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Abstract

It is predicted that 70% of the silicon real-estate will be occupied by memories in future system-on-chips. The
minimization of on-chip memory hence becomes increasingly important for cost, performance and energy consump-
tion. In this paper, we present a reasonably fast algorithm based on iterative improvement, which packs a large
number of memory blocks into a minimum-size address space. The e�ciency of the algorithm is achieved by two
new techniques. First, in order to evaluate each solution in linear time, we propose a new algorithm based on the
acyclic orientation of the memory conict graph. Second, we propose a novel representation of the solution which
e�ectively compresses the potentially in�nite solution space to a �nite value of n!, where n is the number of vertices
in th memory conict graph. Furthermore, if a near-optimal solution is satisfactory, this value can be dramatically
reduced to �!, where �! is the chromatic number of the memory conict graph. Experiments show that consistent
improvement over scalar method by 30% can be achieved.
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1 Introduction

Today's telecommunication and consumer electron-
ics applications demand computational power that can
be met only by integrating more and more hardware
components. Given that such applications typically
bu�er and process a large amount of data, the inter-
face between logic and memory tends to become the
performance bottleneck. While memories employing
advanced signaling techniques such as Rambus mem-
ories are emerging to alleviate the problem, it is of-
ten simpler and faster to integrate memory and logic
on a single chip. It is hence not surprising to �nd on-
chip memories to occupy a larger portion of silicon area
than logic does in the future systems-on-chips. While
traditional CAD has devoted to the minimization of
logic area in order to reduce manufacturing cost, which
exponentially depends on the die size, the interest in
the minimization of memory size, has emerged only re-
cently.

(a) (b)

(d)

block a, b, c;

p = &b;
for( i = 0; i < 100; i ++ )
    *p ++ = rom[i] * a[i];
p = &b; q = &c;
for( i = 0; i < 100; i ++ )
    *q ++ = *p  > 255 ? 255 : *p ++;
 

union {
    block a, c;
    } cluster1;
union { block b; } cluster2;

for( i = 0; i < 100; i ++ )
    cluster2.b[i] = rom[i] * cluster1.a[i];
for( i = 0; i < 100; i ++ )
    cluster1.c[i] = cluster2.b[i] > 255 ? 255 : cluster2.b[i];
 

block a, b, c;

for( i = 0; i < 100; i ++ )
    b[i] = rom[i] * a[i];
for( i = 0; i < 100; i ++ )
    c[i] = b[i] > 255 ? 255 : b[i];
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Figure 1. A motivational example.

Consider a motivational example in Figure 1 (a),
where memory block a, b and c needs to be allocated

to certain memory space. A naive allocation, as per-
formed by almost all software compilers, is to map each
of the block to a distinct memory location, as shown
in Figure 1 (c). A careful inspection of the program
reveals that block a and block b can in fact be shared,
leading to the allocation in Figure 1 (d), which can be
obtained by the modi�ed program in Figure 1 (c).

One might argue that it is the responsibility of the
programmer who should identify such opportunities of
memory sharing and enforce them the same way as
Figure 1 (c) does. We believe that this extra duty is
unrealistic for the following reasons. First, the primary
goal of a programmer, or a behavior modeler (for the
case of hardware synthesis), is to specify functionality,
where readability and maintainability have higher pri-
ority than implementation details. Second, as the ap-
plication complexity increases, the discovery of mem-
ory sharing opportunity becomes intractable to human
and automated optimization tools have a better chance
to �nd optimal solution than the programmers.

Simple as it may seem, the memory optimization
in Figure 1 is rarely performed in traditional software
compilers and behavioral synthesis tools [?, ?]. There
are a number of reasons which prevent such optimiza-
tions from being incorporated. Among the most fun-
damental ones is the di�culty of revealing data depen-
dency information for memory blocks under the pres-
ence of pointers. For example, Figure 1 (b) performs
the same function as Figure 1 (a), except pointer is
used to access members of the memory block. While
a powerful programming construct, pointer introduces
the so-called memory ambiguity to the program, which
proves to be a killer for data dependency analysis. For
example, in Figure 1 (b), it is not clear if p is always
points to the memory block b without sophisticated
analysis, hence one has to conservatively assume that
the value of c may depend on the value of a, under
which case a and c can no longer be shared.

While one can alleviate the problem by the use
of domain-speci�c languages or FORTRAN-like array-
based languages, where strong assumptions can be
made on memory access, the reality is that most system
designers use C and its derivatives for system model-
ing and validation, and they usually exploit the power
of pointer constructs for the design of complex data
structures and algorithms. While the trend is to di-
rectly synthesize C instead of behavioral HDLs into
custom hardware as needed [?], this paradigm shift is
not as simple as a change of synthesis frontend. Among
the many challenges is the development of optimization
strategies under the presence of pointer constructs. [?]
has attempted to address this issue in order to apply
static memory allocation to general purpose C program
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by the use of sophisticated pointer analysis techniques.
The data analysis techniques, be it array-based or

pointer-based, establish the conict relationship be-
tween the life time of program memory blocks (or even
subblocks). The problem of mapping memory blocks to
addresses which minimize the total size of the address
space, while honoring the conict relation, remains to
be solved. Previous methods either use a naive exten-
sion of the scalar register allocation algorithms, which
produce suboptimal results; or use a heuristic algo-
rithm of cubical complexity, yet with no guarantee of
optimality. In this paper, we develop a new algorithm
under the classical framework of iterative improvement,
where either a greedy or simulated annealing strategy
can be used. The contribution of this algorithm is
three-fold: First, we �nd that an acyclic orientation
of the undirected conict graph leads to a linear algo-
rithm for memory packing and therefore is perfect for
solution evaluation. Second, we are able to discover a
�nite solution space that is P-admissible in the sense
that an optimal solution is guaranteed to be included.
This solution space has a size of n!, where n is the
number of the vertices. Third, we show that if the
P-admissibility can be relaxed, we can dramatically re-
duce the size of the solution space to �!, where � is the
chromatic number of the conict graph, thereby dra-
matically reduce the time of convergence. Fortunately,
experiments show that near-optimal solutions can be
found within this solution space.

The rest of the paper is organized as follows: In
Section 2, we discuss related work. In Section 3, we
formally de�ne the problem. In Section 4 we present
our algorithm in detail. In Section 7, we describe the
evaluation methodology and show the experimental re-
sults.

2 Related Work

The storage minimization problem evolves from the
scalar variable minimization problem, which manifests
as the register allocation problem in the compiler com-
munity, where a heuristic-based graph coloring algo-
rithm is found to be the most e�cient in practice [?].
A simple-minded extension of the graph coloring algo-
rithm to storage minimization leads to inferior result
due to the fact that unlike registers, the sizes of the
memory blocks are di�erent.

The storage minimization problem has been at-
tempted at the system level. For example, Bhat-
tacharyya and Lee [?] have studied bu�er minimization
for the so-called synchronous dataow SDF) programs.
A SDF program models the data (memory) access ex-
plicitly using arcs between the computational actors.

The bu�er memory usage can be optimized by a care-
ful schedule of actor execution.

In the high level synthesis community, [?] and [?]
have studied clustering array variables into di�erent
memory blocks. [?], [?] and [?] studied the same prob-
lem with the goal of estimation in the context of system
level exploration. Philip's Phideo project [?], pioneered
memory architecture exploration for stream-based sig-
nal processing applications. The architecture group at
UC, Irvine [?] studied the memory architecture explo-
ration in the context of embedded processors.

The storage minimization problem for systems-on-
chip has been systematically attacked at IMEC in the
MATISSE project [?]. In MATISSE, a 2-stage strategy
was proposed to perform the \in-place" optimization
for multidimensional arrays. During the �rst phase[?],
\the intra-signal windowing" is performed to interleave
elements within an array. During the second phase, the
\inter-signal placement" [?]is performed to interleave
arrays.

3 Problem Formulation

In the text that follows, we use the formal algorithm
notation (FAN) to state de�nitions and describe algo-
rithms. Unlike pseudo-code based algorithm descrip-
tion, FAN relies on a type system, where each type
is represented by a set, to present the algorithm in a
formal, precise manner. Readers are expected to �nd
this notation very similar to any strongly-typed pro-
gramming languages and hence straightforward to be
translated into implementation, yet abstract enough to
allow concise presentation.

The input of the memory allocation problem is a set
of memory blocks, as de�ned in De�nition 1, as well as
a conict relation between these blocks, which indicate
whether or not that any pair of the memory blocks can
be shared, or having an overlapping memory address
space. The memory block is characterized by its size,
which can be any natural numbers. The conict re-
lation is derived by discovering the \life time" of the
memory blocks using dataow analysis, which is not
the subject of this paper.

De�nition 1 A memory block v : Block is a mem-
ber of

Block = tuple f 1
size : N ; 2
g 3

An allocation, as de�ned by De�nition 2 is then the
assignment of address location, represented by an inte-
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ger, to each of the memory block, such that the conict
relation is honored.

De�nition 2 Given a set of memory blocks1 V :
hiBlock, and a conict relation E : hiV �V between the
memory blocks, a memory allocation, or a memory

packing, is a mapping A : V 7! N , such that hu; vi 2
E ! [A(u);A(u)+u:size]\ [A(v);A(v) + v:size] = �.

Obviously, one allocation can be better or worse
than another, depending on whether or not the total
memory size occupied by all memory blocks is smaller.
According to De�nition 3, the allocation that results
in the smallest total memory size is the optimal allo-
cation.

De�nition 3 For an allocation A : V 7! N , its mem-
ory size kAk is de�ned to be maxv2VA(v)+v:size. An
allocation A0 is said to be optimal if 8A; kAk � kA0k.

4 Algorithms

In this section, we desribe our proposed allocation
algorithm in detail. To o�er more insight on why we
can perform better, we start by describing the use of
graph coloring for memory allocation.

4.1 Graph coloring

Given a conict graph hV;Ei, where V is the set of
memory blocks and E is the conict relation, a coloring
algorithm assigns colors to each of the vertex in the
graph such that no adjacent vertices have the same
color. The result of coloring can be directly used to
assign memory addresses by making sure that vertices
with the same color will share the same memory space,
while vertices with di�erent colors will never overlap.

Example 1 Figure 2 (a) and (b) shows a conict
graph as well as the sizes of the blocks represented by
the vertices of the graph. Figure 2 (c) shows a valid
coloring of the conict graph and a strategy described
above is applied to obtain a memory allocation, which
has a total memory size of 7.

1Here we use the notation hiA to represent a power set of A,
and the notation [ ]A to represent the set of all sequences over
elements of A.

a b c d e f g
size 1 2 1 1 1 1 3

(a) memory block sizes

a

b

c

d

e

f

g

b

c

d

(b) conict graph (c) co

a b c d e f g total
addr 0 1 3 4 1 3 4 7

(d) allocation result

Figure 2. Memory packing by coloring.
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Algorithm 1

color = func( V : hiBlock; E : V � V ) : V 7! N f 4

var � : [ ]B ; 5
var clr : V 7! N ; 6
var V 0 : hiV ; 7

var E0 : hiE; 8
9

V 0 = V ; 10
E0 = E; 11
while( kV 0k > 0 ) f 12

v = vertexElimScheme(V 0; E0); 13
V 0 = V 0 � fvg; 14
E0 = E0 � adjacency(v;E0); 15
� = � [ fvg; 16
g 17

forall( v 2 reverse(�) ) f 18
V 0 = V 0 [ fvg; 19
E0 = E0 [ fvj9u 2 V 0; hu; vi 2 Eg; 20
clr(v) = min8c2N ;8u2adj(v;E0):c6=clr(u))c; 21

g 22
return clr ; 23
g 24

25

The coloring algorithm, as shown in Algorithm 1,
develops a so-called vertex elimination scheme �, a se-
quence of vertices in V . The reverse of � is used as the
order of assigning colors to vertices. To assign a color
to a vertex, one has to search for a color unused by its
colored neighbors (Line 18{22).

The choice of the vertex elimination scheme deter-
mines the quality and speed of the coloring algorithm.
A popular heuristic is to eliminate the vertex with the
minimum degree in the current graph.

Algorithm 2 assigns addresses to memory blocks ac-
cording to the result of coloring. It starts by �nding
the space required for each color, which should be the
maximum size of all memory blocks that are assigned
with the corresponding color. It then assigns addresses
for each of the colors, which now represent a grouping
of memory blocks, by lining them up one by one. The
memory address of each block is then found by the ad-
dress of the corresponding color. It is trivial to show
that this allocation algorithm based on coloring has a
complexity of O(jV j+ jEj).

It becomes immediately evident that as soon as the
sizes of the memory blocks vary, the coloring-based al-
location algorithm quickly degrades to suboptimal. For
example, since b has a size of two, both e and f in Fig-
ure 2 (c) can share the same memory region as b, al-
though e and f themselves shall not overlap. For the
same reason, c and d should be able to share space with
g, which has a size of three.

Exploiting the memory size variation is not trivial.
In [?], a strategy has been employed where each mem-
ory block is attempted in a greedy fashion to be as-
signed an address. For each of such attempts, conict
has to be checked against the blocks that have been

already assigned an address. In case of failure, an-
other block has to be attempted. This algorithm has a
cubical complexity precisely because of the amount of
comparisons one has to make for conict detection, as
well as the amount of backtracking one has to perform
in case of failure.

Algorithm 2

allocByColor = func( V : hiBlock; E : V � V ) : V 7! N f 26
var clr : V 7! N ; 27
var offset : N 7! N ; 28
var a : V 7! N ; 29
var total : N ; 30

31
clr = color(V;E); 32
total = maxv2V clr(v); 33
forall( c 2 [0::total] ) 34

offset(c) = maxclr(v)=cv:size; 35
forall( c 2 [0::total� 1] ) 36

offset(c+ 1) = offset(c) + offset(c+ 1); 37
forall( v 2 V ) 38

a(v) = offset(clr(v)); 39
return a ; 40
g 41

42

4.2 Acyclic Orientation

One approach to dramatically reduce the complexity
of the cubical allocation algorithm is to carefully devise
a proper order of address assignment so that:

� each vertex needs to be assigned only once (no
need for backtracking);

� the conict constraint is implicitly satis�ed (no
need for conict checking).

We observe that such an order can be found by con-
verting the reective conict relation into an irreec-
tive partial order. In other words, converting the undi-
rected conict graph into a directed acyclic graph. With
such conversion, we e�ectively convert the memory al-
location problem into the scheduling problem, if we
equate the memory space domain to the time domain,
and memory block size to the delay. De�nition 4, Def-
inition 5 and Theorem 1 precisely state that.

De�nition 4 Given a conict graph hV;Ei � Block�
(Block � Block), its acyclic orientation F is a subset
of E such that

� F [ F�1 = E and F \ F�1 = �, where F�1 =
fhu; vijhv; ui 2 Fg;

� @[v0; v1; ::::; vn] : [ ]
V , such that 8i; hvi; vi+1i 2 F

and v0 = vn.
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(a) an oriented graph (b) schedule of an oriented graph
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Figure 3. Memory allocation by acyclic orien-
tation.

De�nition 5 Given a conict graph hV;Ei � Block�
(Block � Block), a schedule of its acyclic orientation
F is a mapping S : V 7! N such that u � v ! S(u) +
u:size � S(v). Here � is the partial order induced by
F (or its transitive closure).

Theorem 1 Any schedule S for an acyclic orientation
F of a conict graph hV;Ei � Block� (Block�Block)
is a valid allocation.

Example 2 Figure 3 (a) shows an orientation of the
undirected conict graph in Figure 2 (b). This directed
graph can be \scheduled" as shown in Figure 3 (b) to
obtain the memory allocation, which has a total size of
6. Note that this result is better than the one obtained
in Figure 2 (c).

One can apply any scheduling algorithms to ob-
tained a valid memory allocation. Theorem 2 states
that the Algorithm 3, which employs an ASAP strat-
egy, is in fact optimal for a given orientation.

Algorithm 3

asapSchedule = func( V : hiBlock; F : V � V ) : V 7! N f 43

var ready : hiV ; 44
var count : V 7! N ; 45
var sched : V 7! N ; 46

47
ready = fvjpred(v) = �g; 48
while( ready 6= � ) f 49

v = choose(ready); 50
ready = ready � fvg; 51
forall( w 2 succ(v) ) f 52

count(w) = count(w) + 1; 53
if( sched(v) + v:size > sched(w) ) 54

sched(w) = sched(v) + v:size; 55
if( count(w) = jpred(w)j ) 56

ready = ready [ fwg; 57
g 58

g 59
return sched ; 60
g 61

62

Theorem 2 Let g = hV;Ei � Block�(Block�Block)
be a memory conict graph. Let F be an acyclic ori-
entation. Then for any schedule S of F , jjSjj �
jjasapSchedule(V; F )jj.

5 Vertex Permutation

Now the question is whether an acyclic orientation
always exists. Theorem 3 provides a positive, construc-
tive answer.

De�nition 6 A permutation of �nite set A is a func-
tion P : A 7! N such that 8u; v 2 A:u 6= v ) P (u) 6=
P (v).

Theorem 3 Let g = hV;Ei � Block�(Block�Block)
be a memory conict graph, then for any vertex permu-
tation P : V 7! N , there exists an acyclic orientation
F of g.

Proof: Let F = fhu; vi 2 EjP (u) < P (v)g. It follows
that F[F�1 = E^F\F�1 = �, hence F is an orienta-
tion of g. Suppose there exists a cycle [v0; v1; ::::; vk; v0]
in F , it follows that P (v0) < P (v1) < :::: < P (v0), a
contradiction. Hence F is acyclic. 2

What becomes crucial is whether an orientation that
can lead to optimal memory allocation can be obtained.
To see how the conict graph orientation strongly af-
fects the result of allocation, consider the example in
Figure 4, where two di�erent orientations of the same
conict graph are shown. Assume each vertex has a
size of one, then the orientation at the left leads to an
allocation of size 4, while the orientation at the right
leads to an allocation of size 2.

Since Theorem 3 ensures that the set of all vertex
permutations form a solution space of size n!, a heuris-
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Figure 4. Good and bad orientations.

tic search algorithm can be used to traverse the so-
lution space, where the linear ASAP scheduling algo-
rithm (Algorithm 3)can be used to evaluate the solu-
tion. Theorem 4 and Corollary 1 ensures that an op-
timal solution is included in the solution space and it
is therefore P-admissible. This result corresponds very
well to the sequence-pair algorithm used in oorplan-
ning [?].

Theorem 4 Let g = hV;Ei � Block�(Block�Block)
be a memory conict graph, then for any memory pack-
ing A : V 7! N , there exists a vertex permutation
P : V 7! N from which A can be derived.

Corollary 1 Let g = hV;Ei � Block�(Block�Block)
be a memory conict graph, then there exists a vertex
permutation P : V 7! N from which an optimal mem-
ory allocation can be derived.

6 Color Permutation

Since n! is still a large number, the search for the
optimal solution can become much more e�cient if the
solution space can be compressed further. Our next
observation is that a coloring of the conict graph also
de�nes an acyclic orientation.

Theorem 5 Let g = hV;Ei � Block�(Block�Block)
be a memory conict graph, and for any coloring C :
V 7! N of g, there exists an acyclic orientation F of
g.

Proof: Let F = fhu; vi 2 EjC(u) < C(v)g. Suppose
9hu; vi 2 E; hu; vi =2 F ^ hv; ui =2 F , then C(u) =
C(v), which implies that hu; vi =2 E, a contradiction.
Therefore, F is an orientation. It is trivial to prove
that F is also acyclic. 2

This leads to the strategy that a minimum coloring
of the conict graph is �rst found, and then di�erent
permutation of the color assignment is used to de�ne
the solution space. If we denote the chromatic number,
that is, the number of color used in the minimum col-
oring, as �, then the size of the solution space becomes
�!, which is substantially smaller than n!. Algorithm 4
shows the detail of a greedy search algorithm.

Algorithm 4

allocByPerm = func( V : hiBlock; E : V � V ) : V 7! N f 63
var clr; newClr : V 7! N ; 64
var F : V � V ; 65
var cost; newCost; count : N ; 66
var sched; newSched : V 7! N ; 67

68
cost = 1; 69
newClr = color(V;E); 70
do f 71

F = orient(V;E; newClr); 72
newSched = asapSchedule(V; F ); 73
newCost = jjnewSchedjj; 74
if( newCost < cost ) f 75

cost = newCost; clr = newClr; 76
sched = newSched; count = 0; 77
g 78

else 79
count = count+ 1; 80

newClr = perturb(V; clr); 81
g while( count < threshold ) ; 82

return sched ; 83
g 84

85
orient = func( V : hiBlock; E : V � V; clr : V �N ) : V � V f86

var F : V � V ; 87
forall( hu; vi 2 E ) f 88

if( clr(u) < clr(v) ) 89
F = F [ hu; vi; 90

else 91
F = F [ hv; ui; 92

g 93
return F ; 94
g 95

96
perturb = func( V : hiBlock; clr : V 7! N ) : V 7! N f 97

var c1; c2 : N ; 98
c1 = random(0;maxv2V clr(v)); 99
c2 = random(0;maxv2V clr(v)); 100
forall( v 2 V ) f 101

if( clr(v) = c1 ) clr(v) = c2; 102
else if( clr(v) = c2 ) clr(v) = c1; 103
g 104

return clr ; 105
g 106

107

Note that while the solution space is substantially
compressed, it is no longer P-admissible. Fortunately,
our experiments, as detailed in the next section, show
that a near-optimal solution can always be found. In
addition, expensive search strategies such as simulated
annealing are not necessary in practice.
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7 Experimental Result

7.1 Benchmark Methodology

Benchmarking the memory allocation algorithms is
not a straight-forward issue for the following reasons:

� The research in this area is still at an early age
and hence unlike well-established areas such as
logic synthesis, there is no standard benchmarks
available.

� Previous work has assumed di�erent computa-
tional models, not to mention the di�erent syn-
tax, of the input programs to be optimized, which
makes quantitative evaluation of di�erent ap-
proaches very hard, since the experiments are dif-
�cult to repeat.

� The memory allocation problem is best solved
by breaking down into several smaller problems,
for example, dataow analysis, intra-block allo-
cation and inter-block allocation. The quality of
the algorithms for each of the problems is not im-
mediately evident if only the net result is shown.

Since this work focuses on inter-block allocation al-
gorithms, it would be inappropriate to demonstrate
the e�ectiveness of this e�ort by simply displaying the
memory allocation result for an arbitrarily chosen set
of C benchmarks, since the accuracy of dataow anal-
ysis algorithms (how to derive the conict graph), and
e�ectiveness of inter-block algorithms, also play an ex-
tremely important role in the �nal result. Further-
more, these C benchmarks often cannot \stress" the
algorithm very well since the problem size that they
present is too small to demonstrate the di�erences be-
tween algorithms in terms of space and runtime etc.

Given these considerations, we followed a di�erent
experiment methodology to evaluate our algorithm.
We obtain the memory conict graphs directly from
the standard DIAMCS benchmark set [?] for evaluat-
ing coloring algorithms. This solves the comparability
problem since it is a standard and available to every-
one. In addition, the size of the graph in the bench-
mark tends to be much larger than the size of graphs
in memory allocation problem. Our own experience
also shows that the memory conict graph obtained in
real life examples, often exhibit the same characteris-
tics (appearance) as the coloring graph contained in
the DIAMCS benchmark.

The DIAMCS graph, on the other hand, does not
contain the memory block size information. We opt to
generate it randomly. Generating sizes with uniform
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Figure 5. Memory block size probability den-
sity function

distribution would be inappropriate since it does not
reect close enough to reality. Instead, we generate
memory sizes according to a probability density func-
tion (PDF), which is in turn obtained by pro�ling the
real life examples. Figure 5 shows the normalized PDFs
for EPIC (E�cient Pyramid Image Coder), JPEG
(still image codec), MPEGDEC (MPEG2 decoder) and
MPEGENC (MPEG encoder), each of which is taken
from the MediaBench benchmark set [?].

7.2 Results

We implemented the discussed algorithms in the C
programming language and applied them on the DI-
AMCS benchmarks with randomly generated memory
sizes, as described in Section 7.1. The result is sum-
marized in Table 1: For each benchmark, we show its
size in terms of the number of nodes and edges in the
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graph. We also report the allocation results for both
the coloring based algorithm (color) and our proposed
algorithm (perm), as well as its percentage of improve-
ment over the coloring based algorithm. The algorithm
runtime in units of milliseconds on a Ultra-5 Sun work-
station with 128M of memory is also displayed.

We found that our algorithm performs on average
30% better than the coloring algorithm. Although
not shown in Table 1, we found that the proposed al-
gorithm performs signi�cantly better, although with
longer runtime, than the algorithm we proposed in
an earlier unpublished study [?], which used heuristic
acyclic orientation to obtain an allocation, but with-
out further iterative improvement. We also found that
algorithm can achieve better results with less runtime
than the cubical algorithm described in [?].

8 Conclusion

In this paper, we present the importance of mem-
ory minimization under the context of systems-on-chip.
We then present a new algorithm for the global min-
imization of memory sizes. The novelty of this tech-
nique lies in the observation that memory allocation
problem can be e�ciently solved if an orientation of the
conict graph is found and such orientation can be fully
characterized by a permutation of its vertices, or a per-
mutation of the vertex colors. The algorithm can then
be elegantly encoded in the classic iterative improve-
ment framework with a complexity of O(h(jV j + jEj),
where h is the number of iterations. This algorithm
can quickly converge due to the fact that the size of
the solution space is only �!, where � is the chromatic
number of the conict graph.

In the future, we will study the interaction of this
algorithm with other tasks, such as aggressive inter-
procedural dataow analysis, in the bigger context of
memory optimization for system-on-chip.
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