A Queuing-Theoretic Performance Model for Context-Flow System-On-Chip Platforms

Rami Beidas, Jianwen Zhu
Electrical and Computer Engineering
University of Toronto, ON M5S 3G4, Canada
{rbeidas, jzhi@eecg.toronto.edu

Abstract—Few analytical performance models that relate perfor- Section I, we derive the analytical model for performance measures of
mance figure of merit to architectural design decisions are reported CFAs. Section IV describes our CFA simulation framework used to val-
in recent studies of network-on-chip, which prevents the develop- idate our model before presenting experimental results. Related works
ment of effective system-level synthesis techniques. In this paper,are described in Section V followed by a conclusion in Section VI.
we propose an analytical performance model based on queuing the-
ory for a network-on-chip platform recently reported, which fea- Il. BACKGROUND
tures an extremely simple programming model, while providing A. Context-Flow Architectures
superior performance measures when compared with alternative
architectures. We developed a multi-processor simulation frame- In this section, we briefly describe the rationale and design of the
work, which can simulate an application at the instruction set level context-flow SOC architecture. Our goal is to provide enough back-
given an architecture configuration, to validate the analytical per- ground so that the analytical performance model, the main subject of
formance model. The accuracy and applicability of the proposed the paper, can be related to a realistic architecture. Interested readers
model is illustrated by two real-life applications, namely an SSL are referred to [1] for a detailed discussion of the architecture.
security acceleration processor and MP3 decoder. The context-flow architecture [1] was proposed to address two omis-
sions in recent researches in communication-centric SOC platforms, or
network-on-chip. First, while traditional computer architecture is well
abstracted with a programming model, new SOC architectures have not

With the vast complexity growth of System-On-Chip (SOC) platmade much progress on that front. An SOC platform is either modeled
forms, the number of critical design decisions and alternative implgr system-level languages, such as SystemC [2] or SpecC [3], where
mentations and configurations considered in order to map an appligadistinction between application, architecture and hardware does not
tion to the corresponding platform increases exponentially. Therefoegist, or using traditional parallel programming models, such as MPI
the ability to evaluate the effect of these possible alternatives accurafally which are usually very complex to implement. Second, while tra-
in a reasonably short time becomes indispensable. ditional networks in supercomputers are designed with the bandwidth

So far, simulation-based approaches have been the dominant chdiesigation imposed by chip pin count, new SOC platforms, which are
by the industry for performance analysis of SOCs. These approacbased on similar topologies, do not take full advantage of the much
are highly accurate, but also prohibitively time consuming for largelaxed physical constraints and almost unlimited on-chip bandwidth.
systems, which prevents the evaluation of a large number of possiblgVe introduce a new programming model revolving around a new
system configurations. Intuition and experience are usually relied ondencept, calledcontext which is essentially an abstraction of au-
select a few configurations to simulate out of the feasible many. Hownomous dynamic data structures closed under the point-to relation.
ever, suchad hocdecisions become less effective as the systems bg-context-flow program (CFP) can be viewed as a set of procedures
come larger. What is badly needed is a performance model that egerating on a set of contexts in a multi-threaded form, collaborating
give insight on how performance metric is related to architectural maprough remote procedure call abstraction (RPC) to achieve the over-
ping decisions, commonly referred toasalytical performance model all system behavior. Unlike an application in traditional programming

In recognition to the limitations of simulation-based SOC explanodels, a CFP ikighly parallelizable since different procedures, each
ration procedure, we developed an analytical performance modekessing their own private data structures maintained in different con-
to statically model systems implemented on the recently proposestt, can be run in a CFA on different processing elements (PESs) in
Context-Flow Architecture (CFA). Our model is based on Queueingrallel, without the concern of dependency hazard or cache coherence
Networks, a field that received extensive research over many decades frequently occur in the traditional shared or distributed memory ar-
and whose models were used extensively in computer systems and ¢tgitectures. The accesses of contexts do switch from one procedure to
works modeling. Queueing network models were proved to be geneeaipther when a procedure call occurs.
simple, accurate, and detailed, reporting various aspects of the targethe key problem in the design of a CFA is the design of its on-chip
system and application performance measures. network. We start by first defining an instruction set, which abstracts

In contrast to the previous work reported in the area, the follovitow the on-chip network interacts with the PEs that it connects (Fig-
ing contributions are made in this paper. First, the proposed perfare 1). The instruction set is simple enough to contain only 7 instruc-
mance model is extremelsimple In fact, the solution of important tions. It is encoded by the values of the wires on each port that connects
metrics involves only simple equations. Second, the proposed perf@iPE to the network. From the perspective of the network, it encodes
mance model isynthesis-friendly An optimization procedure can bea command or request from a PE. From the perspective of a PE, the
readily developed, in contrast to the manual “architectural exploratioinistruction set is a complement of its own for which it can assume the
approach commonly practiced. Third, the proposed model is highdyailability of a co-processor for actual execution — effectively by driv-
accurate In fact, for the key metrics of interest, our model is as acclng the right wires in the corresponding ports.
rate as the input statistics. Fourth, our performance modellidated In Figure 1 cfiAllocBank allocates a bank for a single context un-
against real-life applications with a detailed multiprocessor simulatai. deallocated bycfiFreeBank . cfiMalloc is used for subse-
The credibility and applicability of the proposed model is thereforguent allocations of arbitrary objects on the target contefit.oad
guaranteed. andcfiStore are simple memory accessadiRPC andcfiRet

The remainder of the paper is organized as follows. Section Il prare used to implement the remote procedure call abstraction, where the
vides some background material of CFAs and queueing networks.cbtmtext currently accessed by the caller is passed to the callee for fur-

I. INTRODUCTION

ther processing. node or out of the systen Figure 3 shows an example of a simple
queueing system with some feedback flows.

int cfiAllocBank(void);

void cfiFreeBank(int bankid);
void* cfiMalloc(int size);

word cfiLoad(int addr);

Syst(_em System
void cfiStore(int addr, word data); 5 Ariting m@fﬂ Deparing
void cfiRPC(int procid);

HOw G

~N o

void cfiRet(int procid);

Fig. 1. Context-flow Instruction Set
Fig. 3. A Queueing Network

A key feature and reason to the success of queueing network models
PE is that they abstract away many of the low level details associated with
the various modeled system. All it needs is a set timed parameters that

affect the system performance.
y_f T The basic characterization entities of queueing network models are

service providerswhich represent the modeled system processing re-
sources, andustomerswhich represent the system jobs (contexts in
our case). A typical set of inputs of a queueing model are [8]:

T

Enan
s
s
M
IMZ =
B

callsirets mem calls/rets to « A, arrival rate, specifies the arrival intensity in customers per unit
from other read other PEs or time.
PEs data mem access « Dem, service demandt server, which specifies the service time

for each customer.
The outputs obtained by solving the system are:

. . q ke full ad the f hat the na R, average system response timdich specifies the travel time be-
Previous efforts do not take full advantage of the fact that the ngl;aen the system input and output.

work we are designing is on-chip, and the PEs are physically close 1q,. ' tijizationof server, i.e. the percentage of overall time the server
each other. In [1], we proposed a new on-chip network, called a C[i_%A‘busy.

tunnel that can implement this instruction set efficiently. As shown in Wq, queueing timaf serveri, which specifies the average waiting
Figure 2, the tunnel maintains a pool of separate memory banks, as Wgll, ot server before a job gets serviced

as an_intelligent crossb_ar s_witch. Each context is dynamically mapp.eq?i’ residence timef serveri, which is simply the sum of average
to a single memory until it is deallocated, and the crossbar ensures\mﬁ[ing time and average service time at seiver

access to the memory is dynamically switched to the callee Whene\./elr_qi’ queue lengttof server.

an RPC occurs. _Note that our crossbar_ should_not be confused VYlltthe jobs arriving to the system have some classification, usually re-
crossbars in previous efforts, such as switch fabrics of network rout«%rs

which are utilized still for the purpose of data transfer. Instead, the goe eq to asMuItl-_CIass Systemshe model |nputs_ need to specify the
mix and required services, and the outputs will be returned per class

of our crossbar is to provide the direct, wired access to memories. R X . .
; S Well as overall system measures. It is worth noting that the input and
or the flow of contexts from one PE to another, can then be achieved a;
put measure mentioned above are just the essential requirements for

. . - . ou
| ~
ngﬂigyrggagsrgSEcﬁpgg?ir::ééeﬁItfexe[ﬂasﬂtgawviﬂesﬁEix’r;igo\,{vhﬁleast detailed models. Further parameters and results are associated
. - P P with other models used in various analysis tools, as presented below.
alternative architectures.

o Finally, itis a common practice in queuing theory to describe a queue
Itis important to note that there is a physical limit for the scalablllt}(IS Y, b q g y q

ing Kendall's NotationA/S/m/B/K/SD); where:
of the CFA tunnel. As the network gets larger, the delay of the CTOSX describes the distribution of interarrival times of custom&is the

ba_r grows qu_ickly, thereby increasing the cost of each memory aCCeRtribution of service timesn is the number of server® is the max-
T.hls IS c_ontamed by employing a two-layer s_tratggy, whc_are PEs are RAum number of customers which can be accommodated by the anno-
titioned into clusters based on the communication traffic among the, ed queuek is the population size, arDis the service discipline

ork 12 based on packor oaich Such a6 hoss arosented I (o] &f example M/D/2/10/500/FCFS is for exponentially distributed inter-
71 Inthi fp | t,h tudv of th fFI) t network h'l val time, deterministic service time, two servers, buffer size of 10,
[7]. In this paper, we focus only on the study of the flat network, whig pulation 500, and first-come-first-served discipline. Default values,

we l:_)ellgve is appropriate for state-of-t'he-art mulymedla and netw Lch as infinite queue size and FCFS service discipline, can be omitted
applications, such as those presented in the Section IV. from this notation

Fig. 2. Tunnel-Based Context-Flow Architecture

B. Queueing Networks 1. ANALYTICAL PERFORMANCEMODEL

In this section, we provide some background on Queuing Network, The Modeling Process
an efficient and accurate approach to computer system modeling. It has

been used in the design of systems ranging from single network server§ne close correspondence between the attributes of queueing net-
to wide area communication networks [8]. works and those of our CFA, as shown in Section Il, suggests that

A queueing network consists of a set of communicating nodes of

. id Aiob . d its in th di Unless explicitly stated otherwise, when we talk about queueing networks we always refer to Open
Service proviaers. Job arrives atano €, walits In € correspon Ia&ueing Networks, as opposed to Closed Queueing Networks which do not interact with the outside

queue when all servers are busy, gets processed, and departs for anether

queueing networks could be ideal modeling tools to describe our syrgg network model.
tem.
The modeling process could be viewed as a conversion from s{s- Derivation of Analytical Performance Metrics

tem specifications in the Context-Flow domain to those recognized by| at's assume that our system consistsNoprocedures with exe-
queueing systems. The output of this stage would be a fully spegijiion frequencyfofy... fy_1]7, implemented on an M-port tunnel-

fied queueing network that can be easily solved using simple equatiofi$sed CFA. We define aixN mapping matrix MAP, whereMAR |
Whether the resulting system is single-class or multi-class depends @fresents the mapping of procedyre PEi. '

the application being mapped on a CFA.

The inputs of our modeling process are: Moo . Mo.N_1
« Workload Specificatignwhich defines the arrival jobs mix and their MAP — . o
corresponding arrival rates. This can be obtained by a process called : :
workload characterizationwhich is a complex process of profiling to Mv-10 .- Mv-1N-1

arrive at a typical workload. A second possibility is that a typical work-

load would be defined initially as part of the system specifications [8For example, if we have an application realized in five procedures
« Procedure Frequengywhich defines the number of calls made tdpop; p2psps] an implemented on a 3-port CFA such that and p,
each context-flow procedure per unit time. Again, this measure cam on PEOj; and p4 run on PE1, angbs runs on PE2, then the map-
be obtained by profiling of a typical workload, or by static predictioping matrix is:

of the probability of edges of the application call graph for a typical

workload. 1 01 0O

« Mapping which describes the assignment of procedures to target MAPRR=| 0O 1 0 0 1 2
system processing elements. 0 0 0 10

The output of our modeling is a fully characterized queueing network.

Solving the model returns the performance estimates of various aspegge that in this modef;m ; must add to 1. Values less that 1

of the system. imply logic/functionality replication and workload distribution. For
) example, if we want to replicate procedupg and divide the arrival
B. Stochastic Model requests such that one third of the requests go to PE1 and the rest to

Traditional applications of queueing networks to model comput&E2, then the new mapping matrix will be:
systems assumed the arrival of a Poisson process at the system inputs,
and exponentially distributed service times at the service centers [8]. 101 0
These assumptions imply that the resulting interconnection of process- MAR,=| 0 1 0 Q33
ing elements forms dackson Network9]. In this class of networks 0 0 0 067
each queue can be analyzed separately as an M/M/m queue. This) . o) .
model is parameterized only by the average arrival rate and averagd® force single instantiation of procedure logic, we allow mapping
service rate, returning average waiting time, average queue length, Agires to take only binary values, 0, 1. , _
server utilization. This approach was proved quite successful in modelYSing the summing rule, when two procedures are assigned to a sin-
ing such systems. For example, requests sent by users to a mainfrglﬁé_:Ef the arrival rate will be th_e sum of their f_requenues. This con-
did have a random arrival pattern that was captured using a Pois¥gFsion from the abstract domain to the queueing system domain can
process. And the size of jobs to be serviced was also a randomiP&captured using the mapping matrix, as shown in 4.
process. However, the immediate application of the same simplifying

0

1 (©)
0

assumptions to model our architecture was unsuccessful. In a SOC, th Moo - MoN-1 fo Ao
arrival process and/or service times could easily be deterministic! For : : : = : 4
example, arrival rate for an MPEG decoder is usually deterministic, and £ A

Mv-10 .- Mv-1N-1 N—1 M—1

service rate for ATM packet processing stages is also deterministic.
In [10], W. Whitt described the Queueing Network Analyzer (QNA),

a software package developed at Bell Laboratories to analyze cOmplexier deriving the arrival rate for each PE/queue, we can calculate

queueing networks. The package uses a GI/G/m approximation mgg-,ertormance measures the fully characterize the system behavior.

els to describe and analyze the given system. The arrival procesgig average execution time at each PE can easily be obtained using the
assumed to be a generalized interarrival (Gl) process, and the Ser‘é'&ﬁation:

may have any general (G) distribution. The approximation made by N1 . f .Dp:

this approach is that only theeanandsquared coefficient of variance D = 2j=0 (m; - f;-Dpj) (5)
(SQV = var/(mean?) of the arrival and service processes are required Ztol(m‘,k' fk)

for the our calculations (a two-moment model). In addition to the b

sic input parameters described in Section 11-B, we need to provide &Vé‘eferi Is the average processing time of job by procedurél-

SQV of interarrival time of the external arrival process to each riodethoughD p; is assumed to be constant, the model can be easily extended

C%i' and the SQV of the service time§i. The analysis process calcu-t© make procedure delays a function of the mapping. On heterogeneous

lates the parameters of internal nodes, which enables the calculationy/gfems: @ si_ngle_ procedure_could be mapped to different embedqled
all required system measures. The model is capable of handling e Lpcessors with different architectural features, or even to custom logic.
more complicated system features, including superposition and sp i?_take t_hat |_nto aC(_:ount we can d_efpj n ‘e”T‘S ofdi j; the average

ting, which is outside the scope of this paper. processing t_lme of job b_y _procedu;e«vhen running on PE _ _
For our purpose, the proposed model seemed to be a suitable fit. THE QUeUeing Theory itis a common practice to use service rate in-
additional required parameters could easily be driven by workload chiiféad of service or processing time:

acterization. The question left is the model accuracy, which will be N_1

reported in Section IV. In the sequel, we provide our approach to trans- b= Tio (Mk- i) (6)

form our CFA and application description into a fully described queue- Z’j\'z‘ol(m,j -fj-Dpj)

Using these numbers we can derive major performance measurewittiin the context. We also coded a cycle-accurate implementation of
processing elements using very simple formulas. The equation desctiite- tunnel-based on-chip network defined in Section II-A. The Sim-

ing processing element utilization would be: pleScalar annotation interface was used to introduce the context-flow
N1 instruction set to each PE. Further details can be found in [1].
—— Ai - i isti
Utilization, = p; = - = § (my;- ;D))) Our simulator collects all performance statistics that we need to fully
= describe the system performance during simulation. These statistics are

compared with those derived in our queueing network-based estimation
Using equations 6 and 7, ae§, andc?, for each nodé, we can calcu- model for validation purposes.
late further estimates of PE statistics. For example, the average waiting

time at PEi is: B. Test Cases
2.2 We pursue the validation of our model through real-life applications,
AveWaitingTime=Wq = (M) \/\/C{V'/'\"/l (8) namely Cryptography Acceleration Processor, and MP3 Decoder.
2
B.1 Cryptography Acceleration Processor
Where:
wd/M/a pi)
d Hi(1—pi)
AveQueuelength= Lg = AjW; (20)
ackets ackets
We can also derive performance estimates of the overall system. An C{gfgggsbgs RSA cﬁlge;?ﬁgfbﬁs
average processing elements utilization is: (decreption) (encreption)
M-1
Utilization=p = % (11)

And the average service time for a request is: }
Fig. 4. Crypto Accelerator Flow

SHotA - (Di+Waq)
hy (12) Cryptography acceleration processors are becoming of central in-
terest with the increase of SSL-based traffic over the internet. In our
Using this model we can easily get performance measures for egghchmark, we implemented a number of symmetric and asymmet-
procedure, each processing element, each job class, and the overallgysigorithms commonly used in SSL and IPSec. The implemented
tem. Further processing is needed if the more detailed probability dignctions and the possible flows of packets are shown in Figure 4.
tribution of the above quantities is required, which is outside the SCOPRIay of processing methods were mainly obtained from actual RTL
of this work. implementations [12]. The longest path of an input packet is to go
through all three categories of processing, namely hashing (MD5 or
SHA1L), symmetric or private-key encryption (DESECB, DESCBC,
In this section we support our proposal by demonstrating the mo@®ESECB, 3DESCBC, or RC4), asymmetric or public-key encryption
accuracy through experimental results. We start by introducing our pRSA). Packets could skip hashing, public-key encryption, or both.
formance evaluation framework. Then we introduce the application we
use as a test case followed by results and discussion. B.2 MPEG1-Layerlll Decoder

AveServiceTime D =

IV. M ODEL VALIDATION

A. Performance Evaluation Framework

Synch

At the system level design we target complex applications usually S"?;’;‘m% it 3ol ﬁ/ el ﬁ/ Requaniize ﬁ/ Reorder ﬁ/ e

. Scalefac

described in C using high-level language features such as pointer refer- W

ences and complex data structures. The speculated performance model

accuracy can only be validated on such applications. A performance | s N woer PN Frequency N Subtang H Ouipu
N . K . . eduction nversion ynthesis ream

evaluation environment, which can simulate CFA with reasonable ar- K K K

chitectural details for any CFP application, is therefore needed.

A good example of an architectural evaluation environment is the
SimpleScalar tool set developed at Wisconsin [11]. It is designed to)
study new innovations in micro-architecture such as pipelining, branchMPEG1-Layerlll, commonly referred to as MP3, is the de-facto stan-
prediction, out-of-order issue etc. The environment provides a cofftd of high-quality high-compression of audio data. MP3 decoders
plete compiler tool chain that can compile a C application into a binagca@me of interest after their popular use in portable multimedia de-
in the PISA instruction set. An instruction set simulator can then B&c€S. An overview of the decoder stages is presented in Figure 5 The
used to simulate the binary, while collecting performance metric of ifighlighted stages were implemented in our testbench. Each stage is
terest. implemented in a single procedure processing one data granule at a

We consider a homogeneous CFA where each PE is implemented'[ﬂ?-

a processor equipped with the PISA instruction complemented by
context-flow instruction set defined in Figure 1. While each PE h
their own private address space, an unused memory space segment @ carry out the experiments on the SSL accelerator, we imple-
each PE, from address 0x00000000 to {EBFFF, is mapped to con- mented a packet generator that generates a workload, or packet mix,
text memory pool. With this approach, high-level language featurashich uses various processing paths according to given distribution pa-
such as array references, pointer indirection and structure member rafreters. For the MP3 decoder, on the other hand, we used some of the
erences, can still be used directly in the source code to access objeyiat files distributed along with the standard MP3 software.

Fig. 5. MP3 Decoder

the . .
§S Results and Discussion

In case of the SSL accelerator. for a given workload we used the d £_Application | Mapping | Proc. Element | Sim. Residence Time| Est. Residence Time|
ferent mappings described in Table I. For example, in mapping 1 v\eAC;S‘;;“Or ! EE? 105:;? 725;2
map the RSA procedure to PEO, MD5 to PE1, SHA1 to PE2, and so PE2 5478 5105
on. The corresponding simulation and estimation results are reported PE3 18649 18449
in Table Ill, and the average estimation errors for each mapping over EE: Eﬁi ﬁ;gi
all PEs are presente_d in Figure 6. In Taple Ill, for each mapping we PEG 330965 35686
report the average simulated residence time and that estimated by pur PE7 76459 72099
model for each PE (other measures, such as response time and utiliza- 2 EE‘l’ 8:233 72;22
tion, can be easily Qerlved from model inputs and reported results_). For BE2 TBATE T8A01
example, for mapping 1 of the SSL accelerator, the average residence PE3 24506 19236
time at PEO was 10255.5 cycles, while the estimated value was 7027.6, PE4 35610 37365
residence time at PE1 was 462.1 cycles, while the estimated value Was . = T e
413.6, and so on. Figure 6 reports the average estimation error for PEL 33990 31190
each mapping over all PEs. For example, estimation error for mapping PE2 40201 28908
1 over all PEs was 11.58%. Similarly, for the MP3 decoder we tried PES 64596 48508
the mappings described in Table II, and the corresponding estimatipn D:‘;zer ! EE‘; igsig i?g‘l‘;
results are reported also in Table Ill and Figure 6. PE> 92467 98910

PE3 27560 49253
Mapping | Target PE 2 PEO 12714 12886
| RSA] MD5 [SHAL [RC4 [ECB [3ECB [CBC [3CBC | PE1 8325 9726
1 PEO PE1 PE2 PE3 PE4 PE5 PE6 PE7 EE; l}.:]i;g ;212:
2 PEO PE1 PE1 PE2 PE3 PE3 PE4 PE5 PEZ 7648 7860
3 PEO PE1 PE1 PE2 PE2 PE2 PE1 PE3 PE5 28686 33409
TABLE | 3 PEO 12714 12886
PE1 22429 23408
SSL ACCELERATOR MAPPINGS FORPERFORMANCE MODEL EVALUATION PE2 115335 30009
PE3 7648 7859
PE4 28732 33378
TABLE Il

Mapping | Target PE
| Stage1] Stage2 [Stage3 | Stage4 [Stage5 [Stage6 | Stage7 |
1 PEO PEO PEO PE1 PE2 PE1 PE3
2 PEO PE1 PE2 PE3 PE3 PE4 PES
3 PEO PE1 PE1 PE1 PE2 PE3 PE4
TABLE Il

MP3 DECODER MAPPINGS FORPERFORMANCE MODEL EVALUATION

Error (%)

Residence time Estimation Error

ssL1

MP3 1

MP3 2

snlnlln

ssL2 SsL3

MP3 3

Fig. 6. Queueing Model Accuracy for SSL Accelerator and MP3 Decoder

SIMULATED AND ESTIMATED RESIDENCE TIME

[13], and further enhancements to queueing network solvers are being
proposed in this active area of research, which is outside the scope of
this work. However, as we observed in our experiments, the used solver
still serves as a first order approximation of the queueing time at each
PE. For example, the solver does not report a waiting time in thousands
of cycles while the actual value is only in hundreds, or vice versa.

Although higher accuracy levels would have been appreciated, our
proposed model is still valid, and it gets as accurate, flexible, and pow-
erful as queueing theory itself. Even at the reported accuracy measures,
the model will provide important optimization directions as part of a
system-level optimization framework.

V. RELATED WORK

While arich literature on performance modeling in general has been
reported in the field of hardware-software codesign [14], [15], [16],
[17], [18], very little work has been carried out focusing on the perfor-
mance modeling of SOC architectures [19]. In the following we give
a brief review of those efforts focusing on the performance modeling
of network-on-chip. We start by first developing a taxonomy to help
categorize these works.

« A performance model islynamic if it relies on the use of simula-

From the reported results, we can see that the estimation results wigne. It is staticotherwise. In general, a dynamic performance model is
accurate in some cases, and varied (either high or low) in others, mdre accurate with respect to specific input trace. A static performance
correctly reported the relative time values at different PEs with acceptodel is faster to evaluate.
able average error (Figure 6), taking only few seconds as opposed t& performance model ianalytical or architecture-awareif the re-
many simulation hours. It turned out that the way the solver handleglt depends not only on the characteristics of the application, but also
multi-class networks through simple aggregation could potentially lige architecture and how application is mapped to the architecture.
improved. To illustrate this issue, mapping 3 of the SSL test case wa#\ performance model iautomatic if it can be automatically con-
intentionally configured such that procedures with largely different pretructed from the application and architectural mapping. haual
cessing times were mapped to the same PEs. Also, the use of a singterwise.
variability parameter to characterize the variability of an arrival processA performance model igalidated if its accuracy has been confirmed
to a queue was not optimal. More advanced solutions were reportedbyndetailed simulation.

Stochastic Automata Networks (SANs) were used in [20] to analyzes] T.-Y. Yen and W. Wolf, “Performance estimation for real-time distributed embedded
application and derive probability distribution for various performance systems,” innternational Conference on Computer Desigane 1995. _
aspects of the target application. This model is static, however, r{gé‘zd A. Kalavade and P. Moghe, “Hardware-software codesign of embedded systems,” in

: _ . Proceeding of the 35th Design Automation Conferedoee 1998.
architecture _awa_lre._ Furthermore, the construction of a SAN netW(Hlﬂ A. Mathur, A. Dasdan, and R. Gupta, “Rate analysis of embedded systér@f
from an fippllcatlon IS not yet an automated process. . . Transaction on Design Automation of Eletronic Systerak 44, no. 3, July 1998.

A static performance model for network packet processing architggs) A. Baghdadi, N.-E. Zergainoh, W. O. Cesario, and A. A. Jerraya, “Combining a Per-
tures was derived in [21] using Network Calculus results. The proposed formance Estimation Methodology with a Hardware/Software Codesign Flow Sup-
approach uses deterministic bounds to describe the arrival and service porting Multiprocessor Systems|EEE Transactions on Software Engineerjngl.
processes of the target system. The model is also analytical, yet jn- 28 no: 9, September 2002,

complete in the sense that conflicts over communication resources[1a9 J. Russell, “Literature Survey: Software Performance Estimation,” Tech. Rep., Uni-
p versity of Texas at Austin, June 2001.

ignorEd' which could eaS"y result in large errors of the estimated m?ﬂ)] R. Marculescu and A. Nandi, “Probabilistic Application Modeling for System-Level

sures. As aresult, estimation results of the test cases were not validated.performance Analysis,” iProceedings of the Design Automation and Test Confer-
The work in [22] proposes a hybrid static/dynamic performance anal- ence in EuropgMarch 2001.

ysis methodology for bus-based SOC communication architectures. [|RH L. Thiele, S. Chakraborty, M. Gries, and S. Kunzli, *A Framework for Evaluating

though the flow was validated and accurate estimates were reported, aDeS|gn Tradeoffs in Packet Processing Architectures,”Pioceeding of the 39th

d fonly 2 hard Jsoft imulati btai Design Automation Conferencéune 2002.
speeaup or only - over hardware/soltware co-simulation was obtain] K. Lahiri, A. Raghunathan, and S. Dey, “Fast Performance Analysis of Bus-Based

In this work we propose a performance model of a concrete SOC' system-on-Chip Communication Architectures, Riroceedings of the International
platform equipped with both an efficient on-chip network and a sim- Conference on Computer-Aided Desigiovember 1999.
ple application programming model. The proposed model is static,
architecture-aware, automatically evaluated, and can be easily incor-
porated in a system-level synthesis framework.

VI. CONCLUSION AND FURTHERWORK

In this work we proposed the use of queueing networks to derive
analytical performance models for a novel SOC platform. We illus-
trated the model usability and accuracy with real-life applications us-
ing a cycle-accurate simulation environment. The model is as flexible
and powerful as queueing theory. It can easily be used in exploring
the design space of CFAs for system-level synthesis, which represent a
promising future work in this field.

After having a better understanding of the behavior of intercluster
traffic on candidate second-level networks, such as torus or mesh [5],
future work will consider the incorporation of the queueing theoretic
model in a complete static performance analysis of larger systems. At
that stage, the enhanced model will become an essential part of a com-
plete system-level design exploration framework.

REFERENCES

[1] R. Beidas and J. Zhu, “Performance Efficiency of Context-Flow System-On-Chip
Platform,” in Proceedings of the International Conference on Computer-Aided De-
sign, November 2003.

[2] http://www.systemc.org

[3] D. Gajski, J. Zhu, D. Doemer, A. Gerstlauer, and S. Zh&pecC: Specification
Language and Methodolog¥Kluwer Academic Publishers, March 2000.

[4] Message Passing Interface (MPI) Web Sitdttp://www-unix.mcs.anl.
gov/mpi .

[5] W.J. Dally and B. Towles, “Route packets, not wires: On-chip interconnection net-
works,” in Proceeding of the 38th Design Automation Conferedaee 2001.

[6] P.P.Pande, C. Grecu, A. lvanov, and R. Saleh, “Switch-Based Interconnect Architec-
ture for Future Systems on Chip,” Rroceedings of SPIE, VLSI Circuits and Systems
2003.

[7] M. Millberg, E. Nilsson, R. Thid, S. Kumar, and A. Jantsch, “The Nostrum Backbone
- A Communication Protocol Stack for Networks on Chip,” Bmoceedings of the
VLSI Design Conferencdanuary 2004.

[8] E.D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. SevQikantitative System
Performance, Computer System Analysis Using Queueing Network MBdetgice-
Hall, Inc., February 1984.

[9] S. K. Bose, An Introduction to Queueing SystemK&luwer Academic Publishers,
December 2001.

[10] W. Whitt, “The Queueing Network Analyser,The Bell System Technical Journal
vol. 62, no. 9, pp. 2779-2815, November 1983.

[11] D. Burger and T. M. Austin, “The simplescalar tool set, version 2.0,” Tech. Rep.,
Computer Science Department, University of Wisconsin, 1997.

[12] R. Usselmann, “DES/Triple DES IP Cores,” September 2001.

[13] W. Whitt, “Towards Better Multi-Class Parametric-Decomposition Approximations
For Open Queueing Networks&nnals of Operations Researalol. 48, pp. 221-248,
1994,

[14] S. Malik, M. Martonosi, and Y.-T. Li, “Static timing analysis for embedded software,”
in Proceeding of the 34th Design Automation Conferedoee 1997.

