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Abstract— Synchronous pipelines usually have a fixed clock
frequency determined by the worst-case process-voltage-
temperature (PVT) analysis of the most critical path. Higher op-
erating frequencies are possible under typical PVT conditions,
especially when the most critical path is not triggered. This
paper introduces a design methodology that uses asynchronous
design to generate the clock of a synchronous pipeline. The
result is a variable clock period that changes cycle-by-cycle
according to the current operations in the pipeline and the
current PVT conditions. The paper also presents a simple design
flow to implement variable-clock systems with standard cells
using conventional synchronous design tools. The variable-clock
pipeline technique has been tested on a 32-bit microprocessor
in 90nm technology. Post-layout simulations with three sets
of benchmarks demonstrate that the variable-clock processor
has a two-fold performance advantage over its fixed-clock
counterpart. The overhead of the added clock generation
circuit is merely 2.6% in area and 3% in energy consumption,
compared to an earlier proposal that costs 100% overhead.

I. INTRODUCTION

The time required to complete an operation in any given

stage of a pipelined system depends on the operation being

performed. In a conventional synchronous system, the delay

of the longest path of the pipeline under the worst process-

voltage-temperature (PVT) corner is used to determine the

clock frequency. However, the longest path of the system

is not necessarily triggered in every cycle. Also, the system

is normally operating under typical PVT conditions. Hence,

there are many times when a frequency much higher than

that derived under worst conditions is possible.

This paper introduces a variable-clock synchronous

pipeline design (VariPipe), in which the clock period is

adjusted in each clock cycle based on the operations taking

place in the pipeline stages. An on-chip clock generation cir-

cuit dynamically matches the delay of the current operations

of the pipeline in every cycle. At the same time, the clock

period automatically adjusts to the current PVT conditions.

The proposed approach achieves better performance than

isochronous clocking, while retaining the simplicity of syn-

chronous system design. Other advantages of variable-clock

synchronous pipelines include a reduction in electromagnetic

noise and suitability for voltage scaling techniques. These

features make variable clocking appealing for many applica-

tions including embedded systems and portable devices.

Several studies have been published that address variable-

speed pipelines, including Telescopic units [1] and a variable-

clock pipeline processor introduced by Dean [2]. Asyn-

chronous design methodologies such as desynchroniza-

tion [3] and Mousetrap [4] have also been proposed to

achieve average-case performance. The main advantage of

VariPipe over previous work is its lower clock generation

overhead. In the case study presented in this paper, the

overhead of the added clock generation circuit is only 2.6%

in area and 3% in energy consumption for a VariPipe DLX

processor. By comparison, Dean’s variable clocking approach

uses duplicates of functional units, which double the area

and energy consumption of the functional units. Both the

VariPipe processor and Dean’s achieve the same performance

improvement of 2X over conventional isochronous design.

The desynchronization method introduces a 13.5% area

overhead in a DLX processor [3]; the processor does not

adjust its speed based on the operations in the pipeline and

therefore its performance gain is limited.

The VariPipe approach is based on a synchronous circuit

implementation, and thus, many challenges in the design of

asynchronous circuits are avoided. Also, it employs a simple

design methodology using standard cells and conventional

synchronous design tools, which allows designers to use the

proposed approach in many applications. A comprehensive

comparison to related work is presented in Section VIII.

Section II describes the basic idea of the VariPipe approach

and Section III explains the methodology in more detail.

Timing constraints are given in Section IV. A design flow to

implement VariPipe application specific integrated circuits

(ASICs) is presented in Section V, which is demonstrated

and evaluated through a microprocessor case study in Sec-

tions VI and VII.

II. VARIPIPE: THE IDEA

Consider a pipelined system consisting of several pipeline

stages of combinational logic, separated by pipeline registers.

Each pipeline stage may have different modes of operation

that are exercised by different instructions as they flow

through the pipeline stage. For example, the execution stage

of a RISC processor may execute different operations such as

addition, bitwise logical operations, etc. The key observation

is that these operations activate different paths and thus, they

have different delays. In the isochronous clocking scheme,

employed in today’s dominant EDA methodology, the clock

period is constant, which means it must be longer than the

delay of all possible operations in the pipeline at all times.

VariPipe employs a clocking scheme in which the clock

period continuously tracks the maximum delay under current

PVT conditions for all operations currently being performed.

As Fig. 1 shows, a variable delay is associated with each

pipeline stage, and its delay is adjusted to match the delay of

the current operation in the stage, as determined by the data

in that stage’s input registers. When the delays of all pipeline
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Fig. 1. VariPipe technique

stages have elapsed, the clock pulse generator creates a new

clock pulse. As a result, some clock cycles are shortened

and the overall speed is increased. The variable delay unit is

placed close to the corresponding datapath to be subject to

the same PVT conditions.

Note that although the proposed architecture benefits from

its asynchronous nature, the use of asynchronous design is

limited to the clock generation circuit, leaving the rest of

the system still a synchronous circuit that can be designed,

synthesized, and laid out using a traditional design flow.

III. DESIGN METHODOLOGY

In this section, the methodology for the design and im-

plementation of VariPipe systems is described in detail. The

design process starts with a high-level hardware description

of the system and its implementation in the target technology.

Adding the VariPipe facilities involves three steps: creating

delay profiles, simplifying the delay profiles and implement-

ing the clock generation circuit.

A. Creating Delay Profiles

Different operations in any stage of the pipeline can be

identified from the high-level hardware description of the

system. Each operation takes the values in the input registers

and saves its result in the output registers. The result of an

operation may not be needed in every cycle, as determined

by the selection signals for that operation. The different

operations that can be performed in any pipeline stage and

the conditions under which the results of those operations

are selected are recorded in an operation selection table.

The case study below shows that operation selection tables

are simply constructed using a high-level description of the

system without reference to the low-level implementation

details.

The maximum delay of any operation of the pipeline

stage is determined based on its implementation in the target

technology. There are two methods to find the delays: I)

Dynamic timing analysis (DTA), which finds the delays using

test vectors. II) Static timing analysis (STA), which is used

in this paper. For each pipeline stage, the delays of all

the operations are found, and a delay profile is created by

grouping the operations of the pipeline stage according to

their delay values. The case study below presents a simple

and automated approach to construct delay profiles.

B. Simplifying Delay Profiles

Each pipeline stage has a minimum delay that can be

identified from the delay profile of that stage. The path

having the largest minimum delay of all pipeline stages is the

shortest inevitable path of the pipeline. To reduce the number

CPW
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Fig. 2. Clock generation circuit

of delay values needed, delay values less than the delay

of the shortest inevitable path in each profile are grouped

and rounded up to the maximum value of the group. This

simplifies the delay profile and the implementation of the

clock generation circuit.

C. Implementing the Clock Generation Circuit

Fig. 2 shows the clock generation circuit, which is

composed of two parts: the completion detection circuits

and the clock pulse generator. The design of the clock

generation circuit is based on the two-phase asynchronous

design style [5] and thus inherits many properties from

asynchronous systems. The completion detection circuit for

each stage is composed of a variable delay, a toggle, an

operation selection table and a delay selector. The delay

selector reads appropriate signals from the inputs to the

pipeline stage. It uses the operation selection table, which

is ordered according to the delay values, to generate a one-

hot delay selection signal (S) to select the appropriate delay

value. If the inputs to the pipeline stage activate more than

one operation (e.g., in a complex multi-task stage), the delay

corresponding to the operation with the longest delay is

selected. When the clock pulse emerges from the variable

delay element, it is converted to a level by the toggle before

being sent to the C-element. Initially, all toggle elements are

reset and so is the output of the C-element. After the reset

is removed, all toggle elements change state causing the C-

element to toggle its output, thus creating a clock pulse of

width CPW at the output of the XOR. The clock pulse loads

new values into the input registers of each pipeline stage.

Note that the delay through the delay elements must be

at least long enough for the corresponding delay-selection

signals to become valid. After a delay matching the operation

with the longest delay currently in the stage, the toggle

changes state. When all stages have switched to the new

state, the C-element toggles creating a new clock pulse.

D. Variable Delay Implementation

Consider a pipeline stage whose delay profile has three

values, d1, d2, and d3 (d3 > d2 > d1), to be selected by

signals S1 and S2. The design of the variable delay and the

output toggle for that stage are illustrated in Fig. 3. The

values of the three delay elements k1, k2 and k3 are selected

such that the total delay around the clock loop in Fig. 2

matches the stage’s delay profile d1, d2 and d3.

Delay k1 in Fig. 3 consists of a long chain of gates

which change state twice with every input pulse. To reduce

power consumption, the delay architecture shown in Fig. 4
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is proposed. The input pulse to the delay chain is converted

to a level, then at the end of the chain, converted back to

a pulse. As a result, the gates composing delay L1 switch

only once with each input pulse. Delay L1 should be tuned

such that the minimum delay of the path between the input

and the output matches the desired delay and delay element

PW should be adjusted to generate a suitable pulse width.

Simulations showed that the power saving achieved by this

technique is close to 50% for long delay chains.

IV. TIMING CONSTRAINTS

Fig. 5 shows a simplified model of the clock generation

circuit with three completion detection circuits. The timing

constraints on the design of the clock generation circuit may

be summarized as follows:

• The reset signal to the system must be long enough to

ensure that the delay elements get successfully reset and

all the gates and flip-flops become stable.

• Each loop in Fig. 5 has different rise and fall times and

thus, the minimum delay of the loop should be used for

delay tuning.

• Each completion detection circuit must be placed within

the corresponding stage to ensure that it matches the data-

paths’ delays under the prevailing PVT conditions in that

stage. When adjusting the delay elements, appropriate

margins should be used because factors such as crosstalk,

IR drops, noise, inductance, etc. may affect the datapath

and the completion detection circuit differently.

• Part of the delay of the loops in Fig 5 is the clock

pulse generator and the clock tree delay. The clock

pulse generator and the root cells of the clock tree are

not necessarily close to the pipeline stage and their

PVT conditions may be different. Therefore, the clock

pulse generator and clock tree delays must be used with

appropriate margins when tuning delays. In the case study

presented below, only 90% of the clock tree and the

clock generation circuit delay is taken into account, thus

ensuring that the total delay around each of the clock

loops is slightly larger than the required delay.

• The delays of the clock generation loops should be tested

under all PVT corners to ensure that the delay elements

inside the loops are sufficiently large.

Fig. 5. A simplified model of the clock generation circuit

• Delay selection signals Si in Fig. 2 and Fig. 3 must

become valid before the input clock pulse emerges from

the first delay element (k1) and thus, delay k1 must be

sufficiently long.

• The clock pulse width determined by CPW in Fig. 2 and

the pulse width determined by PW in Fig. 4 are tested

under all PVT conditions to ensure that the pulse width

requirements of sequential elements are not violated.

• Communication of a variable-clock system with its en-

vironment needs special attention to ensure correct data

transfers. The problem of transferring data between un-

synchronized clock domains already exists in many high-

speed systems. As such, many approaches are in use to

minimize metastability and data loss when different clock

domains are connected. They include multi-flop synchro-

nizers, multiplexer recirculation techniques, use of first-

in-first-out buffers between different clock domains and

handshake techniques [6], [7]. Similar synchronization

techniques may be applied for inter-chip and intra-chip

data transfers between a VariPipe system and its environ-

ment.

V. DESIGN FLOW

Fig 6 shows the proposed design flow to implement

VariPipe systems using standard cells. The design flow is

explained in detail in the following case study.

VI. CASE STUDY: VARIPIPE DLX MICROPROCESSOR

To test the performance of a variable-clock synchronous

pipeline, a VariPipe version of Hennessey and Patterson’s

32-bit DLX pipeline microprocessor [8] was implemented in

90nm technology. The Verilog code of the processor was

downloaded from opencores.org [9]. The DLX core is a

RISC microprocessor with five pipeline stages: instruction

fetch, instruction decoder, instruction execution, memory

access and write back. To implement the processor, the

design flow of Fig. 6 was realized using the toolset shown

in Table I.

The main synchronous core was constrained to a clock

period of 8.73 ns to accommodate the worst PVT corner.

Then, two versions of the processor were generated: one

version equipped with the VariPipe technique and the other a

conventional synchronous circuit (fixed-clock). Both designs

were optimized for minimum power and area.

TABLE I

TOOLSET

Objective Tool Version

Synthesis Design Compiler Y-2006.06-SP5

Timing and power analysis PrimeTime-PX Y-2006.06-SP3-1

Physical design SoC Encounter 5.2

Simulation ModelSim 6.3c
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Fig. 6. Proposed VariPipe design flow, HDL ≡ Hardware Description Language, DRC ≡ Design Rule Check, STA ≡ Static Timing Analysis, ECO ≡

Engineering Change Order, SDF ≡ Standard Delay Format, SPEF ≡ Standard Parasitic Exchange Format, CTS ≡ Clock Tree Synthesis

A. Implementing the VariPipe DLX processor

According to the design flow of Fig. 6, the first step

after obtaining the behavioral HDL of the DLX processor

is to analyze the design to identify the operations of each

pipeline stage and the conditions under which each operation

is selected. The execution unit and the decoder are given here

as examples.

Execution unit: Part of the behavioral Verilog code of

the execution unit is shown in Fig. 7. The execution unit

performs a range of tasks including logical and arithmetic

operations on input registers A and B and places the result

into the ALU result register. The results of these opera-

tions are available on the intermediate signals ADD_result,

AND_result and SUB_result. One of these signals is selected

as the output on ALU_result based on the instruction opcode

field and instruction function field, which are available in

the input registers of the execution unit. Thus, the operation

selection table of the execution unit can be derived as in

Table II.

Decoder: The decoder is responsible for generating the

branch signal, which declares that a branch has to be taken in

the next cycle. The decoder also computes the branch address

and sends it to the fetch unit. The result of this computation

is needed only if the branch is to be taken. Therefore, when

the branch signal becomes valid and if it is equal to zero,

‘ d e f i n e ADD 6b‘100000

‘ d e f i n e SUB 6b‘100010

‘ d e f i n e AND 6b‘100100

. . .

a s s i gn ADD resu l t = reg A + reg B ;

a s s i gn SUB re su l t = reg A − reg B ;

a s s i gn AND resu l t = reg A & reg B ;

. . .

i f ( I R o p c o d e f i e l d == 0) / / R−t y p e f o rma t i n s t . or NOP

case ( I R f u n c t i o n f i e l d )

‘ADD: ALU resu l t <= ADD resu l t ;

‘SUB : ALU resu l t <= SUB re su l t ;

‘AND: ALU resu l t <= AND resu l t ;

. . .

Fig. 7. Verilog code of the Execution unit

TABLE II

OPERATION SELECTION TABLE OF EXECUTION UNIT

Operation
Selection signals (Si)

IR_opcode_field IR_function_field

ADD 0 6’b100000
SUB 0 6’b100010
AND 0 6’b100100

... ... ...

there is no need to wait for the computation of the branch

address to be completed. The operation selection table of the

decoder is shown in Table III. After synthesizing the main

core with the design constraints, pre-layout delay profiles

of the pipeline stages are extracted using the STA tool

and operation selection tables. This and simplifying delay
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TABLE III

OPERATION SELECTION TABLE OF DECODER

Operation Selection signals (Si)

Branch_signal 1 (always computed)
Branch_address Branch_signal

... ...

profiles are explained later for post-layout delay profiles as

the process is the same.
To implement the clock generation of Fig. 2, the operation

selection table of each pipeline stage is used to create the

delay selection logic. Delay elements are not fine-tuned at

this stage as the delays will change during layout. Initially,

delay elements are selected to be around 30% larger than

needed.
To simplify the implementation of the clock generation

circuit, a library of delay elements in the target technology

is created. A delay element is implemented as a chain of

2n inverters, where n = 1,2, ...,N. Then, the delay of each

delay element is estimated using the STA tool. The result

is a table of several delay elements and their corresponding

delay values. The clock generation circuit is completed using

these delay elements.
The clock generation circuit is then connected to the

main synchronous core in the top-level HDL used for the

layout flow. Most layout steps are similar to the conventional

synchronous design flow [10]. The main difference is that the

completion detection circuit of each stage is constrained to

be placed inside that stage.
After the place and route steps are completed, post-

layout delay profiles are created. The list of operations for

which delay values are needed is readily available from

the operation selection tables. The delays of various op-

erations are found using static timing analysis (STA). The

compiler’s STA facility enables the designer to obtain the

longest delay in any pipeline stage. However, constructing

the delay profiles requires information about the longest path

for each of the operations in the operation selection table.

The required information can be obtained using the STA

facility as follows. To find the delay of a given operation

of a pipeline stage, the corresponding selection fields in the

input registers of the stage are set to the values that select

that operation, using assign statements in the HDL netlist.

These values will in turn, set the corresponding selection

signals for that operation and the delay reported by the STA

tool will be the delay of the desired operation. This process

can be automated using an appropriate script.
As an example, operations ADD, SUB and AND of the

execution stage save their results in the ALU_result register.

To find the delay of the ADD operation, selection signals

IR_opcode_field and IR_function_field are set to 0 and

6’b100000 in the post-layout netlist, as per the information

in Table II. As a result, the delay from the input registers

to the ALU_result register reported by the STA tool is the

desired delay.
The delay profiles of the execution unit and the decoder

under the worst PVT corner are given in Table IV, with a

10% margin. These are the values to be matched by the delay

elements. The critical path delay is augmented from 8.73 ns

TABLE IV

POST-LAYOUT DELAY PROFILES OF DECODER AND EXECUTION UNIT

Decoder

Operation Delay + 10% margin (ns)

Branch_address 9.06
Slot_number 6.35

Branch_signal 6.07
... ...

WriteBack_index 0.59

Execution Unit

Operation Delay + 10% margin (ns)

SUBI 9.60
... ...

SLT 7.60
SRLI 6.91

... ...
NOP 2.27

TABLE V

SIMPLIFIED DELAY PROFILES

Decoder unit

Operation Delay (ns)

Branch_address 9.06
All others 7.18

Execution unit

Operation Delay (ns)

SUBI 9.60
... ...

SLT 7.60
SRLI, and all 6.91

others

to 9.6 ns, using the 10% margin.

The next step is to simplify the delay profiles. The longest

delay of the decoder is the branch address calculation.

The branch signal determines if this calculation is needed.

Therefore, the branch signal computation is an unavoidable

operation and its corresponding path is the shortest inevitable

path of the decoder, which is 6.07 ns (with the 10% margin).

The simplified view of the clock generation circuit previously

given in Fig. 5 may be used for the clock period calculation.

To calculate the clock period corresponding to the shortest

inevitable path of the decoder, the delay of the path is

augmented by the delay of the toggle (0.35 ns), the clock

pulse generator (0.45 ns) and the clock tree (0.31 ns). As a

result, the shortest possible clock period is 7.18 ns. Since this

is more than the delay of the other operations of the decoder

(except Branch_address computation), the decoder’s delay

profile can be simplified to two delays, as shown in Table V.

The minimum delay of the decoder in Table V is larger

than the minimum delay of all other stages, making it the

shortest inevitable path of the pipeline. Hence, delays less

than 7.18 ns in the delay profile of each other unit were

grouped and rounded up to the maximum of the group. In

the case of the execution unit, all delays equal to or less

than 6.91 ns were grouped together, as shown in Table V.

The clock generation circuit is modified according to the

new delay profiles, followed by an engineering change order

(ECO) pass to update the layout.

The next step is to fine-tune the delay elements. The

physical design tool is used to write the post-layout HDL

netlist along with the standard delay format (SDF) file and

the standard parasitic exchange format (SPEF) file for post-

layout STA. The long delay chains used during synthesis are

adjusted by replacing them with other delay elements from

the delay library, then tested by the STA tool to check if

they are of appropriate length. This process is repeated until
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appropriate delay values are achieved. An ECO pass is done

to update the layout with the modified delays.
The longest delay for the Si signals of each pipeline stage

was compared against the k1 delay (see Fig. 3) to ensure that

the delay selection signals are settled before the input pulse

emerges out of the k1 delay element. In our experiments,

delay k1 was sufficiently larger than the delay of Si signals.
The PVT corners for the 90nm technology used in the

experiments are shown in Table VI. Delays were tuned under

the worst PVT corner with the 10% margin. They were also

examined under the typical and best PVT corners to ensure

they are sufficiently large. As explained in the next section,

the VariPipe processor was simulated under all PVT corners

to verify correct functionality.

TABLE VI

PVT CORNERS

PVT corner Process Voltage Temperature

Best Fast 1.1 -40◦C
Typical Typical 1.0 25◦C
Worst Slow 0.9 125◦C

VII. EVALUATION

In this section, different characteristics of VariPipe and

fixed-clock processors are compared. Also, the area and

energy overhead of the clock generation circuit are quanti-

fied. Functionality, performance and energy consumption of

the VariPipe DLX processor and its fixed-clock counterpart

were analyzed using the three benchmark suites shown

in Table VII, which were compiled by DLX GCC [11].

Post-layout simulations of the circuits were performed for

each benchmark and switching activities were recorded in

the switching activity interchange format (SAIF). These,

together with parasitic data (SPEF files), were used by

PrimeTime-PX for simulation-based power analysis.

TABLE VII

BENCHMARKS

Source Benchmark

MiBench [12]

adpcm_coder
adpcm_decoder
crc32
dijkstra
qsort

PowerStone [13]

bcnt
blit
compress
ucbqsort

Applications from [14], [15]

Bubble Sort
JPEG-DCT
MP3-DCT32
MPEG2-Bdist

A. Performance analysis

Fig. 8 shows execution times under best, typical and worst

PVT conditions. The same 10% margin was used for the

fixed-clock processor. The performance of the fixed-clock

system is the same under all conditions, but the performance

of the VariPipe system varies with PVT conditions as shown.
Table VIII shows the execution time reduction percentage

obtained using VariPipe. Under the worst-case conditions,

the execution times of benchmarks are 13% shorter, on

average, for the VariPipe design, because the VariPipe system

adjusts the clock period in each cycle to match the current
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TABLE VIII

EXECUTION TIME REDUCTION PERCENTAGE USING VARIPIPE

Program
Reduction % Reduction %

under worst under typ

adpcm_coder 14.0 51.3
adpcm_decoder 13.4 51.0
crc32 14.5 51.7
dijkstra 12.8 50.6
qsort 10.6 49.4
bcnt 12.4 50.4
blit 11.4 50.0
compress 14.1 51.4
ucbqsort 9.4 48.7
Bubble Sort 11.0 49.6
JPEG-DCT 15.9 52.4
MP3-DCT32 15.0 51.9
MPEG2-Bdist 15.4 52.1

Average 12.7 50.6

operations. The reduction in execution time varies with

the frequency of occurrence of the instructions and their

sequence in the program. The VariPipe system is twice as fast

as the fixed-clock counterpart under typical conditions. The

average percentages in the table are calculated by summing

the execution times of all programs.

B. Energy consumption analysis

Energy consumption of the two processors under typical

PVT conditions is compared in Table IX. Energy values in

the table do not include memory and IO. The core energy is

the energy consumption of the processor excluding the clock

tree. The VariPipe system consumes only 3% more energy

than the fixed-clock period system.

C. Area and energy overhead

The clock generation circuit takes up only 2.6% of the

total area of the VariPipe processor. The area of the clock

generation circuit is mainly taken by the delay elements.

As previously mentioned, the energy overhead of using

VariPipe is merely 3%. The clock generation circuit is a

very small portion of the total area and is implemented using

low-leakage cells and thus, its leakage power is negligible

compared to that of the processor.

D. Resilience to PVT variations

The VariPipe system automatically adjusts to inter-chip

and intra-chip PVT variations to deliver the best-possible

performance. Fig. 8 represents the inter-chip PVT variation

analysis of the VariPipe DLX processor. It works correctly
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TABLE IX

ENERGY CONSUMPTION UNDER THE TYPICAL PVT CORNER

Fixed-clock processor VariPipe processor
Program Energy (µJ) Execution time Energy (µJ) Execution time

Core Clock tree Total (µs) Core Clock tree Total (µs)

adpcm_coder 2.464 4.741 7.205 1871.141 2.663 4.782 7.445 910.327
adpcm_decoder 12.309 21.151 33.460 8333.573 13.012 21.323 34.335 4084.067
crc32 2.450 4.748 7.198 1875.825 2.697 4.789 7.486 906.696
dijkstra 1.255 2.380 3.635 940.382 1.324 2.401 3.725 464.146
qsort 7.829 12.091 19.920 4767.912 8.075 12.195 20.270 2412.549
bcnt 0.419 0.732 1.151 289.032 0.441 0.738 1.179 143.215
blit 0.948 1.722 2.670 679.742 1.008 1.737 2.745 340.645
compress 12.340 25.006 37.346 9864.485 13.596 25.218 38.814 4792.448
ucbqsort 14.427 22.934 37.361 9039.672 15.224 23.404 38.628 4634.456
Bubble Sort 0.165 0.215 0.380 84.734 0.168 0.217 0.385 42.661
JPEG-DCT 5.830 9.769 15.599 3850.478 6.203 9.852 16.055 1831.509
MP3-DCT32 0.721 1.223 1.944 479.457 0.773 1.232 2.005 230.382
MPEG2-Bdist 0.461 0.844 1.305 330.715 0.505 0.846 1.351 158.338

Total energy,
61.618 107.556 169.174 42407.148 65.689 108.734 174.423 20951.439

Total time
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Fig. 9. Comparison of the clock power spectra

under all PVT conditions. The execution times drop by as

much as 62% from the worst to the best PVT conditions. The

VariPipe system is also resilient to intra-chip PVT variations.

To test this, starting from the typical-case SDF file, the

delays of the execution unit and its completion detection

circuit were augmented by 10% using the Design Compiler’s

derating commands. A new SDF file was generated to be

used in simulations, which verified that the system executed

all the benchmarks correctly.

E. Reduction in electromagnetic noise

The clock is often the main source of electromagnetic

noise in a digital system, because it has a fixed frequency

which is also the highest in the system [16]. Many circuits

employ spread-spectrum oscillators to overcome this prob-

lem [17]. In VariPipe systems, the clock frequency varies

within a range around an average value and thus, the clock

power is spread over that range. The clock power spectrum

of the VariPipe DLX processor under the worst PVT corner

for one of the benchmarks is compared against its fixed-

clock counterpart in Fig. 9. The maximum clock power of

VariPipe is about 28 dB less than that of the fixed-clock

design. With no central peak in the frequency spectrum,

the VariPipe processor should generate less electromagnetic

noise compared to its fixed-clock counterpart.

F. Suitability for voltage scaling

The 90nm technology used in this paper is characterized

for two supply voltage levels: 1.0 V and 1.2 V. These

characterizations were used to apply voltage scaling to

the VariPipe processor. It was ensured that the pads were

compatible with 1.2 V and no hold violation occurred. The

system was simulated under typical PVT conditions for both

supply voltages. The system automatically adjusts its speed

to changes in supply voltage. The system was 1.2 times faster

using the 1.2 V supply, compared to the 1.0 V supply. This

shows that the VariPipe design is amenable to voltage scaling

techniques.

VIII. RELATED WORK

Other studies have been published to design variable-speed

pipelines and use typical PVT conditions. Variable clocking

was addressed in Dean’s PhD thesis [2]. Dean uses transistor-

level duplicates of the functional units in each of pipeline

stages to indicate the completion of an instruction. Dupli-

cates introduce a substantial overhead because they double

the required area for each functional unit, which in turn,

increases the power consumption considerably. VariPipe uses

variable delays, which have a significantly smaller overhead

compared to the duplicates in Dean’s method. The case study

showed that the overhead of the added clock generation
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circuit for a VariPipe DLX processor is 2.6% in area and

3% in energy consumption. The VariPipe DLX processor

and Dean’s both achieve 2X performance improvement over

isochronous design. The design of duplicates in Dean’s work

is complicated as they are implemented at the transistor

level. Loads on the transistors of the functional units are

imitated using passive transistors. VariPipe employs static

timing analysis in the design of matched delay elements

for completion detection circuits. As such, the design of the

completion detection circuit is independent of the function

being matched. This allows the introduction of a simple

design methodology that uses conventional design tools to

implement variable-clock systems with standard cells. As a

result, the proposed approach can be readily used in many

applications.

Telescopic units are introduced in [1] to design variable-

speed pipelines. A fixed clock period shorter than the delay

of the critical path is applied to the pipeline. When the critical

path is triggered, a hold signal is raised to show that another

clock cycle is required for the instruction to complete. Since

the critical path of each pipeline stage is not triggered in

every cycle, an overall throughput improvement of 27% has

been achieved. In comparison, VariPipe adjusts to the current

instructions in the pipeline as well as present PVT conditions,

and hence, achieves a better performance improvement.

TEAtime [18] uses a replica of the critical path to track

PVT variations in a DLX-style processor on FPGA and

achieves a 34% speed improvement. The processor does not

change its speed with instructions and it is not resilient to

intra-chip PVT variations. In [19], the latencies of instruc-

tions in all pipeline stages are saved in memory to adjust the

clock period at run time using a PLL and a clock synthesizer.

A 17% speedup for one of the test programs has been

achieved. This approach is limited by the number of phases

a PLL can produce. Also, the clock does not adjust to PVT

variations automatically.

The Razor project [20] shows the possibility of reducing

the voltage margins used in worst-case analysis of syn-

chronous circuits. This work reduces dynamic power by

reducing the input voltage, but keeps the clock frequency

intact. An error recovery circuit is added to cope with any

timing errors due to the reduced voltage.

Asynchronous circuits can also be designed to achieve

average-case performance and adjustability to PVT varia-

tions. Several asynchronous design styles exist, including

desynchronization [3], by which a synchronous design is

converted into an asynchronous one, and Mousetrap [4],

which is a methodology to design high-speed pipelines

taking advantage of PVT variability. In a design approach by

Nowick, variable delays are used in the implementation of a

speculative completion detection circuit for an asynchronous

adder [21]. VariPipe is simpler than asynchronous design.

It uses standard-cell design implementation and also does

not require customized transistor-level circuits. It uses con-

ventional synchronous design tools and thus, neither asyn-

chronous design methods nor asynchronous design tools are

required. Desynchronization introduces an area overhead of

13.9% in a DLX microprocessor [3]; the processor does not

adjust its speed according to the operations in the pipeline.

IX. CONCLUSION

This paper proposes a new clocking scheme that can allow

the clock period to track the delay of a pipeline on a cycle-

by-cycle basis. A low-overhead clock generation circuit and

a standard-cell design flow compatible with today’s dominant

EDA design methodology is demonstrated. This allows de-

signers to use the proposed approach in many applications.

A case study has been presented, which demonstrates that

the VariPipe DLX processor has a two-fold performance

advantage over its fixed-clock counterpart. The overhead of

the added clock generation circuit is only 2.6% in area and

3% in energy consumption. Resilience to PVT variations,

reduction in electromagnetic noise, and suitability for voltage

scaling are among other advantages of VariPipe systems.
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