
Color Permutation: an Iterative Algorithm for Memory Packing

Jianwen Zhu�

Abstract

It is predicted that 70% of the silicon real-estate will be occu-
pied by memories in future system-on-chips. The minimiza-
tion of on-chip memory hence becomes increasingly impor-
tant for cost, performance and energy consumption. In this
paper, we present a reasonably fast algorithm based on iter-
ative improvement, which packs a large number of memory
blocks into a minimum-size address space. The efficiency of
the algorithm is achieved by two new techniques. First, in
order to evaluate each solution in linear time, we propose a
new algorithm based on the acyclic orientation of the mem-
ory conflict graph. Second, we propose a novel representa-
tion of the solution which effectively compresses the poten-
tially infinite solution space to a finite value ofn!, wheren
is the number of vertices in th memory conflict graph. Fur-
thermore, if a near-optimal solution is satisfactory, this value
can be dramatically reduced to�!, where�! is the chromatic
number of the memory conflict graph. Experiments show
that consistent improvement over scalar method by 30% can
be achieved.

1 Introduction

Today’s telecommunication and consumer electronics appli-
cations demand computational power that can be met only
by integrating more and more hardware components. Given
that such applications typically buffer and process a large
amount of data, the interface between logic and memory
tends to become the performance bottleneck. While memo-
ries employing advanced signaling techniques such as Ram-
bus memories are emerging to alleviate the problem, it is
often simpler and faster to integrate memory and logic on a

�Jianwen Zhu is with Electrical and Computer Engineering, University of Toronto,
10 King’s College Road, Toronto, Ontaria M5S 3G4, Canada.

single chip. It is hence not surprising to find on-chip memo-
ries to occupy a larger portion of silicon area than logic does
in the future systems-on-chips. While traditional CAD has
devoted to the minimization of logic area in order to reduce
manufacturing cost, which exponentially depends on the die
size, the interest in the minimization of memory size, has
emerged only recently.

(a) (b)

(d)

block a, b, c;

p = &b;
for(i = 0; i < 100; i ++)
 *p ++ = rom[i] * a[i];
p = &b; q = &c;
for(i = 0; i < 100; i ++)
 *q ++ = *p > 255 ? 255 : *p ++;

union {
 block a, c;
 } cluster1;
union { block b; } cluster2;

for(i = 0; i < 100; i ++)
 cluster2.b[i] = rom[i] * cluster1.a[i];
for(i = 0; i < 100; i ++)
 cluster1.c[i] = cluster2.b[i] > 255 ? 255 : cluster2.b[i];

block a, b, c;

for(i = 0; i < 100; i ++)
 b[i] = rom[i] * a[i];
for(i = 0; i < 100; i ++)
 c[i] = b[i] > 255 ? 255 : b[i];

a

b

c

(c) block

address
space

a

b

c

(e) block

address
space

Figure 1: A motivational example.

Consider a motivational example in Figure 1 (a), where
memory blocka, b andc needs to be allocated to certain
memory space. A naive allocation, as performed by almost
all software compilers, is to map each of the block to a dis-
tinct memory location, as shown in Figure 1 (c). A careful
inspection of the program reveals that blocka and blockb
can in fact be shared, leading to the allocation in Figure 1 (d),
which can be obtained by the modified program in Figure 1
(c).

One might argue that it is the responsibility of the pro-
grammer who should identify such opportunities of memory
sharing and enforce them the same way as Figure 1 (c) does.
We believe that this extra duty is unrealistic for the follow-
ing reasons. First, the primary goal of a programmer, or a
behavior modeler (for the case of hardware synthesis), is to
specify functionality, where readability and maintainability

have higher priority than implementation details. Second, as
the application complexity increases, the discovery of mem-
ory sharing opportunity becomes intractable to human and
automated optimization tools have a better chance to find
optimal solution than the programmers.

Simple as it may seem, the memory optimization in Fig-
ure 1 is rarely performed in traditional software compilers
and behavioral synthesis tools [?, ?]. There are a number
of reasons which prevent such optimizations from being in-
corporated. Among the most fundamental ones is the dif-
ficulty of revealing data dependency information for mem-
ory blocks under the presence of pointers. For example,
Figure 1 (b) performs the same function as Figure 1 (a),
except pointer is used to access members of the memory
block. While a powerful programming construct, pointer
introduces the so-calledmemory ambiguityto the program,
which proves to be a killer for data dependency analysis. For
example, in Figure 1 (b), it is not clear ifp is always points
to the memory blockb without sophisticated analysis, hence
one has to conservatively assume that the value ofc may de-
pend on the value ofa, under which casea andc can no
longer be shared.

While one can alleviate the problem by the use of domain-
specific languages or FORTRAN-like array-based languages,
where strong assumptions can be made on memory access,
the reality is that most system designers use C and its deriva-
tives for system modeling and validation, and they usually
exploit the power of pointer constructs for the design of com-
plex data structures and algorithms. While the trend is to di-
rectly synthesize C instead of behavioral HDLs into custom
hardware as needed [?], this paradigm shift is not as simple
as a change of synthesis frontend. Among the many chal-
lenges is the development of optimization strategies under
the presence of pointer constructs. [?] has attempted to ad-
dress this issue in order to apply static memory allocation
to general purpose C program by the use of sophisticated
pointer analysis techniques.

The data analysis techniques, be it array-based or pointer-
based, establish the conflict relationship between the life time
of program memory blocks (or even subblocks). The prob-
lem of mapping memory blocks to addresses which min-
imize the total size of the address space, while honoring
the conflict relation, remains to be solved. Previous meth-
ods either use a naive extension of the scalar register al-
location algorithms, which produce suboptimal results; or
use a heuristic algorithm of cubical complexity, yet with no
guarantee of optimality. In this paper, we develop a new al-
gorithm under the classical framework of iterative improve-
ment, where either a greedy or simulated annealing strategy
can be used. The contribution of this algorithm is three-fold:
First, we find that an acyclic orientation of the undirected
conflict graph leads to a linear algorithm for memory pack-
ing and therefore is perfect for solution evaluation. Sec-
ond, we are able to discover a finite solution space that is
P-admissiblein the sense that an optimal solution is guar-

anteed to be included. This solution space has a size ofn!,
wheren is the number of the vertices. Third, we show that
if the P-admissibility can be relaxed, we can dramatically
reduce the size of the solution space to�!, where� is the
chromatic number of the conflict graph, thereby dramatically
reduce the time of convergence. Fortunately, experiments
show that near-optimal solutions can be found within this
solution space.

The rest of the paper is organized as follows: In Sec-
tion 2, we discuss related work. In Section??, we formally
define the problem. In Section?? we present our algorithm
in detail. In Section 3, we describe the evaluation methodol-
ogy and show the experimental results.

2 Related Work

The storage minimization problem evolves from the scalar
variable minimization problem, which manifests as the reg-
ister allocation problem in the compiler community, where a
heuristic-based graph coloring algorithm is found to be the
most efficient in practice [?]. A simple-minded extension of
the graph coloring algorithm to storage minimization leads
to inferior result due to the fact that unlike registers, the sizes
of the memory blocks are different.

The storage minimization problem has been attempted
at the system level. For example, Bhattacharyya and Lee
[?] have studied buffer minimization for the so-called syn-
chronous dataflow SDF) programs. A SDF program models
the data (memory) access explicitly using arcs between the
computational actors. The buffer memory usage can be op-
timized by a careful schedule of actor execution.

In the high level synthesis community, [?] and [?] have
studied clustering array variables into different memory blocks.
[?], [?] and [?] studied the same problem with the goal of es-
timation in the context of system level exploration. Philip’s
Phideo project [?], pioneered memory architecture explo-
ration for stream-based signal processing applications. The
architecture group at UC, Irvine [?] studied the memory ar-
chitecture exploration in the context of embedded proces-
sors.

The storage minimization problem for systems-on-chip
has been systematically attacked at IMEC in the MATISSE
project [?]. In MATISSE, a 2-stage strategy was proposed
to perform the “in-place” optimization for multidimensional
arrays. During the first phase[?], “the intra-signal window-
ing” is performed to interleave elements within an array.
During the second phase, the “inter-signal placement” [?]is
performed to interleave arrays.

3 Problem Formulation

In the text that follows, we use theformal algorithm nota-
tion (FAN) to state definitions and describe algorithms. Un-
like pseudo-code based algorithm description, FAN relies on
a type system, where each type is represented by a set, to

present the algorithm in a formal, precise manner. Read-
ers are expected to find this notation very similar to any
strongly-typed programming languages and hence straight-
forward to be translated into implementation, yet abstract
enough to allow concise presentation.

The input of the memory allocation problem is a set of
memory blocks, as defined in Definition??, as well as acon-
flict relation between these blocks, which indicate whether
or not that any pair of the memory blocks can be shared, or
having an overlapping memory address space. The memory
block is characterized by its size, which can be any natural
numbers. The conflict relation is derived by discovering the
“life time” of the memory blocks using dataflow analysis,
which is not the subject of this paper.

Definition 1 A memory block v : Block is a member of

Block = tuple f 1
size : N ; 2
g 3

An allocation, as defined by Definition?? is then the as-
signment of address location, represented by an integer, to
each of the memory block, such that the conflict relation is
honored.

Definition 2 Given a set of memory blocks1 V : hiBlock , and
a conflict relationE : hiV�V between the memory blocks,
a memory allocation, or a memory packing, is a mapping
A : V 7! N , such thathu; vi 2 E ! [A(u);A(u) +
u:size] \ [A(v);A(v) + v:size] = �.

Obviously, one allocation can be better or worse than an-
other, depending on whether or not the total memory size
occupied by all memory blocks is smaller. According to
Definition ??, the allocation that results in the smallest to-
tal memory size is the optimal allocation.

Definition 3 For an allocationA : V 7! N , its memory size
kAk is defined to bemaxv2VA(v) + v:size. An allocation
A0 is said to be optimal if8A; kAk � kA0k.

4 Algorithms

In this section, we desribe our proposed allocation algorithm
in detail. To offer more insight on why we can perform bet-
ter, we start by describing the use of graph coloring for mem-
ory allocation.

4.1 Graph coloring

Given a conflict graphhV;Ei, whereV is the set of memory
blocks andE is the conflict relation, a coloring algorithm
assignscolors to each of the vertex in the graph such that

1Here we use the notationhiA to represent a power set ofA, and the notation[]A

to represent the set of all sequences over elements ofA.

a b c d e f g
size 1 2 1 1 1 1 3

(a) memory block sizes

[height=0.48]../FIGURES/subject.ps [height=0.48]../FIGURES/color.p
(b) conflict graph (c) colored graph

a b c d e f g total
addr 0 1 3 4 1 3 4 7

(d) allocation result

Figure 2: Memory packing by coloring.

no adjacent vertices have the same color. The result of col-
oring can be directly used to assign memory addresses by
making sure that vertices with the same color will share the
same memory space, while vertices with different colors will
never overlap.

Example 1 Figure ?? (a) and (b) shows a conflict graph as
well as the sizes of the blocks represented by the vertices
of the graph. Figure?? (c) shows a valid coloring of the
conflict graph and a strategy described above is applied to
obtain a memory allocation, which has a total memory size
of 7.

Algorithm 1

color = func(V : hiBlock; E : V � V) : V 7! N f 4
var � : []B ; 5
var clr : V 7! N ; 6
var V 0 : hiV ; 7
var E0 : hiE ; 8

9
V 0 = V ; 10
E0 = E; 11
while(kV 0k > 0) f 12
v = vertexElimScheme(V 0; E0); 13
V 0 = V 0 � fvg; 14
E0 = E0 � adjacency(v;E0); 15
� = � [fvg; 16
g 17

forall (v 2 reverse(�)) f 18
V 0 = V 0 [fvg; 19
E0 = E0 [fvj9u 2 V 0; hu; vi 2 Eg; 20
clr(v) = min8c2N ;8u2adj(v;E0):c6=clr(u))c; 21
g 22

return clr ; 23
g 24

25

The coloring algorithm, as shown in Algorithm??, de-
velops a so-calledvertex elimination scheme�, a sequence
of vertices inV . The reverse of� is used as the order of
assigning colors to vertices. To assign a color to a vertex,
one has to search for a color unused by its colored neighbors
(Line ??–??).

The choice of the vertex elimination scheme determines
the quality and speed of the coloring algorithm. A popular
heuristic is to eliminate the vertex with the minimum degree
in the current graph.

Algorithm ?? assigns addresses to memory blocks ac-
cording to the result of coloring. It starts by finding the space
required for each color, which should be the maximum size
of all memory blocks that are assigned with the correspond-
ing color. It then assigns addresses for each of the colors,
which now represent a grouping of memory blocks, by lin-
ing them up one by one. The memory address of each block
is then found by the address of the corresponding color. It is
trivial to show that this allocation algorithm based on color-
ing has a complexity ofO(jV j+ jEj).

It becomes immediately evident that as soon as the sizes
of the memory blocks vary, the coloring-based allocation al-
gorithm quickly degrades to suboptimal. For example, since
b has a size of two, both e and f in Figure??(c) can share the
same memory region as b, although e and f themselves shall
not overlap. For the same reason, c and d should be able to
share space with g, which has a size of three.

Exploiting the memory size variation is not trivial. In [?],
a strategy has been employed where each memory block is
attempted in a greedy fashion to be assigned an address. For
each of such attempts, conflict has to be checked against the
blocks that have been already assigned an address. In case
of failure, another block has to be attempted. This algorithm
has a cubical complexity precisely because of the amount of
comparisons one has to make for conflict detection, as well
as the amount of backtracking one has to perform in case of
failure.

Algorithm 2

allocByColor = func(V : hiBlock; E : V � V) : V 7! N f 26
var clr : V 7! N ; 27
var offset : N 7! N ; 28
var a : V 7! N ; 29
var total : N ; 30

31
clr = color(V;E); 32
total = maxv2V clr(v); 33
forall (c 2 [0::total]) 34
offset(c) = maxclr(v)=cv:size; 35

forall (c 2 [0::total� 1]) 36
offset(c+ 1) = offset(c) + offset(c+ 1); 37

forall (v 2 V) 38
a(v) = offset(clr(v)); 39

return a ; 40
g 41

42

4.2 Acyclic Orientation

One approach to dramatically reduce the complexity of the
cubical allocation algorithm is to carefully devise a proper
orderof address assignment so that:

� each vertex needs to be assigned onlyonce(no need
for backtracking);

� the conflict constraint isimplicitly satisfied (no need
for conflict checking).

We observe that such an order can be found by convert-
ing thereflectiveconflict relation into anirreflectivepartial

[height=0.48]../FIGURES/orient.ps [height=0.48]../FIGURES/sched.p
(a) an oriented graph (b) schedule of an oriented graph

a b c d e f g total
addr 0 1 3 4 1 3 4 6

(c) allocation result

Figure 3: Memory allocation by acyclic orientation.

order. In other words, converting the undirected conflict
graph into adirected acyclic graph. With such conversion,
we effectively convert the memory allocation problem into
the scheduling problem, if we equate the memory space do-
main to the time domain, and memory block size to the de-
lay. Definition??, Definition ?? and Theorem?? precisely
state that.

Definition 4 Given a conflict graphhV;Ei � Block�(Block�
Block), its acyclic orientationF is a subset ofE such that

� F [F�1 = E andF \ F�1 = �, whereF�1 =
fhu; vijhv; ui 2 Fg;

� @[v0; v1; ::::; vn] : []V , such that8i; hvi; vi+1i 2 F
andv0 = vn.

Definition 5 Given a conflict graphhV;Ei � Block�(Block�
Block), a schedule of its acyclic orientationF is a mapping
S : V 7! N such thatu � v ! S(u) + u:size � S(v).
Here� is the partial order induced byF (or its transitive
closure).

Theorem 1 Any scheduleS for an acyclic orientationF of
a conflict graphhV;Ei � Block � (Block � Block) is a
valid allocation.

Example 2 Figure ?? (a) shows an orientation of the undi-
rected conflict graph in Figure?? (b). This directed graph
can be “scheduled” as shown in Figure?? (b) to obtain the
memory allocation, which has a total size of 6. Note that this
result is better than the one obtained in Figure?? (c).

One can apply any scheduling algorithms to obtained a
valid memory allocation. Theorem?? states that the Algo-
rithm??, which employs an ASAP strategy, is in fact optimal
for a given orientation.

Algorithm 3

asapSchedule = func(V : hiBlock; F : V � V) : V 7! N f 43
var ready : hiV ; 44
var count : V 7! N ; 45
var sched : V 7! N ; 46

47
ready = fvjpred(v) = �g; 48
while(ready 6= �) f 49
v = choose(ready); 50
ready = ready � fvg; 51
forall (w 2 succ(v)) f 52
count(w) = count(w) + 1; 53
if (sched(v) + v:size > sched(w)) 54
sched(w) = sched(v) + v:size; 55

if (count(w) = jpred(w)j) 56
ready = ready [fwg; 57

g 58
g 59

return sched ; 60
g 61

62

Theorem 2 Let g = hV;Ei � Block � (Block � Block)
be a memory conflict graph. LetF be an acyclic orientation.
Then for any scheduleS ofF , jjSjj � jjasapSchedule(V; F)jj.

5 Vertex Permutation

Now the question is whether an acyclic orientation always
exists. Theorem??provides a positive, constructive answer.

Definition 6 A permutationof finite setA is a functionP :
A 7! N such that8u; v 2 A:u 6= v) P (u) 6= P (v).

Theorem 3 Let g = hV;Ei � Block � (Block � Block)
be a memory conflict graph, then for any vertex permutation
P : V 7! N , there exists an acyclic orientationF of g.

Proof: LetF = fhu; vi 2 EjP (u) < P (v)g. It follows that
F [F�1 = E ^ F \ F�1 = �, henceF is an orientation
of g. Suppose there exists a cycle[v0; v1; ::::; vk; v0] in F , it
follows thatP (v0) < P (v1) < :::: < P (v0), a contradic-
tion. HenceF is acyclic. 2

What becomes crucial is whether an orientation that can
lead to optimal memory allocation can be obtained. To see
how the conflict graph orientation strongly affects the result
of allocation, consider the example in Figure??, where two
different orientations of the same conflict graph are shown.
Assume each vertex has a size of one, then the orientation at
the left leads to an allocation of size 4, while the orientation
at the right leads to an allocation of size 2.

Since Theorem?? ensures that the set of all vertex per-
mutations form a solution space of sizen!, a heuristic search
algorithm can be used to traverse the solution space, where
the linear ASAP scheduling algorithm (Algorithm??)can
be used to evaluate the solution. Theorem?? and Corol-
lary ?? ensures that an optimal solution is included in the
solution space and it is therefore P-admissible. This result
corresponds very well to the sequence-pair algorithm used
in floorplanning [?].

[width=0.6]../FIGURES/goodbad.ps

Figure 4: Good and bad orientations.

Theorem 4 Let g = hV;Ei � Block � (Block � Block)
be a memory conflict graph, then for any memory packing
A : V 7! N , there exists a vertex permutationP : V 7! N
from whichA can be derived.

Corollary 1 Letg = hV;Ei � Block�(Block�Block) be
a memory conflict graph, then there exists a vertex permuta-
tion P : V 7! N from which an optimal memory allocation
can be derived.

6 Color Permutation

Sincen! is still a large number, the search for the optimal so-
lution can become much more efficient if the solution space
can be compressed further. Our next observation is that a
coloring of the conflict graph also defines an acyclic orien-
tation.

Theorem 5 Letg = hV;Ei � Block� (Block�Block) be
a memory conflict graph, and for any coloringC : V 7! N
of g, there exists an acyclic orientationF of g.

Proof: Let F = fhu; vi 2 EjC(u) < C(v)g. Suppose
9hu; vi 2 E; hu; vi =2 F ^ hv; ui =2 F , thenC(u) = C(v),
which implies thathu; vi =2 E, a contradiction. Therefore,F
is an orientation. It is trivial to prove thatF is also acyclic.
2

This leads to the strategy that a minimum coloring of the
conflict graph is first found, and then different permutation
of the color assignment is used to define the solution space.
If we denote the chromatic number, that is, the number of
color used in the minimum coloring, as�, then the size of
the solution space becomes�!, which is substantially smaller
thann!. Algorithm ?? shows the detail of a greedy search
algorithm.

Algorithm 4

allocByPerm = func(V : hiBlock; E : V � V) : V 7! N f 63
var clr; newClr : V 7! N ; 64
var F : V � V ; 65
var cost; newCost; count : N ; 66
var sched; newSched : V 7! N ; 67

68
cost = 1; 69
newClr = color(V;E); 70
do f 71
F = orient(V;E; newClr); 72
newSched = asapSchedule(V; F); 73
newCost = jjnewSchedjj; 74
if (newCost < cost) f 75
cost = newCost; clr = newClr; 76
sched = newSched; count = 0; 77
g 78

else 79
count = count+ 1; 80

newClr = perturb(V; clr); 81
g while(count < threshold) ; 82

return sched ; 83
g 84

85
orient = func(V : hiBlock; E : V � V; clr : V �N) : V � V f 86

var F : V � V ; 87
forall (hu; vi 2 E) f 88

if (clr(u) < clr(v)) 89
F = F [hu; vi; 90

else 91
F = F [hv; ui; 92

g 93
return F ; 94
g 95

96
perturb = func(V : hiBlock; clr : V 7! N) : V 7! N f 97

var c1; c2 : N ; 98
c1 = random(0;maxv2V clr(v)); 99
c2 = random(0;maxv2V clr(v)); 100
forall (v 2 V) f 101

if (clr(v) = c1) clr(v) = c2; 102
else if(clr(v) = c2) clr(v) = c1; 103
g 104

return clr ; 105
g 106

107

Note that while the solution space is substantially com-
pressed, it is no longer P-admissible. Fortunately, our ex-
periments, as detailed in the next section, show that a near-
optimal solution can always be found. In addition, expensive
search strategies such as simulated annealing are not neces-
sary in practice.

7 Experimental Result

7.1 Benchmark Methodology

Benchmarking the memory allocation algorithms is not a
straight-forward issue for the following reasons:

� The research in this area is still at an early age and
hence unlike well-established areas such as logic syn-
thesis, there is no standard benchmarks available.

� Previous work has assumed different computational mod-
els, not to mention the different syntax, of the input
programs to be optimized, which makes quantitative
evaluation of different approaches very hard, since the
experiments are difficult to repeat.

[height=0.48angle=270]epic.ps [height=0.48angle=270]jpeg.ps
EPIC JPEG

[height=0.48angle=270]mpegdec.ps [height=0.48angle=270]mpegenc.
MPEGDEC MPEGENC

Figure 5: Memory block size probability density function

� The memory allocation problem is best solved by break-
ing down into several smaller problems, for example,
dataflow analysis, intra-block allocation and inter-block
allocation. The quality of the algorithms for each of
the problems is not immediately evident if only the net
result is shown.

Since this work focuses on inter-block allocation algo-
rithms, it would be inappropriate to demonstrate the effec-
tiveness of this effort by simply displaying the memory allo-
cation result for an arbitrarily chosen set of C benchmarks,
since the accuracy of dataflow analysis algorithms (how to
derive the conflict graph), and effectiveness of inter-block
algorithms, also play an extremely important role in the fi-
nal result. Furthermore, these C benchmarks often cannot
“stress” the algorithm very well since the problem size that
they present is too small to demonstrate the differences be-
tween algorithms in terms of space and runtime etc.

Given these considerations, we followed a different ex-
periment methodology to evaluate our algorithm. We ob-
tain the memory conflict graphs directly from the standard
DIAMCS benchmark set [?] for evaluating coloring algo-
rithms. This solves the comparability problem since it is a
standard and available to everyone. In addition, the size of
the graph in the benchmark tends to be much larger than the
size of graphs in memory allocation problem. Our own expe-
rience also shows that the memory conflict graph obtained in
real life examples, often exhibit the same characteristics (ap-
pearance) as the coloring graph contained in the DIAMCS
benchmark.

The DIAMCS graph, on the other hand, does not con-
tain the memory block size information. We opt to gen-
erate it randomly. Generating sizes with uniform distribu-
tion would be inappropriate since it does not reflect close
enough to reality. Instead, we generate memory sizes ac-
cording to a probability density function (PDF), which is in
turn obtained by profiling the real life examples. Figure??
shows the normalized PDFs for EPIC (Efficient Pyramid Im-
age Coder), JPEG (still image codec), MPEGDEC (MPEG2
decoder) and MPEGENC (MPEG encoder), each of which
is taken from the MediaBench benchmark set [?].

7.2 Results

We implemented the discussed algorithms in the C program-
ming language and applied them on the DIAMCS bench-
marks with randomly generated memory sizes, as described
in Section 3.1. The result is summarized in Table??: For
each benchmark, we show its size in terms of the number

Benchmark # # total size runtime (ms)
nodes edges color perm color perm

myciel3 11 20 89792 74688 (16%) 0 0
myciel4 23 71 125120 83520 (33%) 0 10
myciel5 47 236 128064 92736 (27%) 0 40
myciel6 95 755 190400 124736 (34%) 10 200
myciel7 191 2360 238080 170496 (28%) 30 880

anna 138 986 297600 156544 (47%) 10 200
david 87 812 296768 201408 (32%) 0 130

le45015a 450 8168 543296 383296 (29%) 150 14550
le45015d 450 16750 792512 598528 (24%) 410 60140
le45025c 450 17343 919808 653440 (28%) 440 240940
le4505b 450 5734 352320 245440 (30%) 70 5060
le45015b 450 8169 550848 385664 (29%) 160 9820
le45025a 450 8260 756864 540224 (28%) 170 21410
le45025d 450 17425 901376 653440 (27%) 440 94770
le4505c 450 9803 391680 292672 (25%) 150 7320
le45015c 450 16680 789824 573568 (27%) 400 86800
le45025b 450 8263 767040 505152 (34%) 170 23040
le4505a 450 5714 364160 258112 (29%) 90 3990
le4505d 450 9757 422080 301568 (28%) 170 16890

queen1010 100 2940 415744 290560 (30%) 20 1130
queen1414 196 8372 635456 424640 (33%) 70 13240
queen66 36 580 242752 167104 (31%) 0 180
queen99 81 2112 403648 244032 (39%) 20 960

queen1111 121 3960 502272 343360 (31%) 30 1470
queen1515 225 10360 698624 468928 (32%) 90 8700
queen77 49 952 318976 215040 (32%) 10 380

queen1212 144 5192 517440 352000 (31%) 30 6630
queen1616 256 12640 763776 505216 (33%) 110 19330
queen812 96 2736 435840 280896 (35%) 10 1320
queen1313 169 6656 592768 385984 (34%) 50 5010
queen55 25 320 177600 135488 (23%) 10 20
queen88 64 1456 361152 236480 (34%) 10 670
miles1000 128 6432 870464 625792 (28%) 60 16500
miles250 128 774 213440 132608 (37%) 10 90
miles750 128 4226 643328 441920 (31%) 30 5200
miles1500 128 10396 1344448 1080320 (19%) 170 58790
miles500 128 2340 442240 265408 (39%) 20 2230
mulsol 197 3925 940864 686592 (27%) 100 16940
mulsol 184 3916 600384 449216 (25%) 60 5130
mulsol 186 3973 642240 453760 (29%) 70 8740
mulsol 188 3885 609920 463296 (24%) 60 6450
mulsol 185 3946 613376 451584 (26%) 50 9510
inithx 864 18707 1143552 787776 (31%) 540 268780
inithx 645 13979 761280 481728 (36%) 310 84690
inithx 621 13969 769024 471552 (38%) 290 98280

Table 1: Experimental results.

of nodes and edges in the graph. We also report the allo-
cation results for both the coloring based algorithm (color)
and our proposed algorithm (perm), as well as its percent-
age of improvement over the coloring based algorithm. The
algorithm runtime in units of milliseconds on a Ultra-5 Sun
workstation with 128M of memory is also displayed.

We found that our algorithm performs on average 30%
better than the coloring algorithm. Although not shown in
Table ??, we found that the proposed algorithm performs
significantly better, although with longer runtime, than the
algorithm we proposed in an earlier unpublished study [?],
which used heuristic acyclic orientation to obtain an allo-
cation, but without further iterative improvement. We also
found that algorithm can achieve better results with less run-
time than the cubical algorithm described in [?].

8 Conclusion

In this paper, we present the importance of memory min-
imization under the context of systems-on-chip. We then
present a new algorithm for the global minimization of mem-
ory sizes. The novelty of this technique lies in the obser-
vation that memory allocation problem can be efficiently
solved if an orientation of the conflict graph is found and
such orientation can be fully characterized by a permuta-
tion of its vertices, or a permutation of the vertex colors.
The algorithm can then be elegantly encoded in the clas-
sic iterative improvement framework with a complexity of
O(h(jV j + jEj), whereh is the number of iterations. This
algorithm can quickly converge due to the fact that the size
of the solution space is only�!, where� is the chromatic
number of the conflict graph.

In the future, we will study the interaction of this algo-
rithm with other tasks, such as aggressive inter-procedural
dataflow analysis, in the bigger context of memory optimiza-
tion for system-on-chip.

