Color Permutation: an Iterative Algorithm for Memory Packing

Jianwen Zhi

Abstract single chip. It is hence not surprising to find on-chip memo-
ries to occupy a larger portion of silicon area than logic does
Itis predicted that 70% of the silicon real-estate will be occu- in the future systems-on-chips. While traditional CAD has
pied by memories in future system-on-chips. The minimiza- devoted to the minimization of logic area in order to reduce
tion of on-chip memory hence becomes increasingly impor- manufacturing cost, which exponentially depends on the die
tant for cost, performance and energy consumption. In this size, the interest in the minimization of memory size, has
paper, we present a reasonably fast algorithm based on iteremerged only recently.
ative improvement, which packs a large number of memory

blocks into a minimum-size address space. The efficiency of address

the algorithm is achieved by two new techniques. First, in S PR
ock a, b, c; block a, b, ¢;

order to evaluate each solution in linear time, we propose a ;- ;<100 ++) o ab c
b[i] = rom(i] * a[i]; for(i=0;i<100;i++)

new algorithm based on the acyclic orientation of the mem- =0 1<100 1) T ol al ,

ory conflict graph. Second, we propose a novel representa- L ITIG 15 S TN

tion of the solution which effectively compresses the poten- 2

. block
tially infinite solution space to a finite value of, wheren @ ® © ”

is the number of vertices in th memory conflict graph. Fur- Ny
thermore, if a near-optimal solution is satisfactory, this value unon; space

block a, c;

can be dramatically reducedd, wherey! is the chromatic } clusterd;
unlon{block b; } cluster2;
number of the memory conflict graph. Experiments Show -0 i<100:1

cluster2.bi] = rom[l] clusterl.afi];

that consistent improvement over scalar method by 30% canor(i=o:i< 100 ++) 2

clusterl.c[i] = clusterz b[i] > 255 ? 255 : cluster2.b[i];

be achieved. @ B

(e) block

1 Introduction Figure 1: A motivational example.
Today’s telecommunication and consumer electronics appli-
cations demand computational power that can be met only
by integrating more and more hardware components. Given
that such applications typically buffer and process a large
amount of data, the interface between logic and memory
tends to become the performance bottleneck. While memo-
ries employing advanced signaling techniques such as Ram
bus memories are emerging to alleviate the problem, it is
often simpler and faster to integrate memory and logic on a

Consider a motivational example in Figure 1 (a), where
memory blocka, b andc needs to be allocated to certain
memory space. A naive allocation, as performed by almost
all software compilers, is to map each of the block to a dis-
tinct memory location, as shown in Figure 1 (c). A careful
inspection of the program reveals that blackand blockb
can in fact be shared, leading to the allocation in Figure 1 (d),
which can be obtained by the modified program in Figure 1
(c).

0 KJ.LZHZVEE||Z££\QV§SETI§SQ$I g’;?aﬁgrpn’;‘geég;gé”:ne;'cj”g University of Toronto, One might argue that it is the responsibility of the pro-
grammer who should identify such opportunities of memory
sharing and enforce them the same way as Figure 1 (c) does.
We believe that this extra duty is unrealistic for the follow-
ing reasons. First, the primary goal of a programmer, or a
behavior modeler (for the case of hardware synthesis), is to
specify functionality, where readability and maintainability

have higher priority than implementation details. Second, as anteed to be included. This solution space has a sizg, of

the application complexity increases, the discovery of mem- wheren is the number of the vertices. Third, we show that

ory sharing opportunity becomes intractable to human andif the P-admissibility can be relaxed, we can dramatically

automated optimization tools have a better chance to find reduce the size of the solution spacexto wherey is the

optimal solution than the programmers. chromatic number of the conflict graph, thereby dramatically
Simple as it may seem, the memory optimization in Fig- reduce the time of convergence. Fortunately, experiments

ure 1 is rarely performed in traditional software compilers show that near-optimal solutions can be found within this

and behavioral synthesis toolg, [?]. There are a number solution space.

of reasons which prevent such optimizations from being in- The rest of the paper is organized as follows: In Sec-

corporated. Among the most fundamental ones is the dif- tion 2, we discuss related work. In Secti®®, we formally

ficulty of revealing data dependency information for mem- define the problem. In Sectid?? we present our algorithm

ory blocks under the presence of pointers. For example,in detail. In Section 3, we describe the evaluation methodol-

Figure 1 (b) performs the same function as Figure 1 (a), ogy and show the experimental results.

except pointer is used to access members of the memory

block. While a powerful programming construct, pointer 5 Related Work

introduces the so-calleshemory ambiguityo the program,

which proves to be a killer for data dependency analysis. For The storage minimization problem evolves from the scalar

example, in Figure 1 (b), it is not clearpfis always points variable minimization problem, which manifests as the reg-

to the memory block without sophisticated analysis, hence jster allocation problem in the compiler community, where a

one has to conservatively assume that the valweréy de- heuristic-based graph coloring algorithm is found to be the
pend on the value od, under which case andc can no most efficient in practice?). A simple-minded extension of
longer be shared. the graph coloring algorithm to storage minimization leads

While one can alleviate the problem by the use of domain- g inferior result due to the fact that unlike registers, the sizes
specific languages or FORTRAN:-like array-based languagesof the memory blocks are different.
where strong assumptions can be made on memory access, The storage minimization problem has been attempted
the reality is that most system designers use C and its derivaat the system level. For example, Bhattacharyya and Lee
tives for system modeling and validation, and they usually [?] have studied buffer minimization for the so-called syn-
exploit the power of pointer constructs for the design of com- chronous dataflow SDF) programs. A SDF program models
plex data structures and algorithms. While the trend is to di- the data (memory) access exp||c|t|y using arcs between the
rectly Synthesize C instead of behavioral HDLs into custom Computationa| actors. The buffer memory usage can be op-
hardware as neede@)| this paradigm shift is not as simple timized by a careful schedule of actor execution.
as a change of synthesis frontend. Among the many chal- |n the high level synthesis community][and [?] have
lenges is the development of optimization strategies understudied clustering array variables into different memory blocks.
the presence of pointer construct8] fias attempted to ad- [7], [?] and [?] studied the same problem with the goal of es-
dress this issue in order to apply static memory allocation timation in the context of system level exploration. Philip’s
to general purpose C program by the use of sophisticatedphideo project], pioneered memory architecture explo-
pointer analysis techniques. ration for stream-based signal processing applications. The

The data analysis techniques, be it array-based or pointerarchitecture group at UC, Irvin@] studied the memory ar-
based, establish the conflict relationship between the life timechitecture exp|0rati0n in the context of embedded proces-

of program memory blocks (or even subblocks). The prob- ggrs.

lem of mapping memory blocks to addresses which min- The storage minimization problem for systems-on-chip
imize the total size of the address space, while honoring has been systematically attacked at IMEC in the MATISSE
the conflict relation, remains to be solved. Previous meth- project [?]. In MATISSE, a 2-stage strategy was proposed
ods either use a naive extension of the scalar register alto perform the “in-place” optimization for multidimensional
location algorithms, which produce suboptimal results; or arrays. During the first phas8l] “the intra-signal window-
use a heuristic algorithm of cubical complexity, yet with no ing” is performed to interleave elements within an array.

guarantee of optimality. In this paper, we develop a new al- pyring the second phase, the “inter-signal placemets [
gorithm under the classical framework of iterative improve- performed to interleave arrays.

ment, where either a greedy or simulated annealing strategy
can be used. The contribution of this algorithm is three-fold:
First, we find that an acyclic orientation of the undirected
conflict graph leads to a linear algorithm for memory pack- | the text that follows, we use thermal algorithm nota-

ing and therefore is perfect for solution evaluation. Sec- yjo, (FAN) to state definitions and describe algorithms. Un-
ond, we are able to discover a finite solution space that is i e hseudo-code based algorithm description, FAN relies on
P-admissiblein the sense that an optimal solution is guar- a type system, where each type is represented by a set, to

3 Problem Formulation

present the algorithm in a formal, precise manner. Read- ajbjc|dje|f]|g

ers are expected to find this notation very similar to any size{1{2|1]1|1|1]|3

strongly-typed programming languages and hence straight- (a) memory block sizes

forward to be translated into implementation, yet abstract .) ,

enough to allow concise presentation. [height=0.48]../FIGURES/subject.ps [height=0.48]../FIGURES/cf
The input of the memory allocation problem is a set of (b) conflict graph (c) colored graph

memory blocks, as defined in Definiti@?, as well as @on-

flict relation between these blocks, which indicate whether ajbjcjdje|f)g]total

or not that any pair of the memory blocks can be shared, or addr|0]1]3 4, 113[/4] 7
having an overlapping memory address space. The memory (d) allocation result

block is characterized by its size, which can be any natural

numbers. The conflict relation is derived by discovering the Figure 2: Memory packing by coloring.

“life time” of the memory blocks using dataflow analysis,

which is not the subject of this paper.] _
no adjacent vertices have the same color. The result of col-

Definition 1 A memory blockv : Block is a member of oring can be directly used to assign memory addresses by
making sure that vertices with the same color will share the
same memory space, while vertices with different colors will
never overlap.

Block = tuple {
size NG

WN -

Example 1 Figure ?? (a) and (b) shows a conflict graph as
well as the sizes of the blocks represented by the vertices
An allocation, as defined by Definitid?? is then the as- of the graph. Figure?? (c) shows a valid coloring of the
signment of address location, represented by an integer, toconflict graph and a strategy described above is applied to
each of the memory block, such that the conflict relation is obtain a memory allocation, which has a total memory size

honored. of 7.
Definition 2 Given a set of memory blockg : ()2°¥, and _
a conflict relationE : ()V*V between the memory blocks, Algorithm 1
a memory allocation, or amemory packing, is a mapping i .
AV o N, such that(u,v) € B — [Aw), A(u) + | o =Y 07 B Vv e N .
u.size] N [A(v), A(v) + v.size] = @. var clr Vs NV 6
var V' :)V 7
Obviously, one allocation can be better or worse than an-| V& ' 0" g
other, depending on whether or not the total memory size| v’'=v; 10
occupied by all memory blocks is smaller. According to fhi;ﬁ?v,“ >0) { E
Definition ??, the allocation that results in the smallest to- v =vertezElimScheme(V', E'); 13
a ; ; V=V — {v} 14
tal memory size is the optimal allocation. | agjacency(% B, 15
L . . . =0 U{v} 16
Definition 3 For an allocationA : V — N/, its memory size } 17
|| A|| is defined to benaz,cv A(v) + v.size. An allocation o S @) B
Ay is said to be optimal it/ A, || A|| > ||Ao]|. B =B U{v|3ue V', (u,v) € B}, 20
clr(v) = miny.e n vueadj (v, B').c#elr(u)) € 21
22
H return clr ; 23
4 Algorithms Y or 22
25
In this section, we desribe our proposed allocation algorithm

in detail. To offer more insight on why we can perform bet-

ter, we start by describing the use of graph coloring formem- The coloring algorithm, as shown in Algorith@®, de-
ory allocation. velops a so-callegtertex elimination scheme, a sequence

of vertices inV. The reverse of is used as the order of
assigning colors to vertices. To assign a color to a vertex,
one has to search for a color unused by its colored neighbors
Given a conflict grapliV, E), whereV is the set of memory (Line 22-?7).

4.1 Graph coloring

blocks andE is the conflict relation, a coloring algorithm The choice of the vertex elimination scheme determines
assignscolors to each of the vertex in the graph such that the quality and speed of the coloring algorithm. A popular
14 heuristic is to eliminate the vertex with the minimum degree

"Here we use the notatiaf) * to represent a power set df, and the notatiof .
to represent the set of all sequences over elements of in the current graph.

Algorithm ?? assigns addresses to memory blocks ac- [height=0.48]../FIGURES/orient.ps [height=0.48]../FIGURES/sct

cording to the result of coloring. It starts by finding the space (a) an oriented graph (b) schedule of an oriented ¢
required for each color, which should be the maximum size

of all memory blocks that are assigned with the correspond- albjc|d|e|f]|g]|total

ing color. It then assigns addresses for each of the colors, addr{0|1|3(4|1|3|4]| 6

which now represent a grouping of memory blocks, by lin- (c) allocation result

ing them up one by one. The memory address of each block
is then found by the address of the corresponding color. Itis
trivial to show that this allocation algorithm based on color-
ing has a complexity o®(|V| + |E|).

It becomes immediately evident that as soon as the sizesorder. In other words, converting the undirected conflict
of the memory blocks vary, the coloring-based allocation al- graph into adirected acyclic graph With such conversion,
gorithm quickly degrades to suboptimal. For example, since we effectively convert the memory allocation problem into
b has a size of two, both e and f in Figit®2(c) can sharethe the scheduling problem, if we equate the memory space do-
same memory region as b, although e and f themselves shalmain to the time domain, and memory block size to the de-
not overlap. For the same reason, ¢ and d should be able tday. Definition??, Definition ?? and Theoren?? precisely
share space with g, which has a size of three. state that.

Exploiting the memory size variation is not trivial. I8][

a strategy has been employed where each memory block igPefinition 4 Given a conflictgrap{V, E) C Blockx (Blockx
attempted in a greedy fashion to be assigned an address. Foplock), its acyclic orientatior¥” is a subset oF such that
each of such attempts, conflict has_to be checked against the e FUF'=EandFNnF'! = o whereF! =
blocks that have been already assigned an address. In case {(u,)|(v, u) € F}:

of failure, another block has to be attempted. This algorithm ’ ’ '

Figure 3: Memory allocation by acyclic orientation.

has a cubical complexity precisely because of the amount of e A[vg, vy,,v,] : []V, such thatvi, (v;,v;11) € F
comparisons one has to make for conflict detection, as well andvg = vy,.
as the amount of backtracking one has to performin case of _ _
failure. Definition 5 Given a conflictgraphV, E) C Block x (Block x
Block), a schedule of its acyclic orientatidn is a mapping
Algorithm 2 S :V — N suchthatu < v — S(u) + u.size < S(v).
Here < is the partial order induced by’ (or its transitive
allocByColor =func(V :)B* E:V xV): Ve N { 26 closure).
varclr: V — N; 27
set: N — N 28 . X .
XZ[ng;/ — N - 29 Theorem 1 Any schedule for an acyclic orientationF” of
var total : N; x a conflict graph(V, E) C Block x (Block x Block) is a
clr = color(V, E); 32 valid allocation.
total = maz,evclr(v); 33
f”g%i;gf%‘;’i) - o Example 2 Figure ?? (a) shows an orientation of the undi-
= clr(v)=cV-812€;
forall(¢ € [0..total — ﬁ) 36 rected conflict graph in Figur@? (b). This directed graph
ot oa 1) =of fset(c) +of fset(c+1); A can be “scheduled” as shown in Figu? (b) to obtain the
a(v) = of fset(clr(v)); 39 memory allocation, which has a total size of 6. Note that this
pum e 2 result is better than the one obtained in Fig®@(c).

42
One can apply any scheduling algorithms to obtained a

valid memory allocation. Theoref? states that the Algo-
rithm ??, which employs an ASAP strategy, is in fact optimal

for a given orientation.
One approach to dramatically reduce the complexity of the

cubical allocation algorithm is to carefully devise a proper
order of address assignment so that:

4.2 Acyclic Orientation

e each vertex needs to be assigned amige(no need
for backtracking);

¢ the conflict constraint ismplicitly satisfied (no need
for conflict checking).

We observe that such an order can be found by convert-
ing thereflectiveconflict relation into arirreflective partial

Algorithm 3

asapSchedule =func(V : ()B°* F:V xV): Vs N {
var ready : ()V;
var count : V = N
var sched : V = N

ready = {v|pred(v) = 0};
while(ready # @) {
v = choose(ready);
ready = ready — {v};
forall(w € succ(v)) {
count(w) = count(w) + 1;
if(sched(v) + v.size > sched(w))
sched(w) = sched(v) + v.size;
if(count(w) = |pred(w)|)
ready = ready U {w};

return sched ;

Theorem 2 Letg = (V, E) C Block x (Block x Block)
be a memory conflict graph. Létbe an acyclic orientation.
Then for any schedulgof F', ||S|| > ||asapSchedule(V, F)||.

5 Vertex Permutation

Now the question is whether an acyclic orientation always
exists. Theorem? provides a positive, constructive answer.

Definition 6 A permutatiorof finite setA is a functionP :
A — N such thaWu,v € Au # v = P(u) # P(v).

Theorem 3 Letg = (V, E) C Block x (Block x Block)
be a memory conflict graph, then for any vertex permutation
P :V — N, there exists an acyclic orientatidfi of g.

Proof: Let F' = {(u,v) € E|P(u) < P(v)}. It follows that
FUF~'=EAFNF~' = @, henceF is an orientation
of g. Suppose there exists a cylg, v1,, v, vo] IN F, it

follows that P(vy) < P(v1) < < P(up), a contradic-
tion. HenceF is acyclic. O

[width=0.6]../FIGURES/goodbad.ps

Figure 4: Good and bad orientations.

Theorem 4 Letg = (V, E) C Block x (Block x Block)

be a memory conflict graph, then for any memory packing
AV — N, there exists a vertex permutatiéh: V — N
from whichA can be derived.

Corollary 1 Letg = (V, E) C Block x (Block x Block) be

a memory conflict graph, then there exists a vertex permuta-
tion P : V — N from which an optimal memory allocation
can be derived.

6 Color Permutation

Sincen! s still a large number, the search for the optimal so-
lution can become much more efficient if the solution space
can be compressed further. Our next observation is that a
coloring of the conflict graph also defines an acyclic orien-
tation.

Theorem 5 Letg = (V, E) C Block x (Block x Block) be
a memory conflict graph, and for any colorigg: V — N
of g, there exists an acyclic orientatidr of g.

Proof: Let FF = {(u,v) € E|C(u) < C(v)}. Suppose
Hu,v) € E,(u,v) ¢ F A (v,u) ¢ F,thenC(u) = C(v),
which implies thatu, v) ¢ E, a contradiction. Thereford,
is an orientation. It is trivial to prove thdt is also acyclic.
|

This leads to the strategy that a minimum coloring of the
conflict graph is first found, and then different permutation
of the color assignment is used to define the solution space.
If we denote the chromatic number, that is, the number of
color used in the minimum coloring, as then the size of
the solution space becomes which is substantially smaller

What becomes crucial is whether an orientation that can yhan 1. Algorithm ?? shows the detail of a greedy search
lead to optimal memory allocation can be obtained. To see g|gorithm.

how the conflict graph orientation strongly affects the result
of allocation, consider the example in Figu¥® where two

different orientations of the same conflict graph are shown.

Assume each vertex has a size of one, then the orientation at

the left leads to an allocation of size 4, while the orientation
at the right leads to an allocation of size 2.

Since Theoren?? ensures that the set of all vertex per-
mutations form a solution space of sizk a heuristic search

algorithm can be used to traverse the solution space, where

the linear ASAP scheduling algorithm (Algorith@?)can
be used to evaluate the solution. Theoretand Corol-
lary ?? ensures that an optimal solution is included in the

solution space and it is therefore P-admissible. This result
corresponds very well to the sequence-pair algorithm used

in floorplanning P].

Algo“thm 4 [height=0.48angle=270]epic.ps [hEIg ht:O48ang|e:270]]peg

EPIC JPEG
allocBgl;Permglfunc‘gV ;X}Bloc’a E:VxV):! Vo N { 22 [height=0.48angle=270]mpegdec.ps [height=0.48angle=270]mp
var clr, newClr : V — N
PRy o MPEGDEC MPEGENC
var cost, newCost, count : N; 66
var sched, newSched : V s N; gg Figure 5: Memory block size probability density function
cost = 00; 69
Clr =color(V, E); 70 . .
ggl{u = color(V, B) 71 e The memory allocation problem is best solved by break-
F =orient(V, E, Clry; 72 ; ;
newsrgzgdzasaprgied:tle(% o s ing down into sgvgral smaller problgms, for_ example,
newCost = |newSched||; 74 dataflow analysis, intra-block allocation and inter-block
if(newCost < cost) { » allocation. The quality of the algorithms for each of
cost = newCost; clr = newClr; 76
sched = newSched; count = 0; 77 the problems is not immediately evident if only the net
} 8 result is shown
else 79 ’
count = count + 1, 80 i X i .
newClr = perturb(V, clr); 81 Since this work focuses on inter-block allocation algo-
el count < threshold) > rithms, it would be inappropriate to demonstrate the effec-
3 84 tiveness of this effort by simply displaying the memory allo-
orient =func(V : OP1OF BV x Vi elr: V x N): V x V { 22 cf';\tion result for an arbitrarily chosen set of C.benchmarks,
var F: V x V; 87 since the accuracy of dataflow analysis algorithms (how to
foret E;ﬁ(uv))f 5r)(v{)) 5 derive the conflict graph), and effectiveness of inter-block
F=FU(u,v); 90 algorithms, also play an extremely important role in the fi-
e L (o,) 5 nal result. Furthermore, these C benchmarks often cannot
} 93 “stress” the algorithm very well since the problem size that
retum £ A they present is too small to demonstrate the differences be-
} 95 yp
. 9 tween algorithms in terms of space and runtime etc.
perturb = func(Vs ()R, clr s Vs N) 2 Voo N o Given these considerations, we followed a different ex-
var cl,c2: N; 98) ;
cl = random(0, maz,ev clr(v)); 929 periment methodology to evaluate our algorithm. We ob-
fcjr;lz"jjngo‘ﬁn)(”{ mazvev elr(v)); 100 tain the memory conflict graphs directly from the standard
if(clr(v) = c1) clr(v) = c2; 102 DIAMCS benchmark set? for evaluating coloring algo-
slseil elr(v) = ¢2) elr(v) = cl; oA rithms. This solves the comparability problem since it is a
return clr ; 105 standard and available to everyone. In addition, the size of
t 100 the graph in the benchmark tends to be much larger than the
size of graphs in memory allocation problem. Our own expe-

rience also shows that the memory conflict graph obtained in
Note that while the solution space is substantially com- real life examples, often exhibit the same characteristics (ap-

pressed, it is no longer P-admissible. Fortunately, our ex- pearance) as the coloring graph contained in the DIAMCS

periments, as detailed in the next section, show that a nearpenchmark.

optimal solution can always be found. In addition, expensive The DIAMCS graph, on the other hand, does not con-

search strategies such as simulated annealing are not necesain the memory block size information. We opt to gen-

sary in practice. erate it randomly. Generating sizes with uniform distribu-
tion would be inappropriate since it does not reflect close
7 Experimental Result enough to reality. Instead, we generate memory sizes ac-
cording to a probability density function (PDF), which is in
7.1 Benchmark Methodology turn obtained by profiling the real life examples. Fig@rz

shows the normalized PDFs for EPIC (Efficient Pyramid Im-
age Coder), JPEG (still image codec), MPEGDEC (MPEG2
decoder) and MPEGENC (MPEG encoder), each of which
e The research in this area is still at an early age and IS taken from the MediaBench benchmark <t [

hence unlike well-established areas such as logic syn-

thesis, there is no standard benchmarks available. 7.2 Results

Benchmarking the memory allocation algorithms is not a
straight-forward issue for the following reasons:

¢ Previous work has assumed different computational modve implemented the discussed algorithms in the C program-
els, not to mention the different syntax, of the input ming language and applied them on the DIAMCS bench-
programs to be optimized, which makes quantitative marks with randomly generated memory sizes, as described
evaluation of different approaches very hard, since the in Section 3.1. The result is summarized in Tab® For
experiments are difficult to repeat. each benchmark, we show its size in terms of the number

‘ Benchmark # ‘ #] total size [runtime (ms) |
nodes| edges| color] perm [color T perm |
myciel3 11 20 89792 74688 (16%) 0 0
myciel4 23 71 125120 | 83520 (33%) 0 10
myciel5 47 236 128064 | 92736 (27%) 0 40
mycielé 95 755 190400 | 124736 (34%) | 10 200
myciel7 191 [2360 | 238080 | 170496 (28%) | 30 880
anna 138 986 | 297600 | 156544 (47%) [10 200
david 87 812 | 296768 | 201408 (32%) [O 130
le45015a | 450 | 8168 | 543296 | 383296 (29%) [150 [14550
1e45015d | 450 [16750 | 792512 | 598528 (24%) | 410 | 60140
1e45025c | 450 | 17343 [919808 | 653440 (28%) | 440 | 240940
1e4505b 450 | 5734 | 352320 | 245440 (30%) | 70 5060
1e45015b [450 | 8169 | 550848 | 385664 (29%) | 160 9820
1e45025a 450 8260 | 756864 | 540224 (28%) | 170 21410
1e45025d 450 | 17425] 901376 | 653440 (27%) | 440 94770
le4505¢ 450 | 9803 | 391680 | 292672 (25%) [150 7320
le45015c | 450 | 16680 [789824 | 573568 (27%) [400 [86800
1e45025b | 450 | 8263 | 767040 | 505152 (34%) | 170 | 23040
le4505a 450 | 5714 | 364160 | 258112 (29%) | 90 3990
le4505d 450 [9757 | 422080 | 301568 (28%) [170 | 16890
queen1010 [100 [2940 | 415744 | 290560 (30%) | 20 1130
queenldl4 | 196 | 8372 | 635456 | 424640 (33%) [70 13240
queene6 36 580 [242752 | 167104(31%)[O 180
queen99 81 2112 | 403648 | 244032 (39%) [20 960
queenllll | 121 [3960 | 502272 | 343360 (31%) [30 1470
queen15l5 | 225 | 10360 | 698624 | 468928 (32%) | 90 8700
queenz/ 49 952 | 318976 | 215040 (32%) | 10 380
queenl2l2 | 144 [5192 | 517440 | 352000 (31%) | 30 6630
queenl6l6 | 256 [12640 | 763776 | 505216 (33%) | 110 | 19330
queengl2 96 2736 | 435840 | 280896 (35%) [10 1320
queeni3l3 | 169 | 6656 | 592768 | 385984 (34%) [50 5010
queen55 25 320 177600 | 135488 (23%) | 10 20
queendd 64 1456 | 361152 | 236480 (34%) | 10 670
miles1000 | 128 | 6432 | 870464 | 625792 (28%) | 60 16500
miles250 128 774 | 213440 | 132608 (37%) | 10 90
miles750 128 | 4226 | 643328 | 441920 (31%) | 30 5200
miles1500 | 128 [10396 | 1344448 1080320 (19%)| 170 | 58790
miles500 128 [2340 | 442240 | 265408 (39%) | 20 2230
mulsol 197 [3925 | 940864 | 686592 (27%) | 100 | 16940
mulsol 184 [3916 | 600384 | 449216 (25%) | 60 5130
mulsol 186 | 3973 | 642240 | 453760 (29%) | 70 8740
mulsol 188 | 3885 | 609920 | 463296 (24%) | 60 6450
mulsol 185 | 3946 | 613376 | 451584 (26%) | 50 9510
inithx 864 | 18707 | 1143552 787776 (31%) | 540 [268780
inithx 645 | 13979 | 761280 | 481728 (36%) | 310 | 84690
inithx 621 | 13969 | 769024 | 471552 (38%) | 290 | 98280

Table 1: Experimental results.

of nodes and edges in the graph. We also report the allo-
cation results for both the coloring based algorithm (color)
and our proposed algorithm (perm), as well as its percent-
age of improvement over the coloring based algorithm. The
algorithm runtime in units of milliseconds on a Ultra-5 Sun
workstation with 128M of memory is also displayed.

We found that our algorithm performs on average 30%
better than the coloring algorithm. Although not shown in
Table ??, we found that the proposed algorithm performs
significantly better, although with longer runtime, than the
algorithm we proposed in an earlier unpublished stugy [
which used heuristic acyclic orientation to obtain an allo-
cation, but without further iterative improvement. We also
found that algorithm can achieve better results with less run-
time than the cubical algorithm described #.[

8 Conclusion

In this paper, we present the importance of memory min-
imization under the context of systems-on-chip. We then
present a new algorithm for the global minimization of mem-
ory sizes. The novelty of this technique lies in the obser-
vation that memory allocation problem can be efficiently
solved if an orientation of the conflict graph is found and
such orientation can be fully characterized by a permuta-
tion of its vertices, or a permutation of the vertex colors.
The algorithm can then be elegantly encoded in the clas-
sic iterative improvement framework with a complexity of
O(h(|V| + |E|), whereh is the number of iterations. This
algorithm can quickly converge due to the fact that the size
of the solution space is only!, wherey is the chromatic
number of the conflict graph.

In the future, we will study the interaction of this algo-
rithm with other tasks, such as aggressive inter-procedural
dataflow analysis, in the bigger context of memory optimiza-
tion for system-on-chip.

