. W. Vanndrager. Lectures on Embedded Systems, volume 1494 of Lecture

Notes on Computer Science. Springer, 1998.

[17] SimpleScalar LLC. http://www.simplescalar.com.

[18] R. M. Stallman. Using the GNU Compiler Collection. Free Software Foundation, Inc., January

2002.

[19] TIS Committee. Tool Interface Standard (TIS) Executable and Linking Format (ELF) Specifica-

tion, May 1995.

[20] J. Zhu and D. D. Gajski. A retargetable, ultra-fast instruction set simulator. In Proceedings of the

Design Automation and Test Conference in Europe, Munich, Germany, March 1999.

Appendix A

Sample Babel Processor Description

A.1 Architecture Model in Babel - arch.bbh

#ifndef ARCH_BBH
#define ARCH_BBH

typedef int ˆ int Range;
typedef field Cell;
typedef []field CellGroup;

enum DataTypeKind {
KIND_DATATYPE_INT = 0,
KIND_DATATYPE_UNSIGNED = 1,
KIND_DATATYPE_FLOAT = 2,
KIND_DATATYPE_ADDR = 3
}

/* DataTypeKind ˆ bit size ˆ align(byte / reg number) */
typedef int ˆ int ˆ int Usage;

enum CtrlRegKind {
KIND_CTRLREG_NONE = 0,
KIND_CTRLREG_PC = 1, // program counter
KIND_CTRLREG_NPC = 2, // next program counter
KIND_CTRLREG_WINPTR = 3, // current window pointer
KIND_CTRLREG_WININVALID = 4 // window invalid check
}

typedef Range ˆ CtrlReg CtrlRegField;
class CtrlReg {

CtrlReg(int kind, Cell map);

{}CtrlRegField fields;
}

typedef Cell ˆ method RegSetup;

class RegFile {
RegFile(int gran, int size);

135

APPENDIX A. SAMPLE BABEL PROCESSOR DESCRIPTION 136

/* window regs info */
Range pos;
int depth;
int overlap;
RegSetup ptr; // window pointer initial setup
RegSetup invalid; // invalid check initial setup
boolean saveDir; // true - move down, false - move up
method overflowCond; // overflow condition
method underflowCond; // underflow condition
method overflowUpdate; // invalid register update
method underflowUpdate; // invalid register update

{}Usage uses;

CellGroup maps;
}

class FieldAccessor {
FieldAccessor(string name, Range pos);
}

typedef []FieldAccessor opFormat;

class Field {
/* register field */
Field(FieldAccessor p, RegFile rfile);

/* immediate field */
Field(FieldAccessor p, boolean isSigned);
}

enum InstrnKind {
KIND_INSTRN_NONE = 0,
KIND_INSTRN_WINSAVE = 1,
KIND_INSTRN_WINRESTORE = 2,
KIND_INSTRN_DELAYED = 3,
KIND_INSTRN_TRAP = 4,
KIND_INSTRN_CALL = 5,
KIND_INSTRN_RETURN = 6,
KIND_INSTRN_INDIR = 7
}

class Instrn {
string asmFormat;
opFormat opfmt;
[]int opcodes;
Field dst;
[]Field srcs;
InstrnKind kind;
method beh;
RegFile win;
}

/* assume the max field length is 32 bits */
typedef Field ˆ int FieldExpr;

class InstrnRule {
InstrnRule(Instrn i);
{}FieldExpr fieldValues;
}

class InstrnConv {
InstrnConv(int kind);
{}InstrnRule rules;
}

APPENDIX A. SAMPLE BABEL PROCESSOR DESCRIPTION 137

class domain.ISA {
string cpu;
string manufacturer;
int wordSize;
int addrSize;
int instrnSize;
int maxDataAlign;
boolean bigEndian;

{}RegFile rfiles;
{}CtrlReg ctrls;

{}FieldAccessor accessors;
{}opFormat opFmts;
{}Field fields;
{}Instrn instrns;
{}InstrnConv convs;
}

#define dynSectAddr (__dyn_addr)
#define pltSectAddr (__plt_addr)
#define gotSectAddr (__got_addr)
#define relocValue (__reloc_val)
#define gotRelocValue (__got_reloc_val)
#define pltEntryOffset (__plt_e_off_pltfill)
#define pltgotEntryOffset (__got_e_off_pltfill)
#define jsrelEntryOffset (__jsrel_e_off_pltfill)

#define DEFINE_RESERVED_SYMBS \
pointer __dyn_addr, __plt_addr, __got_addr, __reloc_val, __got_reloc_val; \
pointer __plt_e_off_pltfill, __got_e_off_pltfill, __jsrel_e_off_pltfill;

#define SYMB_EXPR(symb) \
pointer symb##Expr() { \

return symb; \
}

#define DEFINE_BASIC_EXPRS \
SYMB_EXPR(dynSectAddr) \
SYMB_EXPR(pltSectAddr) \
SYMB_EXPR(gotSectAddr) \
SYMB_EXPR(relocValue) \
SYMB_EXPR(gotRelocValue) \
SYMB_EXPR(pltEntryOffset) \
SYMB_EXPR(pltgotEntryOffset) \
SYMB_EXPR(jsrelEntryOffset)

enum RelocKind {
KIND_RELOC_NONE = 0,
KIND_RELOC_DATA = 1,
KIND_RELOC_FUNC = 2,
KIND_RELOC_GOT = 3,
KIND_RELOC_PLT = 4,
KIND_RELOC_COPY = 5,
KIND_RELOC_GLOBDAT = 6,
KIND_RELOC_JMPSLOT = 7,
KIND_RELOC_RELATIVE = 8
}

/* field ˆ check_overflow? */
typedef string ˆ boolean RelocField;

class Reloc {
Reloc(string name, int kind, int value);

APPENDIX A. SAMPLE BABEL PROCESSOR DESCRIPTION 138

/* info. about calculating the relocated value */
boolean pcRel;
boolean gotRel;
boolean addend; /* + addend? */
method operation; /* applied on the symb. value */
int extSize; /* extracted bit size */
RelocField rfield;
boolean aligned; /* restrict word alignment? */
}

class Got {
string accessSymb; /* access symb. if any */
int maxSize; /* -1 if none */
[]method startEntries;
[]method endEntries;
}

typedef Range ˆ method Fill;

class PltEntry {
PltEntry(int size, []ubyte tmpl);

{}Fill fills;
}

class PltLayout {
PltLayout(PltEntry normalEntry);

PltEntry startEntry;
PltEntry endEntry;
}

class Plt {
Plt(boolean inTextSeg); /* resides in text seg. -> depends on GOT */

string accessSymb; /* access symb. if any */
int maxSize; /* -1 if none */
int offInGot; /* offset value of PLT entry holding in the

corresponding GOT entry */
[]PltLayout layouts;
}

enum DynKind {
KIND_DYN_PLTGOT = 0
}

/* entry in the .dynamic section
may have more later */

class Dyn {
Dyn(int kind);

method val;
}

class Stack {
Stack(unsigned baseAddr, Cell stackPtr, int align, int maxEnviron);
int saveArea;
}

class domain.ABI {
int e_mach; // ELF machine number
string procEMachName;
int maxPageSize;
int pageSize;
unsigned startAddr;

APPENDIX A. SAMPLE BABEL PROCESSOR DESCRIPTION 139

string dynLinkerPath;
boolean reloca;
string procRelocName;

{}string localSymPrefixes;
{}Reloc relocs;
{}Dyn dyns;
Got got;

{}PltEntries pltEntries;
{}PltLayout pltLayouts;
Plt plt;

CellGroup zero;

Stack stack;
{}Usage memUses;
}

#endif

APPENDIX A. SAMPLE BABEL PROCESSOR DESCRIPTION 140

A.2 Behavior Domain

A.2.1 rsparc.bbl

#include "arch.bbh"

typedef unsigned[32] pointer;

facet rsparc::beh {
DEFINE_RESERVED_SYMBS
DEFINE_BASIC_EXPRS

unsigned[32] g0, g1, g2, g3, g4, g5, g6, g7;
unsigned[32] l0, l1, l2, l3, l4, l5, l6, l7;
unsigned[32] i0, i1, i2, i3, i4, i5, fp, i7;
unsigned[32] o0, o1, o2, o3, o4, o5, sp, o7;

float[32] f0, f1, f2, f3, f4, f5, f6, f7;
float[32] f8, f9, f10, f11, f12, f13, f14, f15;
float[32] f16, f17, f18, f19, f20, f21, f22, f23;
float[32] f24, f25, f26, f27, f28, f29, f30, f31;

unsigned[32] psr;
bits[5] cwp;
bits[1] icc_c, icc_v, icc_z, icc_n;

unsigned[32] wim, tbr, y, fsr;
bits[2] fcc;

unsigned[32] pc, npc;

pointer reloc_oper1() {
return (relocValue >> 2);
}

pointer reloc_oper2() {
return (relocValue >> 10);
}

pointer plt_fill0() {
return (uint)((-(4 + pltEntryOffset)) >> 2);
}

/* register window behavior */
bits[5] win_ptr_init() {

return 31;
}

unsigned win_invalid_init() {
return 0x00000001;
}

boolean win_overflow_cond() {
return (((wim >> cwp) & 1)!=0);
}

unsigned win_overflow_update() {
return ((wim == 0x00000001)?0x80000000:(wim >> 1));
}

unsigned win_underflow_update() {
return ((wim == 0x80000000)?0x00000001:(wim << 1));

APPENDIX A. SAMPLE BABEL PROCESSOR DESCRIPTION 141

}

/* instruction semantics */
void call(int disp) {

o7 = pc;
pc = npc;
npc = disp << 2;
}

pointer jmpl(int src1, int src2) {
pointer tmp;
pc = npc;
npc = src1+src2;
return tmp;
}

void bne(int disp) {
pc = npc;
if(!icc_z)

npc = pc + (disp << 2);
else

npc = npc + 4;
}

void bne_a(int disp) {
pc = npc;
if(!icc_z)

npc = pc + (disp << 2);
else {

pc = npc + 4;
npc = npc + 8;
}

}

uint orcc(uint src1, uint src2) {
icc_n = ((src1 | src2) >> 31) & 0x1;
icc_z = ((src1 | src2) == 0);
icc_v = 0;
icc_c = 0;
return (src1 | src2);
}

}

APPENDIX A. SAMPLE BABEL PROCESSOR DESCRIPTION 142

A.2.2 ri386.bbl

#include "arch.bbh"

typedef unsigned[32] pointer;

facet ri386::beh {
DEFINE_RESERVED_SYMBS
DEFINE_BASIC_EXPRS

pointer zeroVal() {
return (uint)0;
}

pointer plt_fill0() {
return (uint)(4 + gotSectAddr);
}

pointer plt_fill1() {
return (uint)(8 + gotSectAddr);
}

pointer plt_fill2() {
return (pltgotEntryOffset + gotSectAddr);
}

pointer plt_fill3() {
return (uint)(-(16+pltEntryOffset));
}

}

APPENDIX A. SAMPLE BABEL PROCESSOR DESCRIPTION 143

A.3 ISA Domain

A.3.1 rsparc.isa.bbl

#include "arch.bbh"

facet rsparc::isa = new domain.ISA {
cpu = "rsparc";
manufacturer = "sun";
wordSize = 32;
addrSize = 32;
instrnSize = 32;
maxDataAlign = 8;
bigEndian = true;

rfiles = {
gpr = new RegFile(32, 32) {

pos = <8,31>;
depth = 32;
overlap = 8;
ptr = <cwp, rsparc.win_ptr_init(void)>;
invalid = <wim, rsparc.win_invalid_init(void)>;
saveDir = false; // move up one window to save
overflowCond = rsparc.win_overflow_cond(void);
underflowCond = rsparc.win_overflow_cond(void);
overflowUpdate = rsparc.win_overflow_update(void);
underflowUpdate = rsparc.win_underflow_update(void);
uses = {

<KIND_DATATYPE_UNSIGNED, 8, 1>,
<KIND_DATATYPE_INT, 8, 1>,
<KIND_DATATYPE_UNSIGNED, 16, 1>,
<KIND_DATATYPE_INT, 16, 1>,
<KIND_DATATYPE_UNSIGNED, 32, 1>,
<KIND_DATATYPE_INT, 32, 1>,
<KIND_DATATYPE_UNSIGNED, 64, 2>,
<KIND_DATATYPE_INT, 64, 2>,
<KIND_DATATYPE_ADDR, 32, 1>
}

maps = [g0, g1, g2, g3, g4, g5, g6, g7,
l0, l1, l2, l3, l4, l5, l6, l7,
i0, i1, i2, i3, i4, i5, fp, i7,
o0, o1, o2, o3, o4, o5, sp, o7];

}
fpr = new RegFile(32, 32) {

uses = {
<KIND_DATATYPE_FLOAT, 32, 1>,
<KIND_DATATYPE_FLOAT, 64, 2>
}

maps = [f0, f1, f2, f3, f4, f5, f6, f7,
f8, f9, f10, f11, f12, f13, f14, f15,
f16, f17, f18, f19, f20, f21, f22, f23,
f24, f25, f26, f27, f28, f29, f30, f31];

}
}

ctrls = {
cPSR = new CtrlReg(KIND_CTRLREG_NONE, psr) {

fields = {
< <4, 0>, new CtrlReg(KIND_CTRLREG_WINPTR, cwp) >,
< <20, 20>, new CtrlReg(KIND_CTRLREG_NONE, icc_c) >,
< <21, 21>, new CtrlReg(KIND_CTRLREG_NONE, icc_v) >,
< <22, 22>, new CtrlReg(KIND_CTRLREG_NONE, icc_z) >,
< <23, 23>, new CtrlReg(KIND_CTRLREG_NONE, icc_n) >
}

APPENDIX A. SAMPLE BABEL PROCESSOR DESCRIPTION 144

}
cWIM = new CtrlReg(KIND_CTRLREG_WININVALID, wim);
cTBR = new CtrlReg(KIND_CTRLREG_NONE, tbr);
cY = new CtrlReg(KIND_CTRLREG_NONE, y);
cFSR = new CtrlReg(KIND_CTRLREG_NONE, fsr) {

fields = {
< <11, 10>, new CtrlReg(KIND_CTRLREG_NONE, fcc)>;
}

}
cPC = new CtrlReg(KIND_CTRLREG_PC, pc);
cNPC = new CtrlReg(KIND_CTRLREG_NPC, npc);
}

accessors = {
op = new FieldAccessor("op", <31, 30>),
disp30 = new FieldAccessor("disp30", <29, 0>),
rd = new FieldAccessor("rd", <29, 25>),
op2 = new FieldAccessor("op2", <24, 22>),
imm22 = new FieldAccessor("imm22", <21, 0>),
a = new FieldAccessor("a", <29, 29>),
cond = new FieldAccessor("cond", <28, 25>),
disp22 = new FieldAccessor("disp22", <21, 0>),
op3 = new FieldAccessor("op3", <24, 19>),
rs1 = new FieldAccessor("rs1", <18, 14>),
i = new FieldAccessor("i", <13, 13>),
asi = new FieldAccessor("asi", <12, 5>),
rs2 = new FieldAccessor("rs2", <4, 0>),
simm13 = new FieldAccessor("simm13", <12, 0>),
opf = new FieldAccessor("opf", <13, 5>),
byte8 = new FieldAccessor("byte8", <7, 0>),
half16 = new FieldAccessor("half16", <15, 0>),
word32 = new FieldAccessor("word32", <31, 0>)
}

opFmts = {
opf1A = [op],
opf2A = [op, op2],
opf2B = [op, a, cond, op2],
opf3A = [op, op3, i],
opf3C = [op, op3, opf],
opf3D = [op, cond, op3, i]
}

fields = {
f_byte8 = new Field(byte8, false),
f_byte8_s = new Field(byte8, true),
f_half16 = new Field(half16, false),
f_half16_s = new Field(half16, true),
f_word32 = new Field(word32, false),
f_disp32_s = new Field(word32, true),
f_disp30_s = new Field(disp30, true),
f_disp22_s = new Field(disp22, true),
f_imm22 = new Field(imm22, false),
f_simm13 = new Field(simm13, false),
f_simm13_s = new Field(simm13, true),
f_rs1_g = new Field(rs1, gpr),
f_rs2_g = new Field(rs2, gpr),
f_rs1_f = new Field(rs1, fpr),
f_rs2_f = new Field(rs2, fpr),
f_rd_g = new Field(rd, gpr),
f_rd_f = new Field(rd, fpr)
}

instrns = {
ldsb = new Instrn {

asmFormat = "ldsb [%1+%2], %0";
opfmt = opf3A;
opcodes = [0x3, 0x9, 0x0];

APPENDIX A. SAMPLE BABEL PROCESSOR DESCRIPTION 145

dst = f_rd_g;
srcs = [f_rs1_g, f_rs2_g];
beh = byte.OP_LOD(pointer, int);
}

ldsbi = new Instrn {
asmFormat = "ldsb [%1+#2], %0";
opfmt = opf3A;
opcodes = [0x3, 0x9, 0x1];
dst = f_rd_g;
srcs = [f_rs1_g, f_simm13_s];
beh = byte.OP_LOD(pointer, int);
}

ldsh = new Instrn {
asmFormat = "ldsh [%1+%2], %0";
opfmt = opf3A;
opcodes = [0x3, 0xa, 0x0];
dst = f_rd_g;
srcs = [f_rs1_g, f_rs2_g];
beh = short.OP_LOD(pointer, int);
}

ldshi = new Instrn {
asmFormat = "ldsh [%1+#2], %0";
opfmt = opf3A;
opcodes = [0x3, 0xa, 0x1];
dst = f_rd_g;
srcs = [f_rs1_g, f_simm13_s];
beh = short.OP_LOD(pointer, int);
}

call = new Instrn {
asmFormat = "call #1";
opfmt = opf1A;
opcodes = [0x1];
srcs = [f_disp30];
kind = KIND_INSTRN_DELAYED;
beh = rsparc.call(int);
}

jmpl = new Instrn {
asmFormat = "jmpl [%1+%2],%0";
optfmt = opf3A;
opcodes = [0x2, 0x38, 0x0];
dst = f_rd_g;
srcs = [f_rs1_g, f_rs2_g];
kind = KIND_INSTRN_DELAYED;
beh = rsparc.jmpl(int, int);
}

jmpli = new Instrn {
asmFormat = "jmpl [%1+#2],%0";
optfmt = opf3A;
opcodes = [0x2, 0x38, 0x1];
dst = f_rd_g;
srcs = [f_rs1_g, f_simm13_s];
kind = KIND_INSTRN_DELAYED;
beh = rsparc.jmpl(int, int);
}

bne = new Instrn {
asmFormat = "bne #1";
opfmt = opf2B;
opcodes = [0x0, 0x0, 0x9, 0x2];
srcs = [f_disp22_s];
kind = KIND_INSTRN_DELAYED;
beh = rsparc.bne(int);

APPENDIX A. SAMPLE BABEL PROCESSOR DESCRIPTION 146

}

bne_a = new Instrn {
asmFormat = "bne_a #1";
opfmt = opf2B;
opcodes = [0x0, 0x1, 0x9, 0x2];
srcs = [f_disp22_s];
kind = KIND_INSTRN_DELAYED;
beh = rsparc.bne_a(int);
}

orcc = new Instrn {
asmFormat = "orcc %1,%2,%0";
opfmt = opf3A;
opcodes = [0x2, 0x12, 0x0];
dst = f_rd_g;
srcs = [f_rs1_g, f_rs2_g];
kind = KIND_INSTRN_NONE;
beh = rsparc.orcc(uint, uint);
}

save = new Instrn {
asmFormat = "save %1,%2,%0";
opfmt = opf3A;
opcodes = [0x2, 0x3c, 0x0];
dst = f_rd_g;
srcs = [f_rs1_g, f_rs2_g];
kind = KIND_INSTRN_WINSAVE;
win = gpr;
beh = int.OP_ADD(int, int);
}

restore = new Instrn {
asmFormat = "restore %1,%2,%0";
opfmt = opf3A;
opcodes = [0x2, 0x3d, 0x0];
dst = f_rd_g;
srcs = [f_rs1_g, f_rs2_g];
kind = KIND_INSTRN_WINRESTORE;
win = gpr;
beh = int.OP_ADD(int, int);
}

ta = new Instrn {
asmFormat = "ta";
opfmt = opf3D;
opcodes = [0x2, 0x8, 0x3a, 0];
kind = KIND_INSTRN_TRAP;
}

/*

TOO MANY INSTRUCTIONS TO PUT HERE!

*/

}

convs = {
d_call = new InstrnConv(KIND_INSTRN_CALL) {

rules = {
new InstrnRule(call);
}

}

d_return = new InstrnConv(KIND_INSTRN_RETURN) {
rules = {

new InstrnRule(jmpli) {

APPENDIX A. SAMPLE BABEL PROCESSOR DESCRIPTION 147

fieldValues = {<f_rd_g, 0>, <f_rs1_g, 31>, <f_simm13_s, 8>};
}

}
}

d_indir = new InstrnConv(KIND_INSTRN_INDIR) {
rules = {

new InstrnRule(jmpl) {
fieldValues = {<f_rd_g, 15>};
}

new InstrnRule(jmpli) {
fieldValues = {<f_rd_g, 15>};
}

}
}

}

}

APPENDIX A. SAMPLE BABEL PROCESSOR DESCRIPTION 148

A.3.2 ri386.isa.bbl

#include "arch.bbh"

facet ri386::isa = new domain.ISA {
cpu = "ri386";
manufacturer = "pc";
wordSize = 32;
addrSize = 32;
maxDataAlign = 4;
bigEndian = false;

accessors = {
word32 = new FieldAccessor("word32", <31, 0>)
}

fields = {
f_word32 = new Field(word32, false);
}

}

APPENDIX A. SAMPLE BABEL PROCESSOR DESCRIPTION 149

A.4 ABI Domain

A.4.1 rsparc.abi.bbl

#include "arch.bbh"

facet rsparc::abi = new domain.ABI {
e_mach = 2;
procEMachName = "EM_RSPARC";
maxPageSize = 0x10000;
pageSize = 4096;
startAddr = 0x10000;
dynLinkerPath = "/usr/lib/ld.so.1";
reloca = true;
procRelocName = "RSPARC";

localSymPrefixes = { ".L", "..", "_.L_" };

relocs = {
r_rsparc_none = new Reloc("R_RSPARC_NONE", KIND_RELOC_NONE, 0) {

aligned = true;
}

r_rsparc_8 = new Reloc("R_RSPARC_8", KIND_RELOC_DATA, 1) {
addend = true;
operation = rsparc.relocValueExpr(void);
extSize = 8;
rfield = <"f_byte8", true>;
aligned = true;
}

r_rsparc_16 = new Reloc("R_RSPARC_16", KIND_RELOC_DATA, 2) {
addend = true;
operation = rsparc.relocValueExpr(void);
extSize = 16;
rfield = <"f_half16", true>;
aligned = true;
}

r_rsparc_32 = new Reloc("R_RSPARC_32", KIND_RELOC_DATA, 3) {
addend = true;
operation = rsparc.relocValueExpr(void);
extSize = 32;
rfield = <"f_word32", true>;
aligned = true;
}

r_rsparc_disp8 = new Reloc("R_RSPARC_DISP8", KIND_RELOC_FUNC, 4) {
pcRel = true;
addend = true;
operation = rsparc.relocValueExpr(void);
extSize = 8;
rfield = <"f_byte8_s", true>;
aligned = true;
}

r_rsparc_disp16 = new Reloc("R_RSPARC_DISP16", KIND_RELOC_FUNC, 5) {
pcRel = true;
addend = true;
operation = rsparc.relocValueExpr(void);
extSize = 16;
rfield = <"f_half16_s", true>;
aligned = true;
}

APPENDIX A. SAMPLE BABEL PROCESSOR DESCRIPTION 150

r_rsparc_disp32 = new Reloc("R_RSPARC_DISP32", KIND_RELOC_FUNC, 6) {
pcRel = true;
addend = true;
operation = rsparc.relocValueExpr(void);
extSize = 32;
rfield = <"f_disp32_s", true>;
aligned = true;
}

r_rsparc_wdisp30 = new Reloc("R_RSPARC_WDISP30", KIND_RELOC_FUNC, 7) {
pcRel = true;
addend = true;
operation = rsparc.reloc_oper1(void);
extSize = 30;
rfield = <"f_disp30_s", true>;
aligned = true;
}

r_rsparc_wdisp22 = new Reloc("R_RSPARC_WDISP22", KIND_RELOC_FUNC, 8) {
pcRel = true;
addend = true;
operation = rsparc.reloc_oper1(void);
extSize = 22;
rfield = <"f_disp22_s", true>;
aligned = true;
}

r_rsparc_hi22 = new Reloc("R_RSPARC_HI22", KIND_RELOC_DATA, 9) {
addend = true;
operation = rsparc.reloc_oper2(void);
extSize = 22;
rfield = <"f_imm22", false>;
aligned = true;
}

r_rsparc_22 = new Reloc("R_RSPARC_22", KIND_RELOC_DATA, 10) {
addend = true;
operation = rsparc.relocValueExpr(void);
extSize = 22;
rfield = <"f_imm22", true>;
aligned = true;
}

r_rsparc_13 = new Reloc("R_RSPARC_13", KIND_RELOC_DATA, 11) {
addend = true;
operation = rsparc.relocValueExpr(void);
extSize = 13;
rfield = <"f_simm13", true>;
aligned = true;
}

r_rsparc_lo10 = new Reloc("R_RSPARC_LO10", KIND_RELOC_DATA, 12) {
addend = true;
operation = rsparc.relocValueExpr(void);
extSize = 10;
rfield = <"f_simm13", false>;
aligned = true;
}

r_rsparc_got10 = new Reloc("R_RSPARC_GOT10", KIND_RELOC_GOT, 13) {
operation = rsparc.relocValueExpr(void);
extSize = 10;
rfield = <"f_simm13", false>;
aligned = true;
}

r_rsparc_got13 = new Reloc("R_RSPARC_GOT13", KIND_RELOC_GOT, 14) {

APPENDIX A. SAMPLE BABEL PROCESSOR DESCRIPTION 151

operation = rsparc.relocValueExpr(void);
extSize = 13;
rfield = <"f_simm13_s", true>;
aligned = true;
}

r_rsparc_got22 = new Reloc("R_RSPARC_GOT22", KIND_RELOC_GOT, 15) {
operation = rsparc.reloc_oper2(void);
extSize = 22;
rfield = <"f_imm22", false>;
aligned = true;
}

r_rsparc_pc10 = new Reloc("R_RSPARC_PC10", KIND_RELOC_DATA, 16) {
pcRel = true;
addend = true;
operation = rsparc.relocValueExpr(void);
extSize = 10;
rfield = <"f_simm13", false>;
aligned = true;
}

r_rsparc_pc22 = new Reloc("R_RSPARC_PC22", KIND_RELOC_DATA, 17) {
pcRel = true;
addend = true;
operation = rsparc.reloc_oper2(void);
extSize = 22;
rfield = <"f_imm22", true>;
aligned = true;
}

r_rsparc_wplt30 = new Reloc("R_RSPARC_WPLT30", KIND_RELOC_PLT, 18) {
pcRel = true;
addend = true;
operation = rsparc.reloc_oper1(void);
extSize = 30;
rfield = <"f_disp30_s", true>;
aligned = true;
}

r_rsparc_copy = new Reloc("R_RSPARC_COPY", KIND_RELOC_COPY, 19) {
aligned = true;
}

r_rsparc_globdat = new Reloc("R_RSPARC_GLOB_DAT", KIND_RELOC_GLOBDAT, 20) {
addend = true;
operation = rsparc.relocValueExpr(void);
extSize = 32;
rfield = <"f_word32", false>;
aligned = true;
}

r_rsparc_jmpslot = new Reloc("R_RSPARC_JMP_SLOT", KIND_RELOC_JMPSLOT, 21) {
aligned = true;
}

r_rsparc_relative = new Reloc("R_RSPARC_RELATIVE", KIND_RELOC_RELATIVE, 22) {
addend = true;
operation = rsparc.relocValueExpr(void);
extSize = 32;
rfield = <"f_word32", false>;
aligned = true;
}

r_rsparc_ua32 = new Reloc("R_RSPARC_UA32", KIND_RELOC_DATA, 23) {
addend = true;
operation = rsparc.relocValueExpr(void);
extSize = 32;

APPENDIX A. SAMPLE BABEL PROCESSOR DESCRIPTION 152

rfield = <"f_word32", true>;
aligned = false;
}

}

dyns = {
dynpltgot = new Dyn(KIND_DYN_PLTGOT) {

val = rsparc.pltSectAddrExpr(void);
}

}

got = new Got() {
accessSymb = "_GLOBAL_OFFSET_TABLE_";
maxSize = 8192;
startEntries = [rsparc.dynSectAddrExpr(void)];
}

pltEntries = {
pe1 = new PltEntry(

48,
[0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]

);

pe2 = new PltEntry(
12,
[0x03, 0x00, 0x00, 0x00, 0x30, 0x80, 0x00, 0x00,
0x01, 0x00, 0x00, 0x00]

) {
fills = {

< <10, 31>, rsparc.pltEntryOffsetExpr(void) >;
< <42, 63>, rsparc.plt_fill0(void) >;
}

}

pe3 = new PltEntry(
4,
[0x01, 0x00, 0x00, 0x00]
)

}

pltLayouts = {
pl1 = new PltLayout(pe2) {

startEntry = pe1;
endEntry = pe3;
}

}

plt = new Plt(false) {
accessSymb = "_PROCEDURE_LINKAGE_TABLE_";

layouts = [pl1];
}

zero = [g0];

stack = new Stack(0xffbf0000, sp, 64, 16384) {
saveArea = 64;
}

memUses = {
<KIND_DATATYPE_UNSIGNED, 8, 1>;
<KIND_DATATYPE_INT, 8, 1>;
<KIND_DATATYPE_UNSIGNED, 16, 2>;

APPENDIX A. SAMPLE BABEL PROCESSOR DESCRIPTION 153

<KIND_DATATYPE_INT, 16, 2>;
<KIND_DATATYPE_UNSIGNED, 32, 4>;
<KIND_DATATYPE_INT, 32, 4>;
<KIND_DATATYPE_UNSIGNED, 64, 8>;
<KIND_DATATYPE_INT, 64, 8>;
<KIND_DATATYPE_FLOAT, 32, 4>;
<KIND_DATATYPE_FLOAT, 64, 8>;
<KIND_DATATYPE_ADDR, 32, 4>;
}

}

APPENDIX A. SAMPLE BABEL PROCESSOR DESCRIPTION 154

A.4.2 ri386.abi.bbl

#include "arch.bbh"

facet ri386::abi = new domain.ABI {
e_mach = 3;
procEMachName = "EM_R386";
maxPageSize = 0x1000;
startAddr = 0x8048000;
dynLinkerPath = "/lib/ld-linux.so.2";
reloca = false;
procRelocName = "R386";

localSymPrefixes = { ".L", "..", "_.L_", ".X" };

relocs = {
r_r386_none = new Reloc("R_R386_NONE", KIND_RELOC_NONE, 0) {

aligned = true;
}

r_r386_32 = new Reloc("R_R386_32", KIND_RELOC_DATA, 1) {
addend = true;
operation = ri386.relocValueExpr(void);
extSize = 32;
rfield = <"f_word32", true>;
aligned = true;
}

r_r386_pc32 = new Reloc("R_R386_PC32", KIND_RELOC_FUNC, 2) {
pcRel = true;
addend = true;
operation = ri386.relocValueExpr(void);
extSize = 32;
rfield = <"f_word32", true>;
aligned = true;
}

r_r386_got32 = new Reloc("R_R386_GOT32", KIND_RELOC_GOT, 3) {
addend = true;
operation = ri386.relocValueExpr(void);
extSize = 32;
rfield = <"f_word32", true>;
aligned = true;
}

r_r386_plt32 = new Reloc("R_R386_PLT32", KIND_RELOC_PLT, 4) {
pcRel = true;
addend = true;
operation = ri386.relocValueExpr(void);
extSize = 32;
rfield = <"f_word32", true>;
aligned = true;
}

r_r386_copy = new Reloc("R_R386_COPY", KIND_RELOC_COPY, 5) {
aligned = true;
}

r_r386_globdat = new Reloc("R_R386_GLOB_DAT", KIND_RELOC_GLOBDAT, 6) {
operation = ri386.relocValueExpr(void);
extSize = 32;
rfield = <"f_word32", true>;
aligned = true;
}

r_r386_jumpalot = new Reloc("R_R386_JUMP_SLOT", KIND_RELOC_JMPSLOT, 7) {
operation = ri386.relocValueExpr(void);
extSize = 32;
rfield = <"f_word32", true>;
aligned = true;
}

r_r386_relative = new Reloc("R_R386_RELATIVE", KIND_RELOC_RELATIVE, 8) {
addend = true;
operation = ri386.relocValueExpr(void);

APPENDIX A. SAMPLE BABEL PROCESSOR DESCRIPTION 155

extSize = 32;
rfield = <"f_word32", true>;
aligned = true;
}

r_r386_gotoff = new Reloc("R_R386_GOTOFF", KIND_RELOC_DATA, 9) {
gotRel = true;
addend = true;
operation = ri386.relocValueExpr(void);
extSize = 32;
rfield = <"f_word32", true>;
aligned = true;
}

r_r386_gotpc = new Reloc("R_R386_GOTPC", KIND_RELOC_DATA, 10) {
pcRel = true;
addend = true;
operation = ri386.gotRelocValueExpr(void);
extSize = 32;
rfield = <"f_word32", true>;
aligned = true;
}

}

dyns = {
dynplt = new Dyn(KIND_DYN_PLTGOT) {

val = ri386.gotSectAddrExpr(void);
}

}

got = new Got() {
accessSymb = "_GLOBAL_OFFSET_TABLE_";
startEntries = [ri386.dynSectAddrExpr(void),

ri386.zeroVal(void),
ri386.zeroVal(void)];

}

pltEntries = {
pe1 = new PltEntry (

16,
[0xff, 0x35, 0x00, 0x00, 0x00, 0x00, 0xff, 0x25, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
) {
fills = {

< <16, 47>, ri386.plt_fill0(void) >;
< <64, 95>, ri386.plt_fill1(void) >;
}

}

pe2 = new PltEntry (
16,
[0xff, 0x25, 0x00, 0x00, 0x00, 0x00, 0x68, 0x00,

0x00, 0x00, 0x00, 0xe9, 0x00, 0x00, 0x00, 0x00]
) {
fills = {

< <16, 47>, ri386.plt_fill2(void) >;
< <56, 87>, ri386.jsrelEntryOffsetExpr(void) >;
< <96, 127>, ri386.plt_fill3(void) >;
}

}

pe3 = new PltEntry (
16,
[0xff, 0xb3, 0x04, 0x00, 0x00, 0x00, 0xff, 0xa3,

0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
);

pe4 = new PltEntry (
16,
[0xff, 0xa3, 0x00, 0x00, 0x00, 0x00, 0x68, 0x00,

APPENDIX A. SAMPLE BABEL PROCESSOR DESCRIPTION 156

0x00, 0x00, 0x00, 0xe9, 0x00, 0x00, 0x00, 0x00]
) {
fills = {

< <16, 47>, ri386.pltgotEntryOffsetExpr(void) >;
< <56, 87>, ri386.jsrelEntryOffsetExpr(void) >;
< <96, 127>, ri386.plt_fill3(void) >;
}

}
}

pltLayouts = {
pl1 = new PltLayout(pe2) {

startEntry = pe1;
}

pl2 = new PltLayout(pe4) {
startEntry = pe3;
}

}

plt = new Plt(true) {
offInGot = 6;

layouts = [pl1, pl2];
}

}

