
Symbolic Pointer Analysis Revisited ∗

Jianwen Zhu Silvian Calman
Department of Electrical and Computer Engineering

University of Toronto, Toronto, Ontario, Canada�
jzhu, calman

	
@eecg.toronto.edu

ABSTRACT
Pointer analysis is a critical problem in optimizing compiler, par-
allelizing compiler, software engineering and most recently, hard-
ware synthesis. While recent efforts have suggested symbolic method,
which uses Bryant’s Binary Decision Diagram as an alternative to
capture the point-to relation, no speed advantage has been demon-
strated for context-insensitive analysis, and results for context-sensitive
analysis are only preliminary.

In this paper, we refine the concept of symbolic transfer func-
tion proposed earlier and establish a common framework for both
context-insensitive and context-sensitive pointer analysis. With this
framework, our transfer function of a procedure can abstract away
the impact of its callers and callees, and represent its point-to in-
formation completely, compactly and canonically. In addition, we
propose a symbolic representation of the invocation graph, which
can otherwise be exponentially large. In contrast to the classical
frameworks where context-sensitive point-to information of a pro-
cedure has to be obtained by the application of its transfer func-
tion exponentially many times, our method can obtain point-to in-
formation of all contexts in a single application. Our experimen-
tal evaluation on a wide range of C benchmarks indicates that our
context-sensitive pointer analysis can be made almost as fast as its
context-insensitive counterpart.

Categories and Subject Descriptors
D.3 [Software]: Programming Languages; D.3.4 [Programming
Languages]: Processors – compilers, optimization

General Terms
Languages, Experimentation

Keywords
Pointer analysis, call graph construction, binary decision diagrams

∗This work is supported by NSERC and University of Toronto.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLDI’04 June 9–11, 2004, Washington DC, USA
Copyright 2004 ACM 1-58113-807-5/04/0006 ...$5.00.

1. INTRODUCTION
As an abstraction of memory addresses, a pointer is one of the

most powerful yet problematic constructs in modern imperative
programming languages. Pointers are often the sources of non-
trivial software bugs, such as freed memory accesses and memory
leaks, which reveal symptoms much later than their causes. Point-
ers significantly reduce the effectiveness of compiler optimizations,
since they cause memory alias problems that obscure the data de-
pendency. In addition, the presence of function pointers and virtual
functions complicates the complete construction of call graphs and
therefore interprocedural optimization. Pointers also limit the prac-
tical application of classical behavioral synthesis, which strives to
compile an ordinary program directly into digital hardware, since
the hardware semantics of pointers are not yet clear. Pointer analy-
sis, which determines thepoint-to information, or the runtime val-
ues of program pointers at compile time, is therefore a subject of
intensive research for the last two decades in the broad areas of pro-
gramming languages, optimizing and parallelizing compiler, soft-
ware engineering and more recently, computer-aided design (CAD)
for integrated circuits.

The reported analysis algorithms vary with different accuracy-
speed tradeoff and can be categorized according to two criteria:
flow sensitivityandcontext sensitivity. A flow-insensitive (FI) al-
gorithm ignores the order of statements when it calculates pointer
information, whereas a flow-sensitive (FS) algorithm takes control
flow within a procedure into account. A context-insensitive (CI) al-
gorithm does not distinguish the different calling contexts of a pro-
cedure, whereas a context-sensitive (CS) does. Fast polynomial al-
gorithms, such as derivatives of Steensgaard’s [36] and Andersen’s
[3], have been developed for context-insensitive analysis. It has
been shown that state-of-the-art implementation of CI analysis can
analyze million-line code [19]. On the other hand, most context-
sensitive analysis algorithms reported in the literature suffer from a
worst-case exponential time complexity. The best efforts today to
address the scalability problem seem to be the use of partial con-
text sensitivity [27], or the use of a polymorphic, constraint-based
analysis engine [17, 16].

Representing a wide departure from the traditional methods that
use explicit point-to graph to capture the program state, in [41] we
proposed the use of Binary Decision Diagram (BDD) to capture the
point-to relation implicitly as Boolean functions and demonstrated
positive, yet preliminary runtime result for context-sensitive anal-
ysis. In [5] Berndl et. al. demonstrated the space efficiency of a
similar method applied to the context-insensitive analysis of Java
programs. In this paper, we extend the previous two efforts and
make the following contributions.

• Symbolic transfer function. We extend our original pro-
posal of symbolic transfer function in [41], which uses a

Boolean function represented by BDD to capture the pro-
gram state of a procedure as a function of its caller program
state. Our extension allows the additional parameterization
of callee program state, which enables the capture of transfer
functions in a single pass.

• Common CI/CS symbolic analysis framework. We estab-
lish a common, efficient framework for both context-sensitive
and context-insensitive analysis. This not only enables the
leverage of transfer function for the first time to speed up CI
analysis, but also enables the study of speed-accuracy trade-
off among a spectrum of symbolic analysis methods with dif-
ferent context-sensitivity. To the best of our knowledge, such
frameworks useful in many studies [22, 21, 23, 17] have not
been reported for BDD-based pointer analysis.

• Symbolic invocation graph. Most previous methods [14,
39] for context sensitive analysis, including our own [41], re-
quires the construction of an invocation graph, which can be
exponentially large. To avoid this problem, we propose the
use of BDDs to annotate the call graph edges with Boolean
functions to implicitly capture the corresponding invocation
edges. Such representation of the invocation graph leads to
the exponential reduction of memory size in practice.

• State superposition. In contrast to the previous efforts where
program states of a procedure under different calling contexts
have to be evaluated separately by the application of transfer
functions, we devise a scheme where the the symbolic invo-
cation graph is leveraged to collectively compute a superpo-
sition of all states of a procedure under different contexts.
This leads to an exponential reduction of analysis runtime in
practice.

The implementation of the aforementioned ideas yielded inter-
esting new results on a comprehensive set of C benchmarks. First,
we show that the speed of the symbolic method can be made com-
parable to the traditional methods for context-insensitive analysis
[23]. Second, we show that context-sensitive analysis can have a
runtime in the same order of magnitude as its context-insensitive
counterpart.

The rest of the paper is organized as follows. In Section 2, we
describe the construction of our symbolic transfer function. In Sec-
tion 3, we describe our analysis framework as well as the core algo-
rithms involved. In Section 4, we describe the symbolic invocation
graph and show how it can be used to compute the state superposi-
tion. In Section 5, we complement the theory with a discussion on
various engineering issues. In Section 6, we present experimental
results. We discuss the related work in Section 7.

2. SYMBOLIC TRANSFER FUNCTION

2.1 Symbolic Program State
The goal of pointer analysis is to statically estimate the runtime

program state, or the set of values each program location can hold.
To trade accuracy for analysis speed, we often collapse related pro-
gram locations together, thereby forming ablock. Locations within
a block are not distinguished. The blocks can be global variables,
or local variables, or procedure parameters, or dynamically allo-
cated memory blocks. The values of interest are only the addresses
of the blocks.

EXAMPLE 1. Consider the C program in Figure 1 (a), which is
modified from [27]. The program contains global blocks g, a, local
blocks p, q, r, t, f, and a dynamic block m allocated at S3.

The program state is often abstracted as apoint-to graph〈V, E〉,
whose verticesV represent the set of blocks, and an edge〈u, v〉 ∈
E from blocku to blockv indicates that it is possible that the con-
tent of blocku is the address of blockv. The set of all edges defines
the point-to relation.

EXAMPLE 2. Figure 2 shows a point-to graph capturing the
program state after the completion of the main procedure in Exam-
ple 1.

a

gp q

m

Figure 2: Program state on the completion of Example 1.

In [41], we proposed an alternative way to capture the point-to
relation, which associates each blocku with two Boolean func-
tions, called its domain (denoted byu∗) and range (denoted by
u for convenience). The set of domain functions of all blocks
form an orthogonal function set in the Boolean space, called the
domain space, spanned by the set of Boolean variables−→x ∗ =
{x∗

0, ..., x
∗
n−1}, such that∀u 6= v, u × v = 0. Similarly, the set of

range functions of all blocks form a orthogonal function set in the
companion Boolean space, called the range space, spanned by the
set of Boolean variables−→x = {x0, ..., xn−1}.

The domain and range functions of blocks are most conveniently
selected as disjointminterms in the Boolean spaces [18]. For each
block u ∈ V , we denote its corresponding minterms asX∗

u, Xu,
or simplyu∗, u1. Example 3 shows the assignment of minterms to
the blocks. It is important to note that with this encoding scheme,
the dimension of the Boolean spaces−→x and−→x ∗ is an exponential
reduction of the number of minterms, or the number of blocks. This
fact directly contributes to the efficiency of our representation, as
will be explained in Section 2.3.

EXAMPLE 3. The following table shows how the blocks in Ex-
ample 1 are mapped to minterms in the Boolean spaces−→x and
−→x ∗. Note that the dimension (number of Boolean variables) of
both spaces is 4.

domain range
a∗ = X0 = x̄∗

0x̄∗
1x̄∗

2x̄∗
3 a = X∗

0 = x̄0x̄1x̄2x̄3

g∗ = X1 = x̄∗
0x̄∗

1x̄∗
2x∗

3 g = X∗
1 = x̄0x̄1x̄2x3

p∗ = X2 = x̄∗
0x̄∗

1x∗
2x̄∗

3 p = X∗
2 = x̄0x̄1x2x̄3

q∗ = X3 = x̄∗
0x̄∗

1x∗
2x∗

3 q = X∗
3 = x̄0x̄1x2x3

t∗ = X4 = x̄∗
0x∗

1x̄∗
2x̄∗

3 t = X∗
4 = x̄0x1x̄2x̄3

r∗ = X5 = x̄∗
0x∗

1x̄∗
2x∗

3 r = X∗
5 = x̄0x1x̄2x3

f∗ = X6 = x̄∗
0x∗

1x∗
2x̄∗

3 f = X∗
6 = x̄0x1x2x̄3

m∗ = X7 = x̄∗
0x∗

1x∗
2x∗

3 m = X∗
7 = x̄0x1x2x3

We can now capture the point-to relation by mapping each edge
〈u, v〉 in the point-to graph by a Boolean productu∗v, whereu∗

represents the domain minterm ofu, andv represents the range
minterm ofv. In other words, given a program state represented by
E, the point-to relation can be represented by a Boolean function
Σ〈u,v〉∈Eu∗v.

1Hereafter we use the convention that subscripted lower case letters
denote Boolean space variables, whereas subscripted upper case
letters denote minterms in the Boolean space.

char *g, a; 1
void main(){ 2

char *p, *q; 3
S1: alloc(&p); 4

getg(&q); 5
g = &a; 6
} 7

8
void getg(char** r){ 9

char **t = &g; 10
if(g == NULL) 11

S2: alloc(t); 12
*r = *t; 13
} 14

15
void alloc(char** f) { 16
S3: *f = malloc(1); 17
} 18

(a) C source code

alloc getg main

λ0

θ0f

m θ2λ1

θ1

g

r t

a

g

T alloc

= f∗λ0 + θ∗
0m

= x̄∗
0x

∗
1x

∗
2x̄

∗
3x0x̄1x̄2x̄3

+ x∗
0x̄

∗
1x̄

∗
2x3x̄0x1x2x3

T getg

= r∗λ1 + t∗g + θ∗
1θ2

= x̄∗
0x

∗
1x̄

∗
2x

∗
3x0x̄1x2x̄3

+ x̄∗
0x

∗
1x̄

∗
2x̄

∗
3x̄0x̄1x̄2x3

+ x∗
0x̄

∗
1x

∗
2x

∗
3x0x1x̄2x̄3

T main

= g∗a

= x̄∗
0x̄

∗
1x̄

∗
2x

∗
3x̄0x̄1x̄2x̄3

(b) Transfer functions

Figure 1: A walk-through example.

EXAMPLE 4. The program state in Example 2 can be repre-
sented by a Boolean function:

p
∗
m + g

∗
m + g

∗
a + q

∗
m + q

∗
a

= x̄∗
0 x̄∗

1x∗
2 x̄∗

3 x̄0x1x2x3 + x̄∗
0 x̄∗

1 x̄∗
2x∗

3 x̄0x1x2x3

+ x̄∗
0 x̄∗

1 x̄∗
2x∗

3 x̄0x̄1x̄2x̄3 + x̄∗
0 x̄∗

1x∗
2x∗

3 x̄0x1x2x3

+ x̄
∗
0 x̄

∗
1x

∗
2x

∗
3 x̄0x̄1x̄2x̄3

2.2 Symbolic Transfer Function
The point-to graph can be used to represent the program state in

a procedure only when the program state before the procedure is
called is known. To safely capture the point-to relation under all
circumstances, the concept of transfer function, which can be intu-
itively considered as point-to relation parameterized over different
calling contexts, has been widely used [39, 10, 11]. The parameters
of the transfer function do not necessarily correspond to the param-
eters of the procedure. In fact, anymemory dereferences, including
parameter, local and global dereferences within the procedure can
be a transfer function parameter, since their values are not known
until the state of its caller is known. A memory dereference can be
characterized by the notion ofaccess path〈b, l〉, whereb is the root
memory block, andl is the level of dereferences. An access path
with the form 〈b, 0〉 is trivial and always resolve to the constant
address valueb, whereas an access path with the form〈b, 1〉 repre-
sents the address values stored inb. After the transfer functions of
procedures are derived, they can beappliedat their corresponding
call sites by substituting the parameters, or the unknowns, with the
known program state.

Many analysis techniques, especially those that are context-insensitive,
do not use transfer functions [5]. While the overhead of transfer
function application can be avoided, these techniques may have to
re-analyze the procedures, which is often the case during fixed-
point iteration. This not only implies redundant computation, but
also implies that the program information has to be kept in memory
during analysis. This potential scalability problem leads us to the
decision of using the transfer function approach even for context-
insensitive analysis.

In [41] we introduce the notion ofinitial state blocks, each
of which corresponds to the set of possible values of a memory
dereference beforeenteringthe procedure. An initial state block is
treated as if it was a separate memory block.

One problem with only using initial blocks as transfer function
parameters is that the transfer function of a procedure depends very

much on the transfer functions of its callees. To make sure that the
point-to information of a procedure is evaluated as late as possible,
in this paper we introducefinal state blocks, which represent pos-
sible values of a memory dereference beforeleavingthe procedure.
Again, we use disjoint minterms in Boolean spaces−→x ∗ and−→x to
encode initial and final state blocks. We follow the convention that
the mintermsλk andθk represents the initial and final state block
for memory dereferencek respectively.

EXAMPLE 5. Consider the procedure alloc in Example 1, where
the parameter f is dereferenced. Since the value of f is unknown, we
cannot determine the memory blocks to be updated. With the intro-
duction of the initial state blockλ0, and the final state blockθ0, the
procedure can be summarized with a transfer function as shown
in the point-to graph of Figure 1 (b). Similarly, we can obtain
the transfer function of procedure getg in Example 1 in Figure 1
(b) where memory dereference 1 corresponds to *r and memory
dereference 2 corresponds to **t2. The introduced initial and final
blocks can be encoded as minterms in−→x and−→x ∗ in the following
table.

domain range deref
λ∗
0 = X∗

8 = x∗
0x̄∗

1x̄∗
2x̄∗

3 λ0 = X8 = x0x̄1x̄2x̄3 *f = 〈f, 1〉
θ∗0 = X∗

9 = x∗
0x̄∗

1x̄∗
2x3 θ0 = X9 = x0x̄1x̄2x3 *f = 〈f, 1〉

λ∗
1 = X∗

10 = x∗
0x̄∗

1x∗
2x̄∗

3 λ1 = X10 = x0x̄1x2x̄3 *r = 〈r, 1〉
θ∗1 = X∗

11 = x∗
0x̄∗

1x∗
2x∗

3 θ1 = X11 = x0x̄1x2x3 *r = 〈r, 1〉
θ∗2 = X∗

12 = x∗
0x∗

1x̄∗
2x̄∗

3 θ2 = X12 = x0x1x̄2x̄3 **t = 〈t, 2〉

In addition, we introduce final blocks corresponding to actual pa-
rameter values passed to procedures at Line 4, 5 and 12 respec-
tively. Note that while they do not appear in transfer functions,
they will be used in the future for transfer function application.

domain range deref
θ∗3 = X∗

13 = x∗
0x∗

1x̄∗
2x∗

3 θ3 = X13 = x0x1x̄2x3 p = 〈p, 0〉
θ∗4 = X∗

14 = x∗
0x∗

1x∗
2x̄∗

3 θ4 = X14 = x0x1x2x̄3 q = 〈q, 0〉
θ∗5 = X∗

15 = x∗
0x∗

1x∗
2x∗

3 θ5 = X15 = x0x1x2x3 *t = 〈t, 1〉

2.3 Binary Decision Diagram
We have established the use of Boolean functions as an alterna-

tive to capture the point-to relation. However, other than being well

2Note that here we follow the convention of writing L-values, thus
the R-value *t at line 14 of Example 1 is written as **t.

 alloc

d3

9b

1

aa

89

c0

92

91

8a

x0

x∗
0

x1

x∗
1

x2

x∗
2

x3

x∗
3

 getg

e0

9e dd

92

1

bc

9f8f

c3 93 c7

ac a2ab

a1 8e d4

8a

x0

x∗
0

x1

x∗
1

x2

x∗
2

x3

x∗
3

 main

d3

89

1

a2

97

8d

9a

b0

8a

x0

x∗
0

x1

x∗
1

x2

x∗
2

x3

x∗
3

 alloc getg

d3

 main

e4 e8

92

1

ab b6 de

e5 e7 b0d2

81 ced08e

8dc3 93 c7c0

d5 94 d8 9a

c2b7 b2

8a

x0

x∗
0

x1

x∗
1

x2

x∗
2

x3

x∗
3

(a) alloc (b) getg (c) main (d) all

Figure 3: Transfer functions in BDD.

founded on the formalism of Boolean algebra, we have not yet jus-
tified its use in terms of efficiency. In this section, we introduce
Bryant’s Reduced Ordered Binary Decision Diagram (ROBDD or
simply BDD) [6], a proven technology for the efficient manipula-
tion of Boolean functions.

Traditional representations of Boolean functions include truth
tables, Karnaugh maps, or sum-of-products [18], each suffering
from an exponential size with respect to the number of variables.
Bryant used a rooted, directed binary graph to represent an arbitrary
Boolean function. Given a Boolean space−→x = {x0, x1, x2, ..., xn−1},
a Boolean functionfv corresponds to a graph rooted at graph node
v. Each node in the graph is characterized by anindex i, corre-
sponding to a Boolean variablexi, as well as its negativecofac-
tor flow and positive cofactorfhigh, each of which is by itself a
Boolean function, and therefore a graph node. Logically,fv is re-
lated to its two cofactors by Shannon expansionfv = xiflow +
x̄ifhigh. Two outstanding nodes, called theterminal nodes, rep-
resent the constant logic value 0 and 1. The terminal nodes are
assumed to have an index of infinity. By imposing two invariants
on the graph, Bryant manages to keep the representation canoni-
cal. First, all variables have a fixed ordering, that is, the index of
any non-terminal node must be less than the index of its cofactors.
Second, all isomorphic subgraphs are reduced into one, that is, if
the cofactors of two graph nodesu andv are the same, and their
indices are the same, then they will be the same.

Figure 3 shows the BDD representation of symbolic transfer func-
tions in the previous section. Note that we use BDD to represent
both the transfer functions and the program states. The fact that
BDD is nothing but a graph representation of a Boolean function
begs the question that why we do not use the point-to graph in the
first place, which seems to be much more intuitive. One primary
advantage of using BDD is that point-to graphs need to be main-
tained for every procedure, each of which may share many common
edges. In other words, there is a large amount of redundancy. In
contrast, BDD enables the maximum sharing among graph nodes,
and point-to information in different procedures, at different pro-
gram points can be reused. As an example, the internal BDD nodes
8a, d5, c2are shared among different transfer functions. As the
program grows large, such sharing occurs in a large scale. As a
result, when BDD is used to represent a point-to set, its size is not
necessarily proportional to its cardinality, as in the case of point-
to graph – often times it is proportional to the dimension of the
Boolean space. This space efficiency will translate into speed effi-
ciency, as will become apparent in later sections.

3. SYMBOLIC POINTER ANALYSIS FRAME-
WORK

3.1 Recurrence Equations
We now describe our pointer analysis framework. In order to fo-

cus on the fundamentals, rather than the implementation details, we
assume that after preprocessing, the program can be characterized
by the following mathematical model. Note that in this model we
do not distinguish between call graph and invocation graph, thus
both context-insensitive analysis and context-sensitive analysis can
be applied equally well based on this formulation. Also note that
for now we assume there is no dynamic procedure calls. The call
graph or invocation graph can therefore be built in advance. This
assumption will be relaxed by more careful engineering discussed
in Section 5.

• I ⊂ [0,∞) is the set of procedures. For context-insensitive
analysis, they correspond to the nodes in the call graph. For
context-sensitive analysis, they correspond to the nodes in
the invocation graph, each of which corresponds to a call-
ing path in the call graph. We also assume that procedure0
corresponds to the top procedure in the whole program.

• J ⊂ [0,∞) is the set of memory blocks contained in the
program. It includes globals, locals, parameters as well as
heap objects.

• K ⊂ [0,∞),∀i ∈ I corresponds to the set of memory deref-
erences.

• D : K 7→ J ×Z characterizes the access path of each mem-
ory dereferencek ∈ K by a tuple〈b, l〉 whereb ∈ J is a
memory block, andl ∈ Z is the level of dereferences. This
representation can be extended with more complex access
patterns.

• {T i(
−→
λ ,

−→
θ)|∀i ∈ I} corresponds to the set of transfer func-

tions for each procedurei. Here
−→
λ = [λ0, ...λ|K|−1] cor-

responds to the initial state blocks, and
−→
θ = [λ0, ...λ|K|−1]

corresponds to final state blocks.

• C : I 7→ 2I corresponds to the calling relation.∀i ∈ I , C(i)
gives the set of callees ofi, C−1(i) gives the set of callers of
i.

• B : I × I × K 7→ K corresponds to parameter binding.
For each call site with calleri ∈ I and calleej ∈ I , and
the formal parameter dereferencek ∈ K, B(i, j, k) gives the
dereference in calleri corresponding to the actual.

The task of pointer analysis is therefore finding program state
Si for each procedurei ∈ I . We obtain the results by solving the
following recurrence equations.

Λi
k =

X

j∈C−1(i)

Θj
B(j,i,k), ∀k ∈ K, i ∈ I (1)

Θi
k = query(Si,D(k)), ∀k ∈ K, i ∈ I (2)

Si =
X

j∈C−1(i)

Sj +
X

j∈C(i)

Sj + (3)

T i(
−→
λ → −→

Λ i,
−→
θ i → −→

Θ i),∀i ∈ I

Equation (1) computes the initial value of a formal parameter,
or memory dereferencek in procedurei before entering the proce-
dure. It is computed by combining the states of the corresponding
actuals from all incoming callers. The set of callers are computed
by C−1(i). Given callerj and calleei, the actual memory deref-
erence corresponding to the formalk is given byB(j, i, k), whose
corresponding value is given byΘj

B(j,i,k)
. Equation (2) computes

the final value of memory dereferencek in procedurei before leav-
ing the procedure. It is computed by performing astate queryon
Si. Equation (3) computes the stateSi of procedurei. It is com-
puted by adding the states of its callers and callees as well as new
states originating from itself. The latter is computed by substituting
the initial and final state blocks that appear in its transfer functions
by the actual state blocks computed in Equation 1 and Equation 2.
This procedure is calledtransfer function application.

The recurrence equation set can be solved by standard iterative
framework that terminates at a fixed point. The initial condition for
the iteration is set in the following equation, which essentially com-
putes the sum of all parameter-independent point-to information in
the transfer functions.

Si =
X

i∈I

T i(
−→
λ → 0,

−→
θ → 0) (4)

EXAMPLE 6. The initial state of the program in Example 1 is
g∗a + t∗g.

3.2 Symbolic State Query
We now consider how to perform state query efficiently. Given a

memory dereference of blockb with level l, Algorithm 1 performs
the state query by computing the reachable envelop of depthl on
the point-to graph starting from blockb. In contrast to the tradi-
tional approach where a breadth-first search has to be performed to
explicitly enumerate all neighbors of a node in the point-to graph,
our representation enables the use of implicit technique originally
developed in the CAD community for the formal verification of
digital hardware. This approach relies on the efficiency ofimage
computation, which collectivelycomputes the set of successors in
a graph given a set of predecessors. Since in our representation,
a set of memory blocks can be represented as a Boolean function,
the image computation can be formulated as Boolean function ma-
nipulation, which in turn can be efficiently implemented on BDD.
As shown in Line 5, the image computation is performed by multi-
plying the state with the Boolean function of the predecessor in the
domain space, and then existentially abstracting away the Boolean
variables in the domain space. Example 7 illustrate how it works.
Many efforts have been invested to make this operation particularly
efficient [12, 13, 7, 29].

ALGORITHM 1. State query.

query(S, 〈b, l〉) { 1
if (l == 0) return Xb ; 2
else{ 3

domain = query(S,〈b, l − 1〉)|−→x →−→x ∗ ; 4
return ∃−→x ∗.[S ∧ domain] ; 5
} 6

} 7

EXAMPLE 7. Consider the state of proceduremainrepresented
by the point-to graph in Figure 2, which can be represented sym-
bolically byS = p∗m+g∗m+g∗a+q∗m+q∗a. To find out where
g points to, we first multiplyS by g∗. Sinceg∗ is orthogonal top∗

andq∗ by the property of minterms, the step yieldsg∗m + g∗a =
x̄∗

0x̄
∗
1x̄

∗
2x

∗
3x̄0x1x2x3 + x̄∗

0x̄
∗
1x̄

∗
2x

∗
3x̄0x̄1x̄2x̄3, in other words, all

irrelevant point-to facts are filtered. We then abstract away all do-
main variables−→x ∗, which yields̄x0x1x2x3+ x̄0x̄1x̄2x̄3 = m+a.

3.3 Symbolic Transfer Function Application
We now consider how to perform transfer function application

efficiently. A naive way is to find the cofactors of transfer function
T i with respect to each parameter to be substituted. For example,
the cofactor with respect toλk can be found by∃−→x .(λk∧T i). The
application result can then be found by summing up all cofactors
multiplied by the corresponding substituent.

We propose a new method such that the substitutions can be
performedcollectively. This is achieved by introducing another
Boolean space−→y = {y0, ..., ym−1} and its companion−→y ∗, the
minterms of which are used to distinguish different memory deref-
erences such that dereferencek ∈ K corresponds to mintermsYk

and Y ∗
k respectively. In addition, we introduce another Boolean

variable pairz and z∗ to distinguish the initials and finals. The
Boolean variables introduced help to formdeterminants that can
help to distinguish the parameters to be substituted. We can then
modify each of the transfer functionT i into anaugmented transfer
function T̂ i where each occurrence of parameterλk is multiplied
by its determinant̄zYk, θk by zYk, andθ∗

k by z∗Y ∗
k θ∗

k.

EXAMPLE 8. The augmented transfer functions of procedures
in Example 1 are:T̂ alloc = f∗z̄Y0λ0+z∗Y ∗

0 m, T̂ getg = r∗z̄Y1λ1+
t∗g + z∗Y ∗

1 θ1zY2θ2 and T̂ main = T main.

Similarly, we can create abinding between all substituents and
parameters by multiplying each with the corresponding determi-
nant, that is,Λi

k by z̄Yk, Θi
k by zYk. As shown in Algorithm 2, the

binding can be used to multiply the augmented transfer function.
Since terms with different determinants will be canceled thanks to
the orthogonality of minterms, the desired result can be obtained
from the multiplication result by existentially abstracting away the
determinant variables.

ALGORITHM 2. Transfer Function Application.

apply(T̂ i,
−→
Λ i,

−→
Θ i) { 8

s = T̂ i; 9
binding =

P
k∈K(z̄YkΛi

k + zYkΘi
k); 10

s = ∃z.∃−→y .[T̂ i ∧ binding]; 11
binding∗ = binding|x→x∗,−→y →−→y ∗,−→z →−→z ∗ ; 12
return ∃z∗.∃−→y ∗.[s ∧ binding∗] ; 13
} 14

A

B

C

D E F

(a) call graph

A0

B0

C0

D0 E0 F0

C1

D1 E1 F1

(b) invocation graph

A

B

C

D E F

W∗
0 W0

W∗
0 W0

W∗
0 W1

W∗
0 W0+

W∗
1 W1

W∗
0 W0+

W∗
1 W1

W∗
0 W0+

W∗
1 W1

(c) symbolic invocation graph

Figure 4: Call graph and invocation graph.

4. SYMBOLIC INVOCATION GRAPH

4.1 Invocation Graph
An invocation graph is an expansion of the call graph [14]. Each

node in the call graph is expanded into multipleinstancesin the
invocation graph such that each node corresponds to a unique path
in the call graph. The node in the invocation graph thus identi-
fies a unique calling context. Figure 4 (a) shows the call graph
of a program, whose corresponding invocation graph is shown in
Figure 4 (b), where each node is labeled by an integer index repre-
senting the different instances of the procedure.

Invocation graph is essential for context-sensitive analysis since
program state corresponding to each node in the invocation graph
has to be computed. Unfortunately, the size of the invocation graph
is exponential in relation to the call graph size. Some analysis tech-
niques avoid the explicit construction of the invocation graph, how-
ever, the computation of context state still has to be carried out ex-
ponential number of times.

We now propose a new representation of the invocation graph
whose size can be reduced exponentially. We introduce a new pair
of Boolean spaces,−→w ∗ (domain) and−→w (range) to represent the
different instancesof a call graph node in the invocation graph.
A node in the invocation graph can therefore be identified by the
corresponding call graph node, as well as a minterm in the Boolean
space of interest. For example,C0 in Figure 4 (b) can be identified
by C and the mintermW0, andC1 can be identified byC and the
mintermW1.

We define asymbolic invocation graphto be a call graph where
each〈i, j〉, representing a call site from procedurei to procedurej,
is annotated with a Boolean functionE(i, j), representing the set
of invocation graph edges associated with〈i, j〉. Figure 4 (c) shows
the symbolic invocation graph equivalent to Figure 4 (b). For ex-
ample, the edge〈C, D〉 is annotated withW ∗

0 W0 +W ∗
1 W1, mean-

ing that〈C, D〉 in the call graph can be refined into〈C0, D0〉 and
〈C1, D1〉 in the invocation graph. Note that whenE(i, j) is rep-
resented by BDD, the BDD nodes can be shared among all edges
in the call graph. For example, the symbolic invocation edges for
〈C, D〉, 〈C, E〉 and〈C,F 〉 in the example in Figure 4 share a com-
mon BDD node since they have exactly the same pattern.

4.2 Symbolic Invocation Graph Construction
We now present our symbolic invocation graph construction al-

gorithm. Without loss of generality, in Algorithm 3 we only show
the construction algorithm for an acyclic call graph.

We maintain an instance count for each procedurei. Initially,
the instance count of the top procedure is set to 1. We then traverse
each procedure in topological order, and process each call graph

edge〈i, j〉. The symbolic invocation edgeE(i, j) is essentially a
relation between the set of all instances ofi to the set of instances
of j originating fromi. If we treat each instance as anumber, then
any〈u, v〉 ∈ E(i, j) satisfies two conditions: (a)u < count(i); (b)
u + offset= v.

Condition (a) can be generalized over any instance count number
into a relationR<(x, y). This relation can be easily pre-constructed
using BDD in a way that mimics the construction of the hardware
comparator [18] for “less than”, as shown in Figure 5 (a). Similarly,
condition (b) can be generalized over any offset number into a rela-
tion R+(x, y, z). This relation can be easily pre-constructed using
BDD in a way that mimics the hardware adder [18] concatenated
with a hardware comparator for equality, as shown in Figure 5 (b).
ComputingE(i, j) then amounts to plugging in the constant values
of instance count and offset into the pre-constructed relations and
then finding their conjunction. After a call graph edge is processed,
the offset value is updated accordingly. After all call graph edges
originating from a procedure are processed, its instance count is
updated accordingly.

We now show that both the space complexity of symbolic in-
vocation graph representation, and the time complexity of its con-
struction algorithm are polynomial with respect to the number of
call graph nodes. It is important to note that while the number of
contexts, or the number of call graph node instances, are exponen-
tial in relation to|I |, the number of BDD variables used to encode
the contexts is logarithmic to the number of contexts. Therefore,
|−→w | and |−→w ∗| is of O(|I |). On the other hand, it is well-known
that the BDD representations of both the adder and comparator cir-
cuits are linear with respect to the number of BDD variables, we
can therefore conclude that the size of the generalized relation is
O(|I |). Since BDD conjunction is proportional to the size of its
operands only, our conclusion follows.

ALGORITHM 3. Symbolic Invocation Graph Construction.

constructSymbolicInvocationGraph(){ 15
count(0) = 1; 16
forall (i 6= 0, i ∈ I) in topological order{ 17

offset =0; 18
forall (j ∈ C−1(i)) { 19

E(i, j) = R+(−→w∗, offset, −→w) ∧ R<(−→w∗, count(j)); 20
offset = offset+ count(j); 21
} 22

count(i) = offset; 23
} 24

} 25

x0 y0 x1 y1 x2 y2 x3 y3

0

(a)R<(x, y) : x < y

x0y0z0 x1y1z1 x2y2z2 x3y3 z3

0

(b) R+(x, y, z) : x + y = z

Figure 5: Construction of helper symbolic relations.

4.3 Symbolic State Superposition
We now demonstrate that the space efficiency achieved by the

symbolic invocation graph representation can be exploited to achieve
an exponential reduction of analysis runtime in practice as well.
The key idea is to compute the state of an invocation graph node as-
sociated with a common procedurecollectively. Note that this does
not mean we will collapse all states together, as is done in context-
insensitive analysis. Instead, we compute what we call astate su-
perposition, defined as the sum of all invocation graph node states
associated with a common procedure multiplied by the correspond-
ing minterms in the instance space−→w . Note that the state of an in-
dividual invocation graph node can be retrieved from the state su-
perposition easily by multiplying the corresponding minterm and
then abstracting away the instance variables.

EXAMPLE 9. Consider procedurealloc in Example 1, which
contains two invocation graph node instancesalloc0 and alloc1,
where the formal corresponds to the calling pathmain → alloc
and the latter corresponds to the calling pathmain → getg →
alloc. The state foralloc0 is p∗m. The state foralloc1 is g∗m.
The state superposition foralloc isW0p

∗m+W1g
∗m. The state of

alloc0 can be retrieved from the state superposition by∃−→w .[W0 ∧
(W0p

∗m + W1g
∗m)] = p∗m.

The recurrence equations (5), (6) and (7) are modified from equa-
tions (1), (2) and (3) to carry out context-sensitive analysis. Note
that the procedure of state query and transfer function application
remains unchanged, except that they now operate on state superpo-
sition.

All modified components concern propagating states, or point-
to facts from caller to callee and vise versa. The challenge stems
from the fact that in order to be context-sensitive, states need to be
translatedfrom the instance space of procedurei to a different in-
stance space of procedurej. Such translation can be achieved by
exploiting the symbolic invocation edgesE(i, j). For example, the
modified Equation (5), which is responsible for parameter binding,

first mirrors the actualΘj
B(j,i,k)

for parameterk into the−→w ∗ space,
and then multiply it byE(j, i). This way, the state information
from callerj will not corrupt the state information of other contexts
originating from a different caller ofi. The desired state values can
be obtained by further abstracting away the−→w ∗ variables. It is
important to note thatE(i, j) may capture thousands of actual in-
vocation edges, therefore the symbolic procedure described above
is very efficient. Similarly, in (7), such instance space translation
between callers and callees can be computed symbolically. Note
that when propagating point-to information from callee to caller,
irrelevant information, such as the state of callee formal parame-
ters needed not to be propagated. Such pruning can be computed
efficiently using symbolic method [41].

Λi
k =

X

j∈C−1(i)

∃−→w ∗.[Θj
B(j,i,k)|−→w→−→w∗ ∧ E(j, i)], (5)

∀k ∈ K, i ∈ I

Θi
k = query(Si,D(k)),∀k ∈ K, i ∈ I (6)

Si =
X

j∈C−1(i)

∃−→w ∗.(Sj |−→w→−→w∗ ∧ E(j, i)) + (7)

X

j∈C(i)

∃−→w.[prune(Sj) ∧ E(i, j)]|−→w∗→−→w +

apply(T̂ i,
−→
Λ i,

−→
Θ i),∀i ∈ I

EXAMPLE 10. The complete illustration of solving the above
equations for Example 1 can be found in Appendix A.

5. ENGINEERING ISSUES
We have left out several engineering issues in the theoretical dis-

cussion earlier. They are nevertheless important factors that con-
tribute to the overall efficiency of the proposed methods. Some
issues are common to all pointer analysis frameworks, some are
unique to the proposed symbolic analysis framework.

The presence ofrecursion in the program can make the invo-
cation graph infinitely large. We use Tarjan’s algorithm to detect
nested strongly connected components [37] in the call graph. The
acyclic symbolic call graph construction algorithm presented ear-
lier is then applied hierarchically in a bottom up fashion. The pres-
ence offunction pointersprevents the complete pre-construction
of the call graph. In our analysis, new call graph edges will be
dynamically added as new point-to information related to function
pointers are discovered. The affected symbolic edges will also be
dynamically constructed.

It is well known thatvariable orderinghas a large impact on the
size of BDD and dynamic variable reordering is often the strategy
of choice in many BDD-based algorithms. As later shown in Sec-
tion 6, we have found that for pointer analysis, the variable order
has a rather small impact on BDD size. As a result, dynamic vari-
able reordering adversely impacts the analysis speed. While we do
not perform variable reordering during the analysis, we do apply
one important constraint to the variable order. By making the cor-
responding variables in the domain and range spaces adjacent to
each other, we can keep the mirroring operation, which substitutes
the range variables in a Boolean function by its domain variables,
linear. As shown in Algorithm 1 Line 4, mirroring is a frequent
operation.

An extremely important technique that can help speed up the
analysis time is the use ofcaching. Caching keeps a hash table that
stores the result of a BDD computation. The hash table is keyed by

a signature consisting of the type of an BDD computation as well
as its operands, which are also BDDs. Thanks to the canonical
property of BDD, common BDD computation that shares the same
result can be easily identified by the signature and the result can be
reused on a large scale using the cache. This efficiency is in essence
the same as the dynamic programming principle: if a subproblem
can be uniquely identified, it should be solved only once and its
result should be shared by other upper-level problems. The use
of BDD allows dynamic programming to be applied at a very fine
grain level, which is otherwise very hard to identify manually.

Another important technique islazy garbage collection. BDD
nodes are often shared by other BDD nodes. When the reference
count of a BDD node goes to zero, its memory needs to be re-
claimed, or garbage collected. On the other hand, there is a high
chance that this BDD node maybe re-created later. We choose to
garbage collect a BDD node lazily, that is, only when a threshold
value of heap size is exceeded. As shown later in Section 6, this
choice has a positive impact on the analysis speed.

We also applyincremental evaluationof the recurrence equa-
tions, meaning that we only apply the equations on the changes
from the previous iterations. This greatly limits the computation
involved in the later iterations of the fixed-point computation since
the BDD size involved is much smaller. This technique is well
known in symbolic reachability analysis and is used in [5] as well.

6. EXPERIMENTAL RESULTS
Our symbolic pointer analysis tool is implemented in C, and

makes use of a compiler infrastructure to translate from several
frontends (e.g. C, Java, Verilog, etc.), into an intermediate rep-
resentation (IR). In thesetup pass, the infrastructure traverses the
IR generated by the frontends to produce the call graph (CG) and
control flow graph (CFG). Following the setup, anintraprocedu-
ral analysis passis performed on all user-defined procedures in
the program, iterating over the CFG and creating a flow-insensitive
transfer function for each procedure. Aninterprocedural passis
then followed, which performs either a context-insensitive analysis,
or context-sensitive analysis. We use Somenzi’s publicly available
CUDD package [35] for BDD implementation. Our current imple-
mentation does not support non-local control transfer (setjmp/longjmp
calls), location sets [39], and assumes no ill advised use of pointers
is made (like random memory accessing via integers). Heap objects
are named after the allocation site. Lastly, the C library function’s
transfer functions are precomputed and applied as necessary.

The goal of our empirical evaluation is three-fold. Our primary
goal is to quantify the speed and space efficiency of the proposed
symbolic method. Our second goal is to verify if a context-sensitive
analysis can provide more precision than context-insensitive anal-
ysis. Our third goal is to quantify the BDD-related engineering
issues discussed in Section 5.

With the common analysis framework described earlier, we re-
port results on both context-insensitive analysis (Referred to asCI)
and two types of context-sensitive analysis. Referred to asCS I,
the first type does not distinguish between call sites in a procedure
targeting the same callee. Note that results from [17, 16] are re-
ported with this type of context-sensitivity. Referred to asCS II ,
the second type does make such a distinction, and it was our ob-
servation that the size of contexts involved in CS II is significantly
larger than CS I.

We perform our evaluation against three benchmark suites:prolangs
[32], the popular benchmark suite from the pointer analysis com-
munity, the integer suite in SPEC2000 [1], and finally MediaBench
[25]. Theprolangsbenchmarks were utilized in evaluating the per-
formance of many pointer analysis algorithms, and as such serves

1

2

3

4

5

6

7

8

9

10

11

12

T
ot

al
 S

pa
ce

 (
 M

B
)

Contexts101 102 103 104 105 106 107 108 109 0

1

2

3

4

5

6

7

8

9

10

11

12

x 10
4

B

D
D

 N
od

es
 in

 S
ym

bo
lic

 In
vo

ca
tio

n
G

ra
ph

Total Space
Number of BDD Nodes

Figure 6: Memory usage versus context count.

as a valid comparison with previous work in this area. The SPEC2000
and MediaBench benchmarks, which are relatively large, are se-
lected to help study the robustness and scalability of our algorithm.
The characteristics of the reported benchmarks in this paper are
shown in Table 1.

The experiment was performed on a Sun Blade 150 workstation
with 550 MHz CPU and 128MB RAM, running on Solaris 8 Op-
erating System. The executable was built using gcc-2.93 with the
-O2 option.

6.1 Space Efficiency
We first demonstrate in Figure 6 that the symbolic representation

in general, and symbolic invocation graph in particular is efficient
in space. Here, the horizontal axis indicates the number of contexts
in the evaluated benchmarks inlog scale. It can be observed that
some benchmarks may approach half a billion contexts. In the first
plot, we show the total memory usage with respects to the context
count. The total memory usage never exceeds 11MB. We also plot
the number of BDD nodes used in the symbolic invocation graph.
Compared to the corresponding context count, which is the number
of invocation graph nodes if an explicit invocation graph represen-
tation is used, the BDD node count is exponentially smaller.

6.2 Runtime Efficiency
We now demonstrate the runtime efficiency of the proposed sym-

bolic analysis algorithms. The detailed results on runtime and mem-
ory statistics for three types of analysis are given in Table 6.2. Here,
the time for the setup pass is referred to as theSetup Time. The
time it takes the intra-procedural analysis pass to derive all transfer
functions is referred to as theIntra-Time. The time it takes for the
interprocedural analysis pass to reach a fixed point is referred to as
the Inter-Time.

We draw several observations from the runtime result. First, the
runtime of our context-insensitive analysis (CI), based on a loose
comparison with [23], is comparable with classical methods such
as Anderson’s algorithm. Second, the runtime of type 1 context-
sensitive analysis (CS I) is very close to its context-insensitive coun-
terpart. Almost all benchmark takes at most twice as much time to
execute. Third, the full-context sensitive analysis (CS II), is at most
6 times slower than its context-insensitive counterpart.

Figure 7 offers more insight on the dependency of total analysis
time versus context count. Again, the context count is indicated as
the horizontal axis inlog scale. Figure 7 also plots the construction
time of symbolic call graph. It is clear that even for benchmark
with half a billion contexts, the graph can be constructed in a few
seconds.

Table 1: Benchmark characteristics.

prolangs MediaBench SPEC2000
name #lines #contexts #blocks name #lines #contexts #blocks name #lines #contexts #blocks
315 1411 49 136 gsm 5473 267 1124 bzip2 4665 495 995

TWMC 24032 6522 4613 pegwit 5503 1968 1121 gzip 8218 503 905
simulator 3558 8953 1316 pgp 28065 199551 5265 vpr 16984 179905 4318

larn 9933 1750823 6180 mpeg2dec 9823 44979 2748 crafty 19478 317378 5282
moria 25002 318675286 9446 mpeg2enc 7605 1955 2997 twolf 19756 5538 4231

Table 2: Analysis runtime and space usage result.

Intra Inter Total Memory
Benchmarks time time time used

(s) (s) (s) (MB)

pr
ol

an
gs

315
CI 0.04 0.03 0.07 1.397
CS I 0.08 0.08 0.16 1.710
CS II 0.09 0.12 0.21 2.827

T-W-MC
CI 9.87 6.56 16.43 8.598
CS I 10.03 8.39 18.42 8.093
CS II 13.50 24.91 38.41 9.935

larn
CI 5.97 16.86 22.83 8.073
CS I 5.94 22.68 28.62 7.901
CS II 6.65 88.79 95.44 9.444

moria
CI 8.19 25.71 33.90 8.369
CS I 8.20 41.53 49.73 9.790
CS II 10.09 166.53 176.62 9.622

simulator
CI 0.93 0.64 1.57 4.161
CS I 0.93 1.73 2.66 5.595
CS II 0.96 2.64 3.60 7.279

M
e

d
ia

B
e

n
ch

gsm
CI 0.80 0.20 1.00 2.259
CS I 0.84 0.40 1.24 3.768
CS II 0.90 0.55 1.45 4.238

mpeg2dec
CI 1.96 1.06 3.02 4.503
CS I 1.92 1.44 3.36 7.696
CS II 2.38 3.84 6.22 7.532

mpeg2enc
CI 2.07 0.60 2.67 4.413
CS I 2.01 1.03 3.04 6.599
CS II 2.94 3.87 6.81 7.048

pegwit
CI 0.76 0.41 1.17 3.565
CS I 0.78 1.27 2.05 5.589
CS II 0.84 2.41 3.25 8.038

pgp
CI 4.83 7.87 12.70 6.918
CS I 4.92 15.52 20.44 7.697
CS II 5.79 50.92 56.71 9.454

S
P

E
C

20
00

bzip2
CI 0.64 0.20 0.84 3.279
CS I 0.65 0.37 1.02 3.834
CS II 0.70 0.70 1.40 4.962

crafty
CI 4.97 3.25 8.22 5.551
CS I 4.91 4.92 9.83 8.048
CS II 6.48 26.41 32.89 9.594

gzip
CI 0.74 0.19 0.93 3.496
CS I 0.78 0.36 1.14 4.072
CS II 0.89 1.14 2.03 5.880

twolf
CI 10.83 3.59 14.42 8.503
CS I 10.86 5.77 16.63 7.886
CS II 12.87 13.56 26.43 9.525

vpr
CI 5.21 2.50 7.71 5.339
CS I 5.05 6.97 12.02 7.568
CS II 5.80 14.49 20.29 8.899

0

20

40

60

80

100

120

140

160

180

T
im

e
(

s
)

Context s101 102 103 104 105 106 107 108 109

Total Analysis Time
Invocation Graph Construction Time

Figure 7: Algorithm runtime versus context count.

0

10

20

30

40

50

60

70

80

90

100

%
 D

iff
er

en
ce

 in
 d

er
ef

er
en

ce
s

T−W−MC larn moria pgp crafty twolf vpr

CI
CS I
CS II

Figure 8: Precision result.

6.3 Precision
Many studies have been performed on the impact of context sen-

sitivity on analysis precision [31, 17]. Since this study focuses on
the runtime of symbolic analysis, other analysis dimensions, such
as field sensitivity, heap naming scheme, which could significantly
affect the analysis precision, are not included. Our reported results
should therefore be taken as a confirmation that context-sensitivity
does help improve analysis precision for some benchmarks rather
than basis for a quantitative conclusion. We use the popular metric
of average dereference size, defined as the average size of a point-to
set for each memory load or store in the program. The dereference
sizes for all three types of analysis are plotted for comparison. As
in [17], we normalize the metric to the context-insensitive analysis
result. It can be observed that while large improvement can some-
time result with context-sensitive analysis, the difference between
the two types of context-sensitive analysis is usually minor.

0

10

20

30

40

50

60

70

80

H
it

%

T−W−MC larn moria pgp crafty twolf vpr

1 MB
10 MB
20 MB
30 MB

Figure 9: Cache hit rate.

0

20

40

60

80

100

120

140

160

180

200

A
na

ly
si

s
T

im
e

(
s

)

T−W−MC larn moria pgp crafty twolf vpr

TT 1 MB
GC 1MB
TT 10 MB
GC 10 MB
TT 20 MB
GC 20 MB
TT 30 MB
GC 30 MB

Figure 10: Time spent on garbage collection.

6.4 Impact of Caching
As discussed earlier, the cache is used to store the results of basic

BDD operations like AND, OR, and many others. As such, a higher
hit rate will translate into improved performance, since a successful
cache lookup requires fewer computations. The cache hit rate usu-
ally ranges from 40% to 60%. We also observe a lower cache hit
rate in the context-sensitive analysis. This can be explained by the
higher memory consumption in context-sensitive analysis, which
forces the BDD manager to evict nodes out of the cache.

It is obvious that the size of cache may impact the cache hit rate.
Figure 9 shows the cache hit rate of selected large benchmarks un-
der different cache size configurations. It can be observed that a
large cache size in general lead to a higher hit rate. On the other
hand, up to certain limit, increasing the cache size does not increase
the hit rate.

6.5 Impact of Lazy Garbage Collection
To see how lazy garbage collection can affect analysis speed,

we demonstrate the time spent on garbage collection versus other
processing time for selected benchmarks under different threshold
heap size values. It can be observed that in general a larger heap
size will reduce the amount of time spent on garbage collection
and therefore the overall analysis speed. On the other hand, there is
almost nothing to gain if the threshold is increased beyond a certain
value.

6.6 Impact of Variable Reordering
Variable reordering was attempted in order to see what improve-

ments might have in terms of space and runtime. Sifting, com-

0

20

40

60

80

100

120

140

160

180

200

T
im

e
(

s
)

T−W−MC larn moria pgp crafty twolf vpr

Other
Reordering

Figure 11: Time spent on variable reordering.

0

2

4

6

8

10

12

M
em

or
y

(M
B

)
T−W−MC larn moria pgp crafty twolf vpr

Reordered
Not Reordered

Figure 12: Memory size with/without variable reordering.

monly regarded as the best reordering algorithm, was used to dy-
namically reorder the BDD variables in the program. However, as
can be seen from Figure 11 and Figure 12, the results are rather
negative. The analysis takes longer to complete, with most of the
time spent on reordering the variables. Furthermore, even if we
discount the time spent on reordering the variables, only minor im-
provements are obtained in terms of runtime. In terms of space ef-
ficiency, no major improvements are obtained with few exceptions.
These results seem to show that variable reordering, as is done by
the CUDD package, offers no improvement over our static variable
ordering.

7. RELATED WORK
Due to its importance, pointer analysis has been actively inves-

tigated for the past two decades. Hind gave an excellent survey
on the state-of-the-art in the field [20]. According to Hind, over
seventy-five papers and nine PhD thesis was published on the sub-
ject by the time [20] was published.

In the category of FICI pointer analysis, Steensgaard’s work [36]
stands out as the first equality-based method, which treats assign-
ment as bidirectional and uses a union-find data structure. His ana-
lyzer is extremely fast and has analyzed million lines of industrial
code. However, the precision of equality-based approach degrades
very fast in general, even with later improvement [40]. Andersen’s
[3] popular subset-based improves precision by treating assignment
as a unidirectional flow of values. However, Andersen’s algorithm
has a cubic runtime.

While there are many variations and improvements of Steensg-
gard’s and Anderson’s algorithm, a major advancement of analysis

efficiency attributes to the use of a constraint-based solver [15, 30].
With this formulation, the point-to information is evaluated lazily
– instead of modeling the state of a block as the immediate succes-
sors of the corresponding node in the point-to graph, it is modeled
as all nodes reachable from the corresponding node. Point-to in-
formation of different blocks can therefore be shared via common
path. As a result, the state-of-the-art implementation of this method
for FICI analysis can scale to million-line code [19].

A definition of context-sensitivity has been given in [34]. The
most popularly used form of context-sensitivity is the concept of
call string, defined as a path of call sites on the call stack. A
new form, called object-sensitivity has been proposed for object
oriented programs [28]. Landi et al. [24] first performed context-
sensitive pointer analysis by the use of inter-procedural control flow
graph, which can be prohibitively large. Emami et al. [14] intro-
duced the use of invocation graph, where control flow graph among
different invocations of the same procedure can be shared. Wilson
and Lam [39] also used invocation graph. In addition, the concept
of partial transfer function was proposed in an effort to reduce the
number of times a procedure has to be re-analyzed. Chatterjee et
al. [10] proposed the use of summary functions to completely cap-
ture the transfer function of a procedure. A further development
with the same strategy was proposed by Cheng and Hwu [11], with
the addition of using access path originating from parameters and
globals as transfer function parameters.

Context-sensitive analysis algorithms suffer from an exponential
runtime in general. Several efforts target towards analysis scala-
bility. One direction is to use partial sensitivity. For example, Re-
cently Liang and Harrold [27]’s analyzer treats globals in a context-
insensitive way and is able to analyze industrial programs. Another
direction is to exploit the efficiency of constraint-based solver, which
is extremely successful in context-insensitive analysis. F¨ahndrich
et al. reported a polymorphic (context-sensitive) analyzer (equiva-
lent to CS I) with a cubic runtime [16].

Even though the concept of BDD appeared much earlier [2], it
was Bryant’s ROBDD [6], designed to be compact and canonical,
makes it successful. It was applied to a wide range of tasks, in-
cluding simulation, synthesis and formal verification in the CAD
community. McMillan et al. [9] and O. Coudert et al. [12] were
the first to introduce BDD into the model checking of sequential
circuits, which can be abstracted as finite state machines. Their
pioneer work replaces the explicit state enumeration by implicit
state enumeration using BDDs. This key concept, complemented
by further improvements [7, 13, 8, 29], was responsible for the first
application of model checking to practical problems.

Other efforts in using a Boolean framework for program anal-
ysis can be found in areas such as shape analysis [33] and pred-
icate abstraction [4]. However, the number of Boolean variables
introduced in these frameworks is proportional to the number of
subjects of interest. The application of BDD technique to pointer
analysis problem was first reported in [41], where memory blocks
are logarithmically encoded into the Boolean domain. The concept
of symbolic transfer function and the use of BDD image computa-
tion to perform program state query was proposed and its speed
efficiency was demonstrated. Berndl et al. reported a context-
insensitive pointer analysis algorithm using BDD in [5], where the
space efficiency, and therefore better scalability than the classical
methods for analyzing Java programs was demonstrated. The inter-
est in exploiting BDD for program analysis seems to be growing:
in the same proceeding Lhot´ak and Hendren [26] built a relational
database abstraction on top of the low-level BDD manipulation to
facilitate program analysis. Whaely and Lam [38] reported another
method for context-sensitive analysis using BDD.

8. CONCLUSION
In this paper, we present a new formalism for pointer analy-

sis. Based on Boolean algebra, this formalism is simple enough
to be summarized in three recurrence equations. In addition, it en-
ables the use of Binary Decision Diagram to achieve both space and
speed efficiency. A common framework is established to perform
both context-insensitive and context-sensitive analysis.

Based on our study, we conclude that the key concepts proposed
in this paper, namely symbolic transfer function and symbolic in-
vocation graph, can effectively reduce the runtime of the other-
wise expensive context-sensitive analysis to one comparable to its
context-insensitive counterpart.

In the future, we plan to leverage and extend our symbolic frame-
work for other important issues, including flow sensitivity, distinc-
tion of record fields and array elements, as well as the generaliza-
tion of the symbolic framework to other program analysis prob-
lems.

9. ACKNOWLEDGMENT
We would like to sincerely thank the anonymous reviewers for

their constructive comments for the draft of this paper. We would
also like to thank Dr. Hind for pointing us to the relevant bench-
marks in this area.

10. REFERENCES
[1] SPEC CPU2000 benchmarks.

http://www.specbench.org/cpu2000/ .
[2] S. B. Akers. Binary decision diagrams.IEEE Transactions

on Computer, C-27(6):509–516, June 1978.
[3] O. Andersen.Program Analysis and Specialization for the C

Programming Language. PhD thesis, Computer Science
Department, University of Copenhagen, 1994.

[4] T. Ball and T. Millstein. Polymorphic predicate abstraction.
Technical Report MSR-TR-2001-10, Microsoft Research,
June 24, 2003.

[5] M. Berndl, O. Lhoták, F. Qian, L. Hendren, and N. Umanee.
Point-to analysis using BDD. InProceedings of the ACM
SIGPLAN Conference on Programming Language Design
and Implementation, San Diego, June 2003.

[6] R. E. Bryant. Graph-based algorithms for Boolean function
manipulation.IEEE Transactions on Computer,
C-35(8):677–691, August 1986.

[7] J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model
checking with partitioned transition relations. In
International Conference on Very Large Scale Integration,
Edinburgh, Scotland, 1991.

[8] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and
D. L. Dill. Symbolic model checking for sequential circuit
verification.IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, (13), 1994.

[9] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and
L. J. Hwang. Symbolic model checking:1020 states and
beyond. InProceedings of the Fifth Annual IEEE Symposium
on Logic in Computer Science, Washington, DC, 1990.

[10] R. Chatterjee, B. G. Ryder, and W. A. Landi. Relevant
context inference. InProceedings of Symposium on
Principles of Programming Languages, pages 133–146,
1999.

[11] B.-C. Cheng and W.-M. W. Hwu. Modular interprocedural
pointer analysis using access paths: Design implementation
and evaluation. InProceedings of SIGPLAN Conference on

Programming Language Design and Implementation, pages
57–69, Vancouver, British Columbia, Canada, June 2000.

[12] O. Coudert, C. Berthet, and J. C. Madre. A unified
framework for the formal verification of sequential circuits.
In Proceedings of the International Conference on
Computer-Aided Design, pages 126–129, November 1990.

[13] O. Coudert and J. C. Madre. Symbolic computation of the
valid states of a sequential machine: Algorithms and
discussion. InACM Workshop on Formal Methods in VLSI
Design, 1991.

[14] M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive
interprocedural points-to analysis in the presence of function
pointers. InProceedings of SIGPLAN Conference on
Programming Language Design and Implementation, pages
242–256, 1994.

[15] M. Fähndrich, J. S. Foster, Z. Su, and A. Aiken. Partial
online cycle elimination in inclusion constraint graphs.ACM
SIGPLAN Notices, 33(5):85–96, 1998.

[16] M. Fähndrich, J. Rehof, and M. Das. Scalable
context-sensitive flow analysis using instantiation
constraints. InProceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation, pages 253–263, Vancouver, British
Columbia, Canada, June 2000.

[17] J. S. Foster, M. F¨ahndrich, and A. Aiken. Polymorphic
versus monomorphic flow-insensitive points-to analysis for
C. In Proceedings of Static Analysis Symposium, pages
175–198, June 2000.

[18] D. Gajski.Principles of Digital Design. Prentice Hall, 1997.
[19] N. Heintze and O. Tardieu. Ultra-fast aliasing analysis using

CLA: A million lines of C code in a second. InProceedings
of SIGPLAN Conference on Programming Language Design
and Implementation, pages 254–263, 2001.

[20] M. Hind. Pointer analysis: Haven’t we solved this problem
yet. InACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering (PASTE), June
2001.

[21] M. Hind, M. Burke, P. Carini, and J.-D. Choi.
Interprocedural pointer alias analysis.ACM Transactions on
Programming Languages and Systems, 21(4):848–894, 1999.

[22] M. Hind and A. Pioli. Assessing the effects of
flow-sensitivity on pointer alias analyses. InProceedings of
Static Analysis Symposium, pages 57–81, 1998.

[23] M. Hind and A. Pioli. Which pointer analysis should I use?
In International Symposium on Software Testing and
Analysis, pages 113–123, 2000.

[24] W. Landi and B. Ryder. A safe approximate algorithm for
inter-procedural pointer aliasing. InProceedings of
SIGPLAN Conference on Programming Language Design
and Implementation, pages 235–248, June 1992.

[25] C. Lee, M. Potkonjak, and W. H. Mangione-Smith.
Mediabench: A tool for evaluating and synthesizing
multimedia and communications systems. InMicro 30, 1997.

[26] O. Lhoták and L. Hendren. Jedd: A BDD-based relational
extension of Java. InProceedings of SIGPLAN Conference
on Programming Language Design and Implementation,
June 2004.

[27] D. Liang and M. J. Harrold. Efficient computation of
parameterized pointer information for interprocedural
analyses. InProceedings of Static Analysis Symposium,
pages 279–298, 2001.

[28] A. Milanova, A. Rountev, and B. Ryder. Parameterized
object-sensitivity for points-to and side-effect analysis for
Java. InProceedings of International Symposium on
Software Testing and Analysis, pages 1–12, 2000.

[29] I.-H. Moon, J. H. Kukula, K. Ravi, and F. Somenzi. To split
or to conjoin: the question in image computation. InDesign
Automation Conference, pages 23–28, 2000.

[30] A. Rountev and S. Chandra. Off-line variable substitution for
scaling points-to analysis.ACM SIGPLAN Notices,
35(5):47–56, 2000.

[31] E. Ruf. Context-insensitive alias analysis reconsidered. In
Proceedings of SIGPLAN Conference on Programming
Language Design and Implementation, pages 13–22, La
Jolla, California, June 1995.

[32] B. Ryder. Prolangs analysis framework.
http://www.prolangs.rutgers.edu .

[33] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape
analysis via 3-valued logic.ACM Transactions on
Programming Languages and Systems, 24(3):217–298, 2002.

[34] M. Sharir and A. Pnueli. Two approaches to interprocedural
data flow analysis. InProgram Flow Analysis: Theory and
Applications, pages 189–234. Prentice Hall, 1981.

[35] F. Somenzi. CUDD: Binary decision diagram package
release.http://vlsi.Colorado.EDU/˜fabio/
CUDD/cuddIntro.html , 1998.

[36] B. Steensgaard. Points-to analysis in almost linear time. In
Proceedings of Symposium on Principles of Programming
Languages, pages 32–41, 1996.

[37] R. Tarjan. Depth first search and linear graph algorithms.
SIAM Journal of Computing, 1(2):146–160, 1972.

[38] J. Whaley and M. Lam. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. In
Proceedings of SIGPLAN Conference on Programming
Language Design and Implementation, June 2004.

[39] R. Wilson and M. Lam. Efficient context-sensitive pointer
analysis for C programs. InProceedings of the ACM
SIGPLAN Conference on Programming Language Design
and Implementation, pages 1–12, June 1995.

[40] S. Zhang, B. G. Ryder, and W. Landi. Program
decomposition for pointer aliasing: A step toward practical
analyses. InFoundations of Software Engineering, pages
81–92, 1996.

[41] J. Zhu. Symbolic pointer analysis. InProceedings of the
International Conference in Computer Aided Design, San
Jose, November 2002.

APPENDIX

A. SOLUTION PROCESS ILLUSTRATION
Here we show the complete fixed-point iteration process of Ex-

ample 1 for solving recurrence equations (1), (2) (3) for context-
insensitive analysis; and recurrence equations (5), (6), (7) for context-
sensitive analysis. For the economy of space, those values that are
unchanged during the iterations are listed separately in the row
marked as “Unchanged values”. For fast convergence, the pro-
cedure states are evaluated in a bottom-up fashion along the call
graph. For presentation clarity, the augmented transfer functions
are not used. In addition the pruning process is applied for both
analysis and therefore formal parameter states are not propagated
to callers.

T 0
= T main

= g
∗
a

T 1 = T getg = r∗λ1 + θ∗
1θ2 + t∗g

T 2 = T alloc = f∗λ0 + θ∗
0m

C(0) = {1, 2}
C(1) = {2}
C(2) = �

E(0, 1) = W∗
0 W0

E(0, 2) = W∗
0 W0

E(1, 2) = W∗
0 W1

B(0, 1, 1) = 4

B(0, 2, 0) = 3

B(1, 2, 0) = 5

Iteration Context-insensitive Context-sensitive

Initial values

S
0

= S
1

= S
2

= g
∗
a + t

∗
g

Θ0 = Θ1 = 0

Θ2 = query(S1, 〈t, 2〉) = a

S
0

= S
1

= S
2

= g
∗
a + t

∗
g

Θ0 = Θ1 = 0

Θ2 = query(S1, 〈t, 2〉) = a

Unchanged values

Θ3 = query(S0, 〈p, 0〉) = p

Θ4 = query(S0
, 〈q, 0〉) = q

Θ5 = query(S1, 〈t, 1〉) = g

Λ0 = ΘB(0,2,0) + ΘB(1,2,0) = p + g

Λ1 = ΘB(0,1,1) = q

Θ3 = query(S0, 〈p, 0〉) = p

Θ4 = query(S0
, 〈q, 0〉) = q

Θ5 = query(S1, 〈t, 1〉) = g

Λ0 = W0p + W1g

Λ1 = W0q

1

S2 = g∗a + t∗g + f∗p + f∗g

S1 = g∗a + t∗g + r∗q

S
0

= g
∗
a + t

∗
g

Θ0 = p + g

Θ1 = q

Θ2 = a

S2 = g∗a + t∗g + W0f∗p + W1f∗g

S1 = g∗a + t∗g + W0r∗q

S
0

= g
∗
a + t

∗
g

Θ0 = W0p + W1g

Θ1 = W0q

Θ2 = a

2

S2 = g∗a + t∗g + f∗p + f∗g

+ p
∗
m + g

∗
m

S1 = g∗a + t∗g + r∗q

+ p∗m + g∗m + q∗a

S0 = g∗a + t∗g

+ p∗m + g∗m + q∗a

Θ0 = p + g

Θ1 = q

Θ2 = a + m

S2 = g∗a + t∗g + W0f∗p + W1f∗g

+ W0p
∗
m + W1g

∗
m

S1 = g∗a + t∗g + W0r∗q

+ W0g∗m + W0q∗a

S0 = g∗a + t∗g

+ W0p∗m + W0g∗m + W0q∗a

Θ0 = W0p + W1g

Θ1 = W0q

Θ2 = a + W0m

3

S2 = g∗a + t∗g + f∗p + f∗g

+ p∗m + g∗m + q∗a

S
1

= g
∗
a + t

∗
g + r

∗
q

+ p∗m + g∗m + q∗a + q∗m

S0 = g∗a + t∗g

+ p∗m + g∗m + q∗a + q∗m

Θ0 = W0p + W1g

Θ1 = W0q

Θ2 = a + W0m

S2 = g∗a + t∗g + W0f∗p + W1f∗g

+ W0p∗m + W1g∗m + W1q∗a

S
1

= g
∗
a + t

∗
g + W0r

∗
q + W0g

∗
m

+ W0q∗a + W0q∗m

S0 = g∗a + t∗g + W0p∗m + W0g∗m

+ W0q∗a + W0q∗m

Θ0 = W0p + W1g

Θ1 = W0q

Θ2 = a + W0m

4

S2 = g∗a + t∗g + f∗p + f∗g

+ p∗m + g∗m + q∗a + q∗m

S1 = g∗a + t∗g + r∗q

+ p∗m + g∗m + q∗a + q∗m

S
0

= g
∗
a + t

∗
g

+ p∗m + g∗m + q∗a + q∗m

Θ0 = p + g

Θ1 = q

Θ2 = a + m

S2 = g∗a + t∗g + W0f∗p + W1f∗g

+ W0p∗m + W1g∗m + W1q∗a

+ W1q∗m

S
1

= g
∗
a + t

∗
g + W0r

∗
q + W0g

∗
m

+ W0q∗a + W0q∗m

S0 = g∗a + t∗g + W0p∗m + W0g∗m

+ W0q
∗
a + W0q

∗
m

Θ0 = W0p + W1g

Θ1 = W0q

Θ2 = a + W0m

