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Abstract

While fast timing analysis methods, such as asymptotic
waveform evaluation (AWE), have been well established for
linear circuits, the timing analysis for non-linear circuits,
which are dominant in digital CMOS circuits, is usually per-
formed by a SPICE like, time domain integration based ap-
proach, involving expensive Newton Raphson iterations at
numerous time steps. In this paper, we propose a new tech-
nique that leads to the transient solution of charge/discharge
paths with a complexity equivalent to onlyK DC operat-
ing point calculations, whereK is the number of transis-
tors along the path. This is accomplished by approximat-
ing each nodal voltage as a piecewise quadratic waveform,
whose characteristics can be determined by matching the
charge/discharge currents. Experiments on a wide range of
circuits show that a 31.6 times speed-up over SPICE tran-
sient simulation with 10ps step size can be achieved, while
maintaining an average accuracy of 99%.

1 Introduction

Timing analysis is the process of verifying the timing prop-
erties, such as propagation delay, setup/hold time violations
etc., of a digital VLSI circuit. Since timing properties are
inherently associated with the transient response of a circuit,
circuit simulators, such as SPICE, have been the fundamen-
tal tools to obtain such characteristics. Circuit simulation
involves the solution of differential equations whose size is
proportional to the size of the circuit. In addition, the equa-
tions have to be solved as many times as the number of input
combinations. Therefore, many techniques have been de-
vised to reduce the exponential circuit simulation time.Cir-
cuit partitioning is used so that differential equation solv-
ing is confined within small circuit partitions, calledlogic

stages. Typically, a logic stage is a set of channel-connected
transistors and wire segments .Gate abstractionis used
so that each logic stage corresponds to a gate, whose tim-
ing characteristics can be pre-characterized.Static timing
analysiscan be used so that only the worst case scenario of
each stage needs to be simulated and only the timing of the
logic stages along the longest paths needs to be considered.
While these techniques offer order-of-magnitude speed-up
over SPICE for full-chip timing analysis, they offer no help
in speeding up the timing analysis of the individual logic
stages.

The simulation speed and accuracy of each logic stage,
however, is essential for high-performance design. First of
all, not every design cell created by designers maps naturally
to a logic stage, in other words, the output of a cell is not al-
ways connected to the gate input of another cell. Therefore,
the cell cannot be pre-characterized using the gate abstrac-
tion. Instead, a logic stage has to be constructed dynami-
cally, depending on how it is connected to the rest of the cir-
cuit, as illustrated in Example 1. Second, transistors are cou-
pled with interconnect, whose electrical properties cannot be
ignored in deep submicron design. What makes intercon-
nects particularly challenging is that their geometric shape
cannot be pre-determined until routing is completed. This
makes it extremely hard even for the pre-characterization
of gates, since the output load can no longer be modeled
as a lumped capacitor. Furthermore, many common lay-
out structures in high-performance designs contain channel-
connected transistors through long wires, e.g., a decoder
tree. Therefore, fast, on-the-fly analysis of a logic stage,
which boils down to the transient simulation of transistor
chains, becomes an absolute necessity.

Example 1 Consider a Manchester carry chain in Figure 1.
Note that the outputs of each bitsliced cell, e.g., C1, are
channel-connected to other cells. Therefore, the cell does
not correspond to a logic stage.

Two methodologies have been pursued in the past for the
fast simulation of transistor chains. The first methodology
exploits a simplified transistor device model, for example, a
linear or piecewise linear model. This approach enables the
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Figure 1: Manchester carry chain.

modeling of non-linear circuits as linear systems. Efficient,
frequency-domain analysis techniques such as asymptotic
waveform evaluation (AWE), can then be used. While ex-
tremely fast, this approach introduces significant error dur-
ing the device linearization process. The second methodol-
ogy continues to use the time-domain numerical integration
based approach, however, Newton-Raphson (NR) iteration,
as the engine of the solver, is replaced by successive chord
(SC) iteration, which is reportedly much faster due to the
constant nature of the resultant admittance matrix.

This paper introduces a new methodology not attempted
before. We achieve fast simulation speed by avoiding the
brute-force solution of differential equations, while main-
taining the accuracy of device models. In fact, the circuit
only needs to be solved as a system of algebraic equations
at K critical points, whereK is the number of transistors.
This approach is inherently much faster than SPICE-like
simulators, since Newton-Raphson iterations only need to
be performed at large time steps. To achieve this, we divide
the transient process into regions separated by theK criti-
cal points. Nodal voltages in each region are then approx-
imated by quadratic waveforms, each of which is charac-
terized by one parameter. These parameters are determined
subsequently by matching the charge/discharge currents at
the critical points with those predicted by the device I/V re-
lationship.

The rest of the paper is organized as follows. After a
brief review of the previous work in Section 2, we will then
state problem formulation in Section 3. Our proposedpiece-
wise quadratic waveform matching, or QWM method, is de-
scribed in detail in Section 4. Finally, we present our exper-
imental results.

2 Related Work

Efficient extraction of timing metrics for linear circuits, typ-
ically modeled as RC or RLC networks, is well established.
Elmore delay [6] has been used extensively as an improve-
ment over the simple lumped RC metric. Since Elmore de-
lay is inherently linked to the first moment of the circuit
transfer function, a natural extension is to use higher or-
der moments to obtain a better approximation of the transfer

function by retaining more number of dominant poles. Pi-
leggi and Rohrer pioneered this approach with their asymp-
totic waveform evaluation (AWE) method [11]. Alpert et al
[2] showed that empirical delay metrics can be directly ob-
tained from moments without further computation of dom-
inant poles. Derivatives of AWE [7] [9] solve the numeri-
cal problems such as stability and passivity associated with
AWE.

No transfer function can be defined for the nonlinear dig-
ital circuits. Nevertheless, one can simplify the device model
in such a way so that analytical methods developed for lin-
ear circuits can be employed. The switch-level simulators,
such as Crystal [10] and IRSIM [13], model the transistors
as switched resistors. A logic stage can then be reduced into
an RC network, for which Elmore delay is computed. The
so-called fast SPICE simulators, such as MOM and ACES
[4], improve this approach by the piecewise linearization of
transistor model, while using AWE to further improve the
evaluation accuracy of each linear region. ILLIADS [5] [14]
uses a piecewise quadratic device model: while the circuit
is still modeled as nonlinear, more efficient approach can be
used to solve a system of quadratic differential equations.

Simplification of device models introduces errors too
large to tolerate. To avoid that, TETA [3] keeps an accurate,
nonlinear device model and remains to use the time-domain
integration based approach to solve differential equations.
However, it uses tabular device models to avoid the domi-
nant model building time in SPICE. In addition, it replaces
Newton-Raphson iteration with successive chords (SC) iter-
ation .

3 Problem Formulation

In this section, we formulate the timing analysis of logic
stages as awaveform evaluationproblem.

3.1 Circuit Model

A CMOS logic stage is modeled as a polar directed graph,
whose vertices represent the set of circuitnodesand edges
represent the set ofcircuit elements. The source of the
graph represents the power supply and the sink represents
the ground. There are three types of circuit elements: NMOS
transistor, PMOS transistor and wire segment. Each circuit
element is characterized by its geometric parameters, includ-
ing its width, length, and optionally for the transistor, the
area and perimeter of its junctions. The electrical properties
of the element can be derived from these the geometric pa-
rameters. In addition, a logic stage contains a set ofinputs,
each of which is associated with the gate of a transistor, and
a set ofoutputs, which are circuit nodes that are intended to
be connected to the inputs of other stages.



3.2 Device Model

Each circuit element is associated with a device modelm.
The model defines the device I/V relationship (iv) as a map-
ping from its geometric parameters and terminal voltage
configuration to the corresponding current flowing from the
source node to the sink node. The device model also de-
fines how threshold voltage and saturation voltage is related
to the terminal voltages in order to factor in the body effect.
In addition, the model defines the parasitic capacitance con-
tributions to the source node and sink node. The parasitic
capacitances depend not only on the device geometry, but
also the terminal voltages [12]. Miller capacitances are also
included.

3.3 Waveform Evaluation Problem

The waveform evaluation process computes the output
waveforms given the input waveforms and load capacitances
. Waveform evaluation computes richer informational than
traditional timing analysis where only the delay/slope pair is
computed. The importance of waveform evaluation is con-
firmed by a recent paper [8] that in deep submicron circuits,
the traditional delay metric can lead to up to 30% error.

Since we are performing the static timing analysis, only
the worst case, in other words, charging/discharging along
the longest paths, needs to be considered. Without loss of
generality, we consider the discharge case of a stack ofK
NMOS transistors. Each transistorMk connects circuit node
k+1 andk, and has a size ofwk andl k, as shown in Figure 2.
The input waveform is assumed to beGk. The capacitance
of each node to ground isCk, which equals to the sum of
all capacitances contributed by the incident circuit elements
and the load capacitance. To further simplify presentation,
in later text we make the following assumptions. First, there
is only one input switches. Second, the switching input is a
step signal, we therefore can ignore the direct path current.
Third, all parasitic capacitances are constant. Our imple-
mentation, as our experiment demonstrates later, does not
make these assumptions.
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Figure 2: Discharge along the longest path.

4 Quadratic Waveform Matching(QWM)

4.1 Waveform Matching

For each circuit nodek, we first assume that the correspond-
ing voltage waveformVk can be approximated by a wave-
form with an analytical form, for example, a polynomial
with respect to time. The charge/discharge current wave-
form can be analytically determined as well:

I k = Ck dVk

dt
,∀k (1)

We then examine a particular time pointτ. By examining
the I/V relationship defined in the device model, the current
flowing through each circuit elementsJk can be determined.

Jk
τ = m.iv(wk, l k,Gk

τ,V
k
τ −Vk−1

τ ) (2)

The discharge current at timeτ given in Equation (1)
should be matched with the difference between currents
flowing through neighbor devices:

I k
τ = Jk+1−Jk,∀k < K (3)

IK
τ = JK (4)

We therefore obtain an algebraic equation for each circuit
node. Ifr number of parameters are chosen to characterize
each output waveform, then a number ofr ·K equations need
to generated, in other words,r time points need to be chosen
to perform waveform matching. Given that, the transient
solution of the circuit is then reduced to the solution of a
system of algebraic equations!

The art part of the waveform matching methodology is
the choice of the analytical waveform model. The discharg-
ing currents of all circuit nodes of a stack of 6 NMOS transis-
tors are shown in Figure 3. An interesting and important ob-
servation is that each charge/discharge current waveform has
a single peak, calledcritical point, coinciding with the time
when the transistor above turns on, in other words, when the
upper transistor gate drive is equal to its threshold voltage.
An intuitive explanation is that for a nodek, when its upper
transistorMk+1 turns on and the channel currentJk+1 in-
creases, the absolute value of the discharge currentI k, which
is the difference between channel currentsJk andJk+1, will
start to decrease.

Based on the observation, we use a linear model,I k
t =

I k
τ +αk(t−τ), to approximate the current waveform between

two critical points[τ,τ′], i.e., the time when the lower and
upper transistors turn on respectively.. Integrating Equa-
tion (1), we can obtain thequadratic waveform approxima-
tion of the voltage waveform characterized by a single pa-
rameterαk:

Vk
t = Vk

τ +[I k
τ (t − τ)+0.5αk(t − τ)2]/Ck (5)
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Figure 3: Discharge current of 6 NMOS transistor stack.

We can thus use thepiecewise quadratic waveform
matchingstrategy: divide the transient process intoK re-
gions according to the critical points; then solve for the pa-
rametersαk of each region by matching currents at the cor-
responding critical point. More specifically, given the initial
voltage valueVk

τ and current valueI k
τ , theαk parameters are

solved by the system of following algebraic equations at the
next critical pointτ′, when the transistorML is turned on:




I k
τ′ = I k

τ + αk(τ′ − τ),∀k
Vk

τ′ = Vk
τ +[I k

τ (τ′ − τ)+0.5αk(τ′ − τ)2]/Ck,∀k
Jk

τ′ = m.iv(wk, l k,Gk
τ′ ,V

k
τ′ ,V

k−1
τ′ ),∀k

Ik
τ′ = Jk

τ′ −Jk+1
τ′ ,∀k < L

IL
τ′ = JL

τ′
GL

τ′ = VL−1
τ′ +m.threshold(GL

τ′,V
L
τ′ ,V

L−1
τ′ )

(6)

4.2 Numerical Method

In this study, we solve the equation using the Newton-
Raphson method, which updates the guess of solution based
on Equation (7) until the errorF ( x ) or the update∆x =
Â−1 ·F reaches a threshold value.

xk+1 = xk− Â(xk)−1 ·F(xk) (7)

After rearranging Equation (6) to facilitateF evaluation
and Jacobian matrix construction,F can be:




I k
τ +Jk+1

τ′ (Vτ′)−Jk
τ′(Vτ′)

2
· T
Ck +Vk

τ −Vk
τ′, ∀k < L

2 ·CL · (VL
τ′ −VL

τ )
−JL

τ′(Vτ′)+ I L
τ

−T

(8)
Except the last column, the Jacobian matrixÂ = ∂F/∂x

is close to a tridiagonal matrix.

Â =




Â1,1 Â1,2 0 . . . 0 . . . Â1,L

Â2,1 Â2,2 Â2,3 . . . 0 . . . Â2,L

0 Â3,2 Â3,3 Â3,4 0 . . . Â3,L
...

0
... 0 ÂL−1,L−1 ÂL,L




Compared to theO(N3) complexity of the explicit or im-
plicit matrix inversion, such as LU decomposition, solving a
tridiagonal system can be performed inO(N) time.

The last column ofÂ does not complicate the problem
too much. By using Sherman-Morrison formula as in [1],Â
can be expressed as sum of a tridiagonal matrixA and a
matrix whose elements are product of two vectorsu and v .

Â = A +u⊗v

The udpate∆x = −(A +u⊗v)−1 ·F can solved by

A ·y = −F A ·z= u

∆x = y− v ·y
1+v ·z ·z

We observe tridiagonal method gives almost twice speed-
up over LU decomposition or other traditional linear system
solvers.

5 Experimental Result

In this section, we document the device characterization pro-
cess and experiment setup before we discuss the experimen-
tal results.

5.1 Device Characterization

A direct, tabular implementation of the device model can
ensure no loss of accuracy as long as the grid size is fine
enough. However, such approach can lead to unacceptable
amount of memory usage. Therefore, we use a combina-
tion of curve-fitting and interpolation technique to compress
the device model data. To characterize transistor I/V rela-
tion, we sweepVs and Vg from 0 volt to 3.3 volt with a
step size of 0.1 volt. For eachVs/Vg pair, we then gener-
ate polynomial functions to capture the dependence of chan-
nel current on drain voltageVd using curve fitting technique.
We use a linear function for the saturation region(◦) and a
quadratic function for the triode region(+), as shown in Fig-
ure 4. Note this is different from MOM in that QWM does
not require any property, such as linearity, of the transis-
tor model. Therefore, together with the threshold voltage
and saturation voltage, we store 7 parameters for eachVs/Vg

pair. If an I/V query is performed with terminal voltages not
captured by the grid of the table, the current value will be
interpolated from neighbor points. One benefit of this char-
acterization and fitting method is that∂Ids/∂Vd and∂Ids/∂Vs,
used in Â , can be computed very fast.
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5.2 Experiment Setup

To verify the QWM method, we first characterize the device
models using the CMOSP35 technology withλ = 0.25µ.
The sample data used for characterization are obtained by
Hspice simulation using BSIM3 V3.1 model. We then ana-
lyze a set of standard CMOS logic gates. To further measure
how QWM method scales with the transistor stack length,
we also analyze transistor stacks of lengths ranging from 5 to
10, with randomly chosen transistor widths. Since the sim-
ulation time of Hspice for small circuits is dominated by the
model building time, which is minimal in QWM approach
due to its tabular device model, we compare only thetran-
sient time reported by Hspice to ensure fairness. Since the
user-specified step size has an impact on the Hspice simu-
lation time, we perform Hspice simulation with step size of
1ps and 10ps. All experiments are carried on a SUN Blade
100 system running at 500 MHz.

5.3 Results

Circuit Hspice(1ps) Hspice(10ps) QWM
Run Speed- Run Speed- Run
Time up Time up Time Error

inv 0.06 600 0.01 100 0.0001 0.77%
nand2 0.13 217 0.02 33.3 0.0006 1.45%
nand3 0.24 240 0.04 40 0.001 1.23%
nand4 0.4 250 0.06 37.5 0.0016 0.76%

Table 1: QWM vs Hspice for logic gates.

We observe an impressive speed-up of QWM over
Hspice. Table 1 shows part of our simulation result(in sec-
onds) on minimum sized logic gates. For the three NAND
gates, an average speed-up over 235 for 1ps step size and
37 for 10ps step size with an accuracy around 1.14% is ob-
served. The 600 speed-up for an inverter comes from a close
enough initial guess, which dramatically cuts down the num-

Size Hspice(1ps) Hspice(10ps) QWM
Run Speed- Run Speed- Run
Time up Time up Time Error

ckt1 0.35 184 0.05 26.3 0.0019 0.05%
5 ckt2 0.49 258 0.07 36.8 0.0019 3.66%

ckt3 0.44 232 0.07 36.8 0.0019 0.58%
ckt1 0.57 197 0.08 27.6 0.0029 0.61%

6 ckt2 0.81 289 0.11 39.3 0.0028 1.42%
ckt3 0.62 230 0.08 29.6 0.0027 0.12%
ckt1 0.99 241 0.13 31.7 0.0041 0.28%

7 ckt2 0.75 214 0.1 28.6 0.0035 0.18%
ckt3 0.9 250 0.12 33.3 0.0036 1.06%
ckt1 1.08 225 0.14 29.2 0.0048 0.70%

8 ckt2 1.17 249 0.15 31.9 0.0047 0.65%
ckt3 0.95 207 0.13 28.3 0.0046 0.48%
ckt1 1.23 232 0.16 30.2 0.0053 0.78%

9 ckt2 2.22 364 0.26 42.6 0.0061 1.21%
ckt3 2.2 324 0.26 38.2 0.0068 1.99%
ckt1 2.16 288 0.26 34.7 0.0075 2.15%

10 ckt2 2.38 309 0.28 36.4 0.0077 0.95%
ckt3 2.23 301 0.27 36.5 0.0074 0.78%

Table 2: QWM vs Hspice for randomly generated logic
stages.

ber of iterations. In Table 2, for each stack length, we show
results for three circuit configurations, each of which has dif-
ferent transistor width combination. For timestep size of 1
ps, the average speed up is over 250; for timestep size of
10 ps, the number is over 30. Note that this speed-up is for
transient time only. We observe much higher speed-up if to-
tal Hspice runtime is compared. In the mean time, the delay
metric obtained contains a worst-case error of 3.66% error
and average error of 1.00%.

The simulation result of a 6 NMOS stack, which is taken
from the longest path in Manchester carry chain in Figure 1,
is illustrated in Figure 5. The transient result produced by
QWM is simply plotted as straight solid lines connecting the
critical points calculated by QWM. The result produced by
Hspice is plotted in dashed line. One can observe that QWM
result follows quite closely with the Hspice result.

6 Conclusion

In this paper, we propose a new methodology, called
quadratic waveform matching, for the fast timing analysis
of logic stages. This approach replaces the solution of a sys-
tem of differential equations by the solution of a few systems
of algebraic equations. One instance of this methodology,
called piecewise quadratic waveform matching, produces on
average 99% accurate delay metric with order-of-magnitude
speedup over SPICE.

In the future, we will study the suitability of other wave-
forms for the timing analysis problem. More sophisticated
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Figure 5: A 6 NMOS stack simulation result.

waveform model and critical point model may help further
improve speed and accuracy.
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