
A Queuing-Theoretic Performance Model for Context-Flow System-On-Chip Platforms

Rami Beidas, Jianwen Zhu
Electrical and Computer Engineering

University of Toronto, ON M5S 3G4, Canada
{rbeidas, jzhu}@eecg.toronto.edu

Abstract—Few analytical performance models that relate perfor-
mance figure of merit to architectural design decisions are reported
in recent studies of network-on-chip, which prevents the develop-
ment of effective system-level synthesis techniques. In this paper,
we propose an analytical performance model based on queuing the-
ory for a network-on-chip platform recently reported, which fea-
tures an extremely simple programming model, while providing
superior performance measures when compared with alternative
architectures. We developed a multi-processor simulation frame-
work, which can simulate an application at the instruction set level
given an architecture configuration, to validate the analytical per-
formance model. The accuracy and applicability of the proposed
model is illustrated by two real-life applications, namely an SSL
security acceleration processor and MP3 decoder.

I. I NTRODUCTION

With the vast complexity growth of System-On-Chip (SOC) plat-
forms, the number of critical design decisions and alternative imple-
mentations and configurations considered in order to map an applica-
tion to the corresponding platform increases exponentially. Therefore,
the ability to evaluate the effect of these possible alternatives accurately
in a reasonably short time becomes indispensable.

So far, simulation-based approaches have been the dominant choices
by the industry for performance analysis of SOCs. These approaches
are highly accurate, but also prohibitively time consuming for large
systems, which prevents the evaluation of a large number of possible
system configurations. Intuition and experience are usually relied on to
select a few configurations to simulate out of the feasible many. How-
ever, suchad hocdecisions become less effective as the systems be-
come larger. What is badly needed is a performance model that can
give insight on how performance metric is related to architectural map-
ping decisions, commonly referred to asanalytical performance model.

In recognition to the limitations of simulation-based SOC explo-
ration procedure, we developed an analytical performance model
to statically model systems implemented on the recently proposed
Context-Flow Architecture (CFA). Our model is based on Queueing
Networks, a field that received extensive research over many decades,
and whose models were used extensively in computer systems and net-
works modeling. Queueing network models were proved to be general,
simple, accurate, and detailed, reporting various aspects of the target
system and application performance measures.

In contrast to the previous work reported in the area, the follow-
ing contributions are made in this paper. First, the proposed perfor-
mance model is extremelysimple. In fact, the solution of important
metrics involves only simple equations. Second, the proposed perfor-
mance model issynthesis-friendly. An optimization procedure can be
readily developed, in contrast to the manual “architectural exploration”
approach commonly practiced. Third, the proposed model is highly
accurate. In fact, for the key metrics of interest, our model is as accu-
rate as the input statistics. Fourth, our performance model isvalidated
against real-life applications with a detailed multiprocessor simulator.
The credibility and applicability of the proposed model is therefore
guaranteed.

The remainder of the paper is organized as follows. Section II pro-
vides some background material of CFAs and queueing networks. In

Section III, we derive the analytical model for performance measures of
CFAs. Section IV describes our CFA simulation framework used to val-
idate our model before presenting experimental results. Related works
are described in Section V followed by a conclusion in Section VI.

II. BACKGROUND

A. Context-Flow Architectures

In this section, we briefly describe the rationale and design of the
context-flow SOC architecture. Our goal is to provide enough back-
ground so that the analytical performance model, the main subject of
the paper, can be related to a realistic architecture. Interested readers
are referred to [1] for a detailed discussion of the architecture.

The context-flow architecture [1] was proposed to address two omis-
sions in recent researches in communication-centric SOC platforms, or
network-on-chip. First, while traditional computer architecture is well
abstracted with a programming model, new SOC architectures have not
made much progress on that front. An SOC platform is either modeled
in system-level languages, such as SystemC [2] or SpecC [3], where
a distinction between application, architecture and hardware does not
exist, or using traditional parallel programming models, such as MPI
[4], which are usually very complex to implement. Second, while tra-
ditional networks in supercomputers are designed with the bandwidth
limitation imposed by chip pin count, new SOC platforms, which are
based on similar topologies, do not take full advantage of the much
relaxed physical constraints and almost unlimited on-chip bandwidth.

We introduce a new programming model revolving around a new
concept, calledcontext, which is essentially an abstraction of au-
tonomous dynamic data structures closed under the point-to relation.
A context-flow program (CFP) can be viewed as a set of procedures
operating on a set of contexts in a multi-threaded form, collaborating
through remote procedure call abstraction (RPC) to achieve the over-
all system behavior. Unlike an application in traditional programming
models, a CFP ishighly parallelizable, since different procedures, each
accessing their own private data structures maintained in different con-
text, can be run in a CFA on different processing elements (PEs) in
parallel, without the concern of dependency hazard or cache coherence
that frequently occur in the traditional shared or distributed memory ar-
chitectures. The accesses of contexts do switch from one procedure to
another when a procedure call occurs.

The key problem in the design of a CFA is the design of its on-chip
network. We start by first defining an instruction set, which abstracts
how the on-chip network interacts with the PEs that it connects (Fig-
ure 1). The instruction set is simple enough to contain only 7 instruc-
tions. It is encoded by the values of the wires on each port that connects
a PE to the network. From the perspective of the network, it encodes
a command or request from a PE. From the perspective of a PE, the
instruction set is a complement of its own for which it can assume the
availability of a co-processor for actual execution – effectively by driv-
ing the right wires in the corresponding ports.
In Figure 1,cfiAllocBank allocates a bank for a single context un-
til deallocated bycfiFreeBank . cfiMalloc is used for subse-
quent allocations of arbitrary objects on the target context.cfiLoad
andcfiStore are simple memory accesses.cfiRPC andcfiRet
are used to implement the remote procedure call abstraction, where the
context currently accessed by the caller is passed to the callee for fur-

ther processing.

int cfiAllocBank(void); 1
void cfiFreeBank(int bankid); 2
void* cfiMalloc(int size); 3
word cfiLoad(int addr); 4
void cfiStore(int addr, word data); 5
void cfiRPC(int procid); 6
void cfiRet(int procid); 7

Fig. 1. Context-flow Instruction Set

M
E
M

M
E
M

M
E
M

M
E
M

M
E
M

M
E
M

M
E
M

PE PE PEPEPE

 Tunnel

PE

calls/rets
from other

PEs

calls/rets to
other PEs or
mem access

mem
read
data

Fig. 2. Tunnel-Based Context-Flow Architecture

Previous efforts do not take full advantage of the fact that the net-
work we are designing is on-chip, and the PEs are physically close to
each other. In [1], we proposed a new on-chip network, called a CFA
tunnel, that can implement this instruction set efficiently. As shown in
Figure 2, the tunnel maintains a pool of separate memory banks, as well
as an intelligent crossbar switch. Each context is dynamically mapped
to a single memory until it is deallocated, and the crossbar ensures the
access to the memory is dynamically switched to the callee whenever
an RPC occurs. Note that our crossbar should not be confused with
crossbars in previous efforts, such as switch fabrics of network routers,
which are utilized still for the purpose of data transfer. Instead, the goal
of our crossbar is to provide the direct, wired access to memories. RPC,
or the flow of contexts from one PE to another, can then be achieved at
virtually no cost! Experimental results in [1] showed superior perfor-
mance measures of CFA-based implementation when compared with
alternative architectures.

It is important to note that there is a physical limit for the scalability
of the CFA tunnel. As the network gets larger, the delay of the cross-
bar grows quickly, thereby increasing the cost of each memory access.
This is contained by employing a two-layer strategy, where PEs are par-
titioned into clusters based on the communication traffic among them,
and intracluster network is based on the tunnel, whereas the intercluster
network is based on packet-switch, such as those presented in [5], [6],
[7]. In this paper, we focus only on the study of the flat network, which
we believe is appropriate for state-of-the-art multimedia and network
applications, such as those presented in the Section IV.

B. Queueing Networks

In this section, we provide some background on Queuing Network,
an efficient and accurate approach to computer system modeling. It has
been used in the design of systems ranging from single network servers
to wide area communication networks [8].

A queueing network consists of a set of communicating nodes of
service providers. A job arrives at a node, waits in the corresponding
queue when all servers are busy, gets processed, and departs for another

node or out of the system1. Figure 3 shows an example of a simple
queueing system with some feedback flows.

System
Arriving

Jobs

System
Departing

Jobs

Fig. 3. A Queueing Network

A key feature and reason to the success of queueing network models
is that they abstract away many of the low level details associated with
the various modeled system. All it needs is a set timed parameters that
affect the system performance.

The basic characterization entities of queueing network models are
service providers, which represent the modeled system processing re-
sources, andcustomers, which represent the system jobs (contexts in
our case). A typical set of inputs of a queueing model are [8]:
• λ, arrival rate, specifies the arrival intensity in customers per unit
time.
• Demi , service demandat serveri, which specifies the service time
for each customer.
The outputs obtained by solving the system are:
• R, average system response time, which specifies the travel time be-
tween the system input and output.
• Ui , utilizationof serveri, i.e. the percentage of overall time the server
is busy.
• Wqi , queueing timeof serveri, which specifies the average waiting
time at serveri before a job gets serviced.
• Ri , residence timeof serveri, which is simply the sum of average
waiting time and average service time at serveri.
• Lqi , queue lengthof serveri.
If the jobs arriving to the system have some classification, usually re-
ferred to asMulti-Class Systems, the model inputs need to specify the
job mix and required services, and the outputs will be returned per class
as well as overall system measures. It is worth noting that the input and
output measure mentioned above are just the essential requirements for
the least detailed models. Further parameters and results are associated
with other models used in various analysis tools, as presented below.

Finally, it is a common practice in queuing theory to describe a queue
using Kendall’s Notation (A/S/m/B/K/SD); where:
A describes the distribution of interarrival times of customers.S is the
distribution of service times.m is the number of servers.B is the max-
imum number of customers which can be accommodated by the anno-
tated queue.K is the population size, andSD is the service discipline.
For example M/D/2/10/500/FCFS is for exponentially distributed inter-
arrival time, deterministic service time, two servers, buffer size of 10,
population 500, and first-come-first-served discipline. Default values,
such as infinite queue size and FCFS service discipline, can be omitted
from this notation.

III. A NALYTICAL PERFORMANCEMODEL

A. The Modeling Process

The close correspondence between the attributes of queueing net-
works and those of our CFA, as shown in Section II, suggests that

1Unless explicitly stated otherwise, when we talk about queueing networks we always refer to Open
Queueing Networks, as opposed to Closed Queueing Networks which do not interact with the outside
world.

queueing networks could be ideal modeling tools to describe our sys-
tem.

The modeling process could be viewed as a conversion from sys-
tem specifications in the Context-Flow domain to those recognized by
queueing systems. The output of this stage would be a fully speci-
fied queueing network that can be easily solved using simple equations.
Whether the resulting system is single-class or multi-class depends on
the application being mapped on a CFA.

The inputs of our modeling process are:
• Workload Specification, which defines the arrival jobs mix and their
corresponding arrival rates. This can be obtained by a process called
workload characterization, which is a complex process of profiling to
arrive at a typical workload. A second possibility is that a typical work-
load would be defined initially as part of the system specifications [8].
• Procedure Frequency, which defines the number of calls made to
each context-flow procedure per unit time. Again, this measure can
be obtained by profiling of a typical workload, or by static prediction
of the probability of edges of the application call graph for a typical
workload.
• Mapping, which describes the assignment of procedures to target
system processing elements.
The output of our modeling is a fully characterized queueing network.
Solving the model returns the performance estimates of various aspects
of the system.

B. Stochastic Model

Traditional applications of queueing networks to model computer
systems assumed the arrival of a Poisson process at the system inputs,
and exponentially distributed service times at the service centers [8].
These assumptions imply that the resulting interconnection of process-
ing elements forms aJackson Network[9]. In this class of networks
each queue can be analyzed separately as an M/M/m queue. This
model is parameterized only by the average arrival rate and average
service rate, returning average waiting time, average queue length, and
server utilization. This approach was proved quite successful in model-
ing such systems. For example, requests sent by users to a mainframe
did have a random arrival pattern that was captured using a Poisson
process. And the size of jobs to be serviced was also a randomized
process. However, the immediate application of the same simplifying
assumptions to model our architecture was unsuccessful. In a SOC, the
arrival process and/or service times could easily be deterministic! For
example, arrival rate for an MPEG decoder is usually deterministic, and
service rate for ATM packet processing stages is also deterministic.

In [10], W. Whitt described the Queueing Network Analyzer (QNA),
a software package developed at Bell Laboratories to analyze complex
queueing networks. The package uses a GI/G/m approximation mod-
els to describe and analyze the given system. The arrival process is
assumed to be a generalized interarrival (GI) process, and the service
may have any general (G) distribution. The approximation made by
this approach is that only themeanandsquared coefficient of variance
(SQV= var/(mean)2) of the arrival and service processes are required
for the our calculations (a two-moment model). In addition to the ba-
sic input parameters described in Section II-B, we need to provide the
SQV of interarrival time of the external arrival process to each nodei,
c2

0i , and the SQV of the service time,c2
si. The analysis process calcu-

lates the parameters of internal nodes, which enables the calculations of
all required system measures. The model is capable of handling even
more complicated system features, including superposition and split-
ting, which is outside the scope of this paper.
For our purpose, the proposed model seemed to be a suitable fit. The
additional required parameters could easily be driven by workload char-
acterization. The question left is the model accuracy, which will be
reported in Section IV. In the sequel, we provide our approach to trans-
form our CFA and application description into a fully described queue-

ing network model.

C. Derivation of Analytical Performance Metrics

Let’s assume that our system consists ofN procedures with exe-
cution frequency[f0 f1 . . . fN−1]T , implemented on an M-port tunnel-
based CFA. We define anMxN mapping matrix,MAP, whereMAPi, j
represents the mapping of procedurej to PEi.

MAP=




m0,0 . . . m0,N−1
...

...
...

mM−1,0 . . . mM−1,N−1


 (1)

For example, if we have an application realized in five procedures
[p0p1p2p3p4] an implemented on a 3-port CFA such thatp0 and p2
run on PE0,p1 andp4 run on PE1, andp3 runs on PE2, then the map-
ping matrix is:

MAP1 =


 1 0 1 0 0

0 1 0 0 1
0 0 0 1 0


 (2)

Note that in this model∑M−1
i=0 mi, j must add to 1. Values less that 1

imply logic/functionality replication and workload distribution. For
example, if we want to replicate procedurep3 and divide the arrival
requests such that one third of the requests go to PE1 and the rest to
PE2, then the new mapping matrix will be:

MAP2 =


 1 0 1 0 0

0 1 0 0.33 1
0 0 0 0.67 0


 (3)

To force single instantiation of procedure logic, we allow mapping
figures to take only binary values, 0, 1.

Using the summing rule, when two procedures are assigned to a sin-
gle PE, the arrival rate will be the sum of their frequencies. This con-
version from the abstract domain to the queueing system domain can
be captured using the mapping matrix, as shown in 4.




m0,0 . . . m0,N−1
...

...
...

mM−1,0 . . . mM−1,N−1






f0
...

fN−1


=




λ0
...

λM−1


 (4)

After deriving the arrival rate for each PE/queue, we can calculate
all performance measures the fully characterize the system behavior.
The average execution time at each PE can easily be obtained using the
equation:

Di =
∑N−1

j=0 (mi, j · f j ·Dpj)

∑N−1
k=0 (mi,k · fk)

(5)

WhereDpj is the average processing time of job by procedurej . Al-
thoughDpj is assumed to be constant, the model can be easily extended
to make procedure delays a function of the mapping. On heterogeneous
systems, a single procedure could be mapped to different embedded
processors with different architectural features, or even to custom logic.
To take that into account we can defineDpj in terms ofdi, j ; the average
processing time of job by procedurej when running on PEi.

In Queueing Theory it is a common practice to use service rate in-
stead of service or processing time:

µi =
∑N−1

k=0 (mi,k · fk)

∑N−1
j=0 (mi, j · f j ·Dpj)

(6)

Using these numbers we can derive major performance measures of
processing elements using very simple formulas. The equation describ-
ing processing element utilization would be:

Utilizationi = ρi =
λi

µi
=

N−1

∑
j=0

(mi, j · f j ·Dj) (7)

Using equations 6 and 7, andc2
ai andc2

si for each nodei, we can calcu-
late further estimates of PE statistics. For example, the average waiting
time at PEi is:

AveWaitingTimei = Wqi =

(
c2

ai +c2
si

2

)
WqM/M/1

i (8)

Where:

WqM/M/1
i =

ρi

µi(1−ρi)
(9)

AveQueueLengthi = Lqi = λiWqi (10)

We can also derive performance estimates of the overall system. An
average processing elements utilization is:

Utilization = ρ =
∑M−1

i=0 ρi

M
(11)

And the average service time for a request is:

AveServiceTime= D =
∑M−1

i=0 λi · (Di +W qi)
λ

(12)

Using this model we can easily get performance measures for each
procedure, each processing element, each job class, and the overall sys-
tem. Further processing is needed if the more detailed probability dis-
tribution of the above quantities is required, which is outside the scope
of this work.

IV. M ODEL VALIDATION

In this section we support our proposal by demonstrating the model
accuracy through experimental results. We start by introducing our per-
formance evaluation framework. Then we introduce the application we
use as a test case followed by results and discussion.

A. Performance Evaluation Framework

At the system level design we target complex applications usually
described in C using high-level language features such as pointer refer-
ences and complex data structures. The speculated performance model
accuracy can only be validated on such applications. A performance
evaluation environment, which can simulate CFA with reasonable ar-
chitectural details for any CFP application, is therefore needed.

A good example of an architectural evaluation environment is the
SimpleScalar tool set developed at Wisconsin [11]. It is designed to
study new innovations in micro-architecture such as pipelining, branch
prediction, out-of-order issue etc. The environment provides a com-
plete compiler tool chain that can compile a C application into a binary
in the PISA instruction set. An instruction set simulator can then be
used to simulate the binary, while collecting performance metric of in-
terest.

We consider a homogeneous CFA where each PE is implemented by
a processor equipped with the PISA instruction complemented by the
context-flow instruction set defined in Figure 1. While each PE has
their own private address space, an unused memory space segment of
each PE, from address 0x00000000 to 0x03FFFFFF, is mapped to con-
text memory pool. With this approach, high-level language features,
such as array references, pointer indirection and structure member ref-
erences, can still be used directly in the source code to access objects

within the context. We also coded a cycle-accurate implementation of
the tunnel-based on-chip network defined in Section II-A. The Sim-
pleScalar annotation interface was used to introduce the context-flow
instruction set to each PE. Further details can be found in [1].

Our simulator collects all performance statistics that we need to fully
describe the system performance during simulation. These statistics are
compared with those derived in our queueing network-based estimation
model for validation purposes.

B. Test Cases

We pursue the validation of our model through real-life applications,
namely Cryptography Acceleration Processor, and MP3 Decoder.

B.1 Cryptography Acceleration Processor

RSA

MD5

SHA1

DES
ECB

3DES
ECB

DES
CBC

3DES
CBC

RC4

IN Packets
(encryption)

OUT Packets
(decreption)

IN Packets
(decryption)

OUT Packets
(encreption)

Fig. 4. Crypto Accelerator Flow

Cryptography acceleration processors are becoming of central in-
terest with the increase of SSL-based traffic over the internet. In our
benchmark, we implemented a number of symmetric and asymmet-
ric algorithms commonly used in SSL and IPSec. The implemented
functions and the possible flows of packets are shown in Figure 4.
Delay of processing methods were mainly obtained from actual RTL
implementations [12]. The longest path of an input packet is to go
through all three categories of processing, namely hashing (MD5 or
SHA1), symmetric or private-key encryption (DESECB, DESCBC,
3DESECB, 3DESCBC, or RC4), asymmetric or public-key encryption
(RSA). Packets could skip hashing, public-key encryption, or both.

B.2 MPEG1-LayerIII Decoder

Huffman
Decoding

Synch
CRC

Huff. Tbl.
Scalefac

Requantize Reorder
Stereo

Decoding

Alias
Reduction

IMDCT
Frequency
Inversion

Subband
Synthesis

Output
Stream

Input
Stream

Fig. 5. MP3 Decoder

MPEG1-LayerIII, commonly referred to as MP3, is the de-facto stan-
dard of high-quality high-compression of audio data. MP3 decoders
became of interest after their popular use in portable multimedia de-
vices. An overview of the decoder stages is presented in Figure 5 The
highlighted stages were implemented in our testbench. Each stage is
implemented in a single procedure processing one data granule at a
time.

C. Results and Discussion

To carry out the experiments on the SSL accelerator, we imple-
mented a packet generator that generates a workload, or packet mix,
which uses various processing paths according to given distribution pa-
rameters. For the MP3 decoder, on the other hand, we used some of the
input files distributed along with the standard MP3 software.

In case of the SSL accelerator, for a given workload we used the dif-
ferent mappings described in Table I. For example, in mapping 1 we
map the RSA procedure to PE0, MD5 to PE1, SHA1 to PE2, and so
on. The corresponding simulation and estimation results are reported
in Table III, and the average estimation errors for each mapping over
all PEs are presented in Figure 6. In Table III, for each mapping we
report the average simulated residence time and that estimated by our
model for each PE (other measures, such as response time and utiliza-
tion, can be easily derived from model inputs and reported results). For
example, for mapping 1 of the SSL accelerator, the average residence
time at PE0 was 10255.5 cycles, while the estimated value was 7027.6,
residence time at PE1 was 462.1 cycles, while the estimated value was
413.6, and so on. Figure 6 reports the average estimation error for
each mapping over all PEs. For example, estimation error for mapping
1 over all PEs was 11.58%. Similarly, for the MP3 decoder we tried
the mappings described in Table II, and the corresponding estimation
results are reported also in Table III and Figure 6.

Mapping Target PE
RSA MD5 SHA1 RC4 ECB 3ECB CBC 3CBC

1 PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7

2 PE0 PE1 PE1 PE2 PE3 PE3 PE4 PE5

3 PE0 PE1 PE1 PE2 PE2 PE2 PE1 PE3

TABLE I

SSL ACCELERATOR MAPPINGS FORPERFORMANCE MODEL EVALUATION

Mapping Target PE
Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7

1 PE0 PE0 PE0 PE1 PE2 PE1 PE3

2 PE0 PE1 PE2 PE3 PE3 PE4 PE5

3 PE0 PE1 PE1 PE1 PE2 PE3 PE4

TABLE II

MP3 DECODER MAPPINGS FORPERFORMANCE MODEL EVALUATION

Residence time Estimation Error

0

10

20

30

40

50

60

70

80

90

100

SSL 1 SSL 2 SSL 3 MP3 1 MP3 2 MP3 3

E
rr

or
 (

%
)

Fig. 6. Queueing Model Accuracy for SSL Accelerator and MP3 Decoder

From the reported results, we can see that the estimation results were
accurate in some cases, and varied (either high or low) in others, but
correctly reported the relative time values at different PEs with accept-
able average error (Figure 6), taking only few seconds as opposed to
many simulation hours. It turned out that the way the solver handles
multi-class networks through simple aggregation could potentially be
improved. To illustrate this issue, mapping 3 of the SSL test case was
intentionally configured such that procedures with largely different pro-
cessing times were mapped to the same PEs. Also, the use of a single
variability parameter to characterize the variability of an arrival process
to a queue was not optimal. More advanced solutions were reported in

Application Mapping Proc. Element Sim. Residence Time Est. Residence Time

SSL 1 PE0 10255.5 7027.6
Accelerator PE1 462.1 413.6

PE2 547.8 510.5
PE3 1864.9 1844.9
PE4 1144.5 1270.2
PE5 1244.4 1360.1
PE6 3396.5 3968.6
PE7 7645.9 7209.9

2 PE0 8360.8 7020.0
PE1 650.9 453.9
PE2 1843.5 1840.1
PE3 2450.6 1923.6
PE4 3561.0 3736.5
PE5 8189.6 6164.9

3 PE0 5646.9 6360.2
PE1 2399.0 2119.0
PE2 4020.1 2890.8
PE3 6459.6 4850.8

MP3 1 PE0 3621.8 2544.7
Decoder PE1 1301.9 1781.6

PE2 9246.7 9891.0
PE3 2756.0 4925.3

2 PE0 1271.4 1288.6
PE1 832.5 972.6
PE2 1417.4 1576.9
PE3 11519.9 5918.8
PE4 764.8 786.0
PE5 2868.6 3340.9

3 PE0 1271.4 1288.6
PE1 2242.9 2340.8
PE2 11533.5 3000.9
PE3 764.8 785.9
PE4 2873.2 3337.8

TABLE III

SIMULATED AND ESTIMATED RESIDENCE TIME

[13], and further enhancements to queueing network solvers are being
proposed in this active area of research, which is outside the scope of
this work. However, as we observed in our experiments, the used solver
still serves as a first order approximation of the queueing time at each
PE. For example, the solver does not report a waiting time in thousands
of cycles while the actual value is only in hundreds, or vice versa.

Although higher accuracy levels would have been appreciated, our
proposed model is still valid, and it gets as accurate, flexible, and pow-
erful as queueing theory itself. Even at the reported accuracy measures,
the model will provide important optimization directions as part of a
system-level optimization framework.

V. RELATED WORK

While a rich literature on performance modeling in general has been
reported in the field of hardware-software codesign [14], [15], [16],
[17], [18], very little work has been carried out focusing on the perfor-
mance modeling of SOC architectures [19]. In the following we give
a brief review of those efforts focusing on the performance modeling
of network-on-chip. We start by first developing a taxonomy to help
categorize these works.

• A performance model isdynamic, if it relies on the use of simula-
tion. It is staticotherwise. In general, a dynamic performance model is
more accurate with respect to specific input trace. A static performance
model is faster to evaluate.
• A performance model isanalytical, or architecture-aware, if the re-
sult depends not only on the characteristics of the application, but also
the architecture and how application is mapped to the architecture.
• A performance model isautomatic, if it can be automatically con-
structed from the application and architectural mapping. It ismanual
otherwise.
• A performance model isvalidated, if its accuracy has been confirmed
by detailed simulation.

Stochastic Automata Networks (SANs) were used in [20] to analyze
application and derive probability distribution for various performance
aspects of the target application. This model is static, however, not
architecture-aware. Furthermore, the construction of a SAN network
from an application is not yet an automated process.

A static performance model for network packet processing architec-
tures was derived in [21] using Network Calculus results. The proposed
approach uses deterministic bounds to describe the arrival and service
processes of the target system. The model is also analytical, yet in-
complete in the sense that conflicts over communication resources are
ignored, which could easily result in large errors of the estimated mea-
sures. As a result, estimation results of the test cases were not validated.

The work in [22] proposes a hybrid static/dynamic performance anal-
ysis methodology for bus-based SOC communication architectures. Al-
though the flow was validated and accurate estimates were reported, a
speedup of only 2 over hardware/software co-simulation was obtained.

In this work we propose a performance model of a concrete SOC
platform equipped with both an efficient on-chip network and a sim-
ple application programming model. The proposed model is static,
architecture-aware, automatically evaluated, and can be easily incor-
porated in a system-level synthesis framework.

VI. CONCLUSION AND FURTHER WORK

In this work we proposed the use of queueing networks to derive
analytical performance models for a novel SOC platform. We illus-
trated the model usability and accuracy with real-life applications us-
ing a cycle-accurate simulation environment. The model is as flexible
and powerful as queueing theory. It can easily be used in exploring
the design space of CFAs for system-level synthesis, which represent a
promising future work in this field.

After having a better understanding of the behavior of intercluster
traffic on candidate second-level networks, such as torus or mesh [5],
future work will consider the incorporation of the queueing theoretic
model in a complete static performance analysis of larger systems. At
that stage, the enhanced model will become an essential part of a com-
plete system-level design exploration framework.

REFERENCES

[1] R. Beidas and J. Zhu, “Performance Efficiency of Context-Flow System-On-Chip
Platform,” in Proceedings of the International Conference on Computer-Aided De-
sign, November 2003.

[2] http://www.systemc.org .
[3] D. Gajski, J. Zhu, D. Doemer, A. Gerstlauer, and S. Zhao,SpecC: Specification

Language and Methodology, Kluwer Academic Publishers, March 2000.
[4] Message Passing Interface (MPI) Web Site, http://www-unix.mcs.anl.

gov/mpi .
[5] W. J. Dally and B. Towles, “Route packets, not wires: On-chip interconnection net-

works,” in Proceeding of the 38th Design Automation Conference, June 2001.
[6] P. P. Pande, C. Grecu, A. Ivanov, and R. Saleh, “Switch-Based Interconnect Architec-

ture for Future Systems on Chip,” inProceedings of SPIE, VLSI Circuits and Systems,
2003.

[7] M. Millberg, E. Nilsson, R. Thid, S. Kumar, and A. Jantsch, “The Nostrum Backbone
- A Communication Protocol Stack for Networks on Chip,” inProceedings of the
VLSI Design Conference, January 2004.

[8] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik,Quantitative System
Performance, Computer System Analysis Using Queueing Network Models, Prentice-
Hall, Inc., February 1984.

[9] S. K. Bose, An Introduction to Queueing Systems, Kluwer Academic Publishers,
December 2001.

[10] W. Whitt, “The Queueing Network Analyser,”The Bell System Technical Journal,
vol. 62, no. 9, pp. 2779–2815, November 1983.

[11] D. Burger and T. M. Austin, “The simplescalar tool set, version 2.0,” Tech. Rep.,
Computer Science Department, University of Wisconsin, 1997.

[12] R. Usselmann, “DES/Triple DES IP Cores,” September 2001.
[13] W. Whitt, “Towards Better Multi-Class Parametric-Decomposition Approximations

For Open Queueing Networks,”Annals of Operations Research, vol. 48, pp. 221–248,
1994.

[14] S. Malik, M. Martonosi, and Y.-T. Li, “Static timing analysis for embedded software,”
in Proceeding of the 34th Design Automation Conference, June 1997.

[15] T.-Y. Yen and W. Wolf, “Performance estimation for real-time distributed embedded
systems,” inInternational Conference on Computer Design, June 1995.

[16] A. Kalavade and P. Moghe, “Hardware-software codesign of embedded systems,” in
Proceeding of the 35th Design Automation Conference, June 1998.

[17] A. Mathur, A. Dasdan, and R. Gupta, “Rate analysis of embedded systems,”ACM
Transaction on Design Automation of Eletronic Systems, vol. 44, no. 3, July 1998.

[18] A. Baghdadi, N.-E. Zergainoh, W. O. Cesario, and A. A. Jerraya, “Combining a Per-
formance Estimation Methodology with a Hardware/Software Codesign Flow Sup-
porting Multiprocessor Systems,”IEEE Transactions on Software Engineering, vol.
28, no. 9, September 2002.

[19] J. Russell, “Literature Survey: Software Performance Estimation,” Tech. Rep., Uni-
versity of Texas at Austin, June 2001.

[20] R. Marculescu and A. Nandi, “Probabilistic Application Modeling for System-Level
Performance Analysis,” inProceedings of the Design Automation and Test Confer-
ence in Europe, March 2001.

[21] L. Thiele, S. Chakraborty, M. Gries, and S. Kunzli, “A Framework for Evaluating
Design Tradeoffs in Packet Processing Architectures,” inProceeding of the 39th
Design Automation Conference, June 2002.

[22] K. Lahiri, A. Raghunathan, and S. Dey, “Fast Performance Analysis of Bus-Based
System-On-Chip Communication Architectures,” inProceedings of the International
Conference on Computer-Aided Design, November 1999.

