
MetaRTL: Raising the abstraction level of RTL Design

Jianwen Zhu
Electrical and Computer Engineering

University of Toronto, Ontario M5S 3G4, Canada
jzhu@eecg.toronto.edu

Abstract

The register transfer abstraction (RTL) has been estab-
lished as the industrial standard for ASIC design, soft IP ex-
change and the backend interface for chip design at higher
level. Unfortunately, the “synthesizable” VHDL/Verilog in-
carnation of the RTL abstraction has problems which pre-
vent it from more productive use. For example, the confu-
sion as the result of using simulation semantics for synthe-
sis purpose, the lack of facility for component reuse at the
“protocol” level, and the lack of memory abstraction. Af-
ter a detailed discussion of these problems, this paper pro-
poses a new RTL abstraction, called MetaRTL, which can
be implemented by a modest extension to the traditional im-
perative programming languages. The productivity gain is
further demonstrated by the description of a synthesis tool,
called MetaSyn, which provides the “added-value”. Exper-
iments on the benchmark set show that MetaRTL is far more
concise than the “synthesizable” HDL specification, and in-
curs no overhead for synthesis result.

1 Introduction

Due to their complexity, VLSI designs are performed at
different levels of abstraction. Among them register trans-
fer level (RTL) is one of the most important. For ASIC
design, the dominant practicing methodology starts at RTL.
For the booming intellectual property (IP) market, RTL is
becoming thede factosoft IP exchange standard. Further-
more, RTL serves as the “assembly language”, or the back-
end interface, for the higher level (for example, the behav-
ioral level) design methodology.

In theory, the RTL design can be formalized as Gajski’s
FSMD model [4], which is an extension of the FSM model
with the so-called register transfer operations, each of which
can be considered as an assignment of value, computed as
an expression over a set of register values, to another reg-
ister. The FSM model can be best visualized by the ASM
chart, invented by IBM in the 1960s.

In practice, a specification language is needed to cap-
ture the RTL design. Typically, an RTL language is used to
specify the FSMD model as well as some additional infor-
mation. Some information is considered essential: for ex-
ample, the mapping between expression operators and the
actual hardware components. Some information is consid-
ered only syntactical sugar: for example, constructs to facil-
itate modular design. The importance of syntactical sugar,
however, cannot be underestimated, since it is designed to
combat design complexity, which becomes increasingly im-
portant when one moves to systems-on-chip design.

The dominant RTL specification languages in use to-
day are VHDL and Verilog, the IEEE standard hardware
description languages (HDLs). Unfortunately, the current
RTL design methodology based-on HDLs is not without
problems. Some of the fundamental problems are listed as
follows:

� HDLs are designed as a simulation language. The gap
between the simulation semantics and the synthesis se-
mantics causes unnecessary confusion.

� HDLs are not designed with design reuse in mind.

� HDLs are not designed with a type system as powerful
as that of software languages.

� HDLs do not provide any abstractions for memories.

� HDLs do not simulate fast enough at the RTL level.

In this paper, we first discuss related work in the litera-
ture. We then extend the discussion on the implications of
the above-mentioned issues in Section 3. We then propose
in Section 4 a new RTL abstraction, called MetaRTL, which
extends the FSMD with a rich set of constructs addressing
the identified issues. In Section 5, we present a synthesis
tool, which translates MetaRTL into the industrial standard
“synthesizable” HDLs. To demonstrate the added-value of
MetaRTL over HDLs, we show their difference with a num-
ber of benchmarks.

2 Related Work

A number of efforts have emerged recently to use soft-
ware programming languages to model register transfer
level hardware. For example, CynApps announced its Cyn-
lib [3], a C++ class library which provides features so that
C++ can be used to model hardware. The Open SystemC
Initiative, announced a similar library called SystemC [8]
[10]. Another implementation with arguably superior sim-
ulation performance is the OCAPI library [9] developed
by IMEC. While the expressive power of the software lan-
guages can be leveraged to some extent, the goal of these
approaches is to repeat HDL semantics in C syntax, and the
problems enumerated in this paper remain unsolved.

The V++ synchronous language [2] developed at Ca-
dence Berkeley Lab, as well as its predecessors, such as
Esterel [1] and Lustre [6], also try to employ a synthesis se-
mantics (synchronous reactive model) rather simulation se-
mantics. However, none of them is designed with a strong
type system, and no memory abstraction is supported.

The SpecC system level design language [5], supports
protocol level component reuse the same way as that is pro-
posed in this paper, although it lacks the polymorphic type
system desired. With its powerful type systems, the OpenJ
language [11] has provided a language framework to exper-
iment with system level design languages, although it did
not explicitly define an RTL abstraction. Nevertheless, both
languages seem to be suitable frameworks for MetaRTL to
apply.

3 Problems with “Synthesizable” HDLs

3.1 Simulation Semantics

VHDL and Verilog (HDLs in the text follows) were de-
signed as simulation languages for gate-level hardware sys-
tems. To emulate the behavior of hardware, a HDL pro-
grammer write a program which specifies a discrete event
system (simulation semantics), rather than how hardware is
constructed (synthesis semantics). While many constructs
in HDLs can be conveniently mapped to hardware, the dis-
crete event semantics introduces artifacts which are hard, or
even impossible to map to hardware (synthesizable). For
example, delay is a concept that can neither be interpreted
as certain hardware nor certain design constraints. Signals
imply potentially infinite size of memory to hold values.

Given that, the industry has devised the so-called “syn-
thesizable” subsets of HDLs, where problematic constructs
or problematic uses of certain constructs are excluded. Still,
one has to devise a discrete event system to simulate the
hardware one has in mind, only to let the EDA tools to dis-
cover, or “infer” that hardware later. This added level of
indirection is not only unintuitive but also error-prone.

a

b c

...
if(a = ’0’) then
 c <= b;
end if;
...

Figure 1. Problem with simulation semantics.

Example 1 Unwanted latch inferring. A wire or register
cannot simply be declared in HDLs, instead, they have to be
inferred through the use of signals. In order for an output
signal to be interpreted as a wire, assignment has to be per-
formed in all branches of a process. A latch will be inferred
otherwise, as is shown in Figure 1. It is not uncommon for
beginners to forget the signal assignment for certain don’t-
care conditions, which results in unwanted latches.

3.2 Design Reuse

HDLs provide support for design reuse only at a low
level through component instantiation. In order to reuse a
component, one has to instantiate the component by map-
ping the ports of the component to corresponding wires.
While this procedure is good enough for the reuse of com-
binational components, the reuse of sequential components
and more complex IP cores is more complex. In these com-
ponents, certain protocols, are predefined to communicate
with the components. Typically, such protocol contains
states and should be specified as an FSMD by itself. Lack-
ing mechanism to specify component protocol in HDLs,
one has to consult the data sheet of component and spent
considerate amount of time to design the component inter-
face. And every time the component is replaced by another
component with similar functionality during design explo-
ration, the interface circuitry has to be redesigned.

u1 : Comp(start, done, din, dout);
...
...
start = ’1’;
for in in 0 to 8 do
 wait until clk’event and clk = ’1’;
 din <= a(i);
end for;
while(done = ’0’) do
 wait until clk’event and clk = ’1’;
 start <= ’0’;
end while;
while(done = ’1’) do
 wait until clk’event and clk = ’1’;
 b(j) := dout;
 j := j + 1;
end while;
...

start done

din dout
Comp

Component user’s
 interface code

Figure 2. Problem with design reuse.

Example 2 IP reuse. As shown in Figure 2, an IP compo-
nent needs to be reused in a design. Since using the compo-
nent involves a complex protocol with handshaking before
feeding the input data and obtaining the output data cycle

2

by cycle, the HDL designer has to design interface circuit
conforming to this protocol specified in the data sheet, in
addition to the instantiation of the component. This tedious
process is unnecessary.

3.3 Type System

While HDLs may have a fairly strong type system (e.g.,
VHDL), their synthesis subset, can only be considered as
an untyped system: all values are bits or bit vectors. This
is in contrast with most software languages, which contain
a rich set of basic data types as well as mechanism to de-
fine abstract data types. Without a strong type system in
HDLs, one has to rely on human effort for type checking
and type conversion, a task only practiced at the stone age
of programming.

Polymorphism in HDLs are only partially supported by
generic values. An RTL design can hence be parameterized
with values: for example, bitwidth of data and addresses. It
is impossible, however, to parameterize an RTL design over
the components it may use. This restriction limits the gran-
ularity of IP offering, especially for those who offer system
level IPs.

3.4 Memory Abstraction

It is fair to state that any interesting application will in-
volve the use of memories. For example, in signal pro-
cessing applications, memories are used extensively to store
data samples. In networking applications, memories are
used to buffer data packets as well as maintain protocol
states and routing tables.

Despite its importance, there is no memory abstraction
in “synthesizable” HDLs. This is in contrast to traditional
programming languages, where abstract data types as well
as pointers are extensively used to layout and access mem-
ory.

Example 3 Memory abstraction in C. Consider the C code
segments in Figure 3, where memories can be accessed via
variables, arrays and pointers. None of these programming
abstractions exist in synthesizable HDLs.

4 MetaRTL: a New RTL Abstraction

While RTL design has been widely regarded as a
“solved” problem, we reconsider the very first question one
should always ask, based on the observations made in Sec-
tion 3: Given the role of RTL design in the entire VLSI de-
sign methodology, what exactly should the RTL abstraction
abstract away and what it should not.

A revisit to the FSMD model suggests that the RTL ab-
straction is in fact conceptually “closer” to the traditional

...
struct {
 int field1;
 struct {
 char field3;
 } field2;
 } *p1;
short a, *p2;
char b[10];

...
a = 0;
b[3] = ‘a’;
p1−>field1 = 1;
p1−>field2.field3 = 2;
p2 = &a;
...

Figure 3. Problem with memory abstraction.

programming language based on the imperative semantics
than the HDLs based on the discrete-event semantics. Af-
ter all, both FSMD and imperative semantics represent state
machines, and the only fundamental difference between
them is that states in FSMD implies timing: state change
is synchronized with an outstanding clock; while state in
imperative semantics only indicates order. The other help-
ful abstractions that people have developed for imperative
languages can be and should be safely borrowed.

MetaRTL ::= (Class)*
Class ::= class ID[[Formal (, Formal)*]]

f (Field j Method)*g
Type ::= ID [[Actual j (, Actual)*]]

Formal ::= class IDj TypeID
Actual ::= Typej Expr

Field ::= sclass TypeID [= Expr];
sclass ::= in j out j inout j reg j wire j latch j Type

Method ::= [always j public] Type ID
[(Param (, Param)*]) f (Stmt)* g

Param ::= [in j out j inout] Type ID
Stmt ::= [LeftValue=] Expr ;

j if (Expr) Stmt [elseStmt]
j switch (Expr) (CaseStmt)+
j [ID] : Stmt
j do Stmtwhile(Expr) ;
j while (Expr) Stmt
j break ;
j return Expr ;

CaseStmt ::= caseExpr : Stmt j default : Stmt
Expr ::= Literal

j this
j LeftValue
j Expr . ID ([Expr (, Expr)*])

LeftValue ::= ID j Type . ID
j Expr . ID

Figure 4. MetaRTL syntax.

In Figure 4, we show the syntax of a “new” RTL abstrac-
tion that we proposed. The abstraction is presented in the
form of language, but as we show later, the basic concepts
can be used to extend existing languages. We give it a name,

3

MetaRTL, for its multi-lingual purpose.
MetaRTL is new in the sense that it differs significantly

from the HDL-based RTL abstraction in use today. It is not
really that “new” in the sense that it is in essence a syntactic-
sugar-free, polymorphic, object-oriented language.

More specifically, the basic unit of design encapsulation
in MetaRTL is called a type, specified by the class construct.
A type represents either a set of data values, called the value
type, or a set of objects, called the object type. A type con-
tains a set of fields and a set of methods. A method contains
a sequence of statements, each of which consists of expres-
sions. A type and a class can be used interchangeable except
when a type is parameterized, in which case the class is the
“template”, and the type is an instance of the template. A
class can be parameterized over other types and constants.

class Alu1 f 1
in int i1, i2; 2
in bits[1] opcode; 3
out o; 4

5
... 6
public int abs(int a) f 7

i1 = a; opcode = 0; return o; 8
g 9

public int min(int a, int b) f 10
i1 = a; i2 = b; opcode = 1; return o; 11
g 12
g 13

14

Figure 5. A combinational component.

Nevertheless, MetaRTL differs from a traditional pro-
gramming language in the following ways:

� A MetaRTL object type can specify a set of hardware
objects. Each object represents a piece of digital syn-
chronous hardware.

� A field of value type in MetaRTL object type can be
prefixed with a “storage class” modifier. Thein,
out, inout, wire, reg modifiers indicate that
the corresponding field designates an input port, an
output port, an inout port, a wire and a register respec-
tively. All other modifiers suggest the kind of memory
the corresponding field should be mapped to.

� A field of a hardware object type in MetaRTL instan-
tiate the piece of digital hardware represented by the
corresponding object type.

� A method in MetaRTL object type can be prefixed with
thealways modifier, indicating that the method spec-
ifies a piece of hardware belonging to that object. Al-
ternatively, it can be prefixed with thepublic mod-
ifier, indicating that the method specifies the piece of

interface hardware to communicate with the object in
order for certain functions to be performed.

� While the syntax is exactly the same as their soft-
ware counterpart, statements in MetaRTL are not an
abstraction of the instructions sequences executed on
processors, instead, they specify a synchronous state
machine. Section 4.1 gives a more detailed description
of the hardware semantics.

In the sequel, we show how MetaRTL addresses the is-
sues that HDL-based RTL abstraction failed to address us-
ing a set of examples, which leads to the design of the
square root approximation unit (SRA). The SRA unit com-
putes

p
in12+ in22, as detailed in [4].

Figure 5 and Figure 6 show two combinational compo-
nents. Figure 7 shows a polymorphic constant shifter, where
the constant can be specified as a parameter. Figure 8 shows
the sequential SRA component.

class Alu2 f 15
in int i1, i2; 16
in bits[2] opcode; 17
out o; 18

19
... 20
public int abs(int a) f 21
i1 = a; opcode = 0; return o; 22
g 23

public int min(int a, int b) f 24
i1 = a; i2 = b; opcode = 1; return o; 25
g 26

public int add(int a, int b) f 27
i1 = a; i2 = b; opcode = 2; return o; 28
g 29

public int sub(int a, int b) f 30
i1 = a; i2 = b; opcode = 3; return o; 31
g 32
g 33

34

Figure 6. Another combinational component.

4.1 Synthesis Semantics

In MetaRTL, the hardware semantics for each construct
is exactly defined. Each object type specifies a hardware
design unit. Fields in MetaRTL mean exactly what they
are declared for: the fields within, out, inout mod-
ifiers imply ports of the design unit; the fields withwire
modifier imply wires; while fields withreg modifier imply
registers. Other fields are variables whose addresses will be
automatically allocated by the compiler.

The logic contained in the hardware unit is completely
and only defined in thealways methods. In general,
statements in a method imply a synchronous state machine,

4

where the labels and loop boundaries indicate state bound-
aries. For example, the “:”s in Line 66–72 indicates state
boundaries, even though the label names are implicit. When
no such boundaries exist, the method represents a combi-
national circuit. For example, in methodmain at Line 39,
neither explicit labels nor loops are present, which indicates
thatmain represents a combination circuit. Accesses and
assignments to wires, ports and registers imply connections
instead of the conventional value assignment.

class CnstShift[int op2] f 35
in int i; 36
out int o; 37

38
always void main() f o = i << op2; g 39
public int shift(int a) f 40

i = a; return o; 41
g 42
g 43

44

Figure 7. A polymorphic component.

4.2 Type System

The type system of MetaRTL resembles that of a mod-
ern software programming language. This brings several
advantages over HDLs. First, Arithmetic data types as well
as others can be used in place of the HDL bit vector data
types. Even though their hardware semantics are the same
and hence brings no improvement for synthesis quality, the
type system can exclude a number of design errors at com-
pile time. In addition, the tedious work of type conversion
and promotion can be assumed by the compiler. Second,
since MetaRTL has a polymorphic type system, a design
unit can both have constants and other data types as generic
parameters. The latter adds another dimension of parame-
terizability over HDLs. Third, although not defined in Fig-
ure 4, subtyping can be easily added to bring the same ben-
efit as it does to software.

4.3 Design Reuse

While the powerful type system of MetaRTL certainly
improves reusability, another feature of MetaRTL is the pro-
tocol method. Indicated by thepublic keyword, protocol
methods encapsulate interfacing mechanism to the design
unit. For example, at Line 7, the protocol methodabs
specifies how to interface with anAlu1 unit to perform the
abs function (compute absolute value): one should con-
nect the operanda to the input porti1 , and connect the
input opcode to constant 0, and get output at the output
port o. As a more complex example, thesra at Line 75

class Sra f 45
in bit start = 0; 46
out bit done = 0; 47
in int in1; 48
in int in2; 49
out int dout; 50

51
reg int R1, R2, R2; 52

53
Alu1 u1; 54
Alu2 u2; 55
CnstShift[1] u3; 56
CnstShift[3] u4; 57

58
always void output() f 59
dout = R1; 60
g 61

62
always void ctrl() f 63
while(start == 0); 64
R1 = in1; R2 = in2; 65

: R1 = u1.abs(R1); R2 = u2.abs(R2); 66
: R1 = u1.max(R1, R2); R2 = u2.min(R1, R2); 67
: R2 = u3.shift(R1); R3 = u4.shift(R2); 68
: R2 = u2.sub(R1, R2); 69
: R2 = u2.add(R3, R2); 70
: R1 = u1.max(R2, R1); 71
: done = 1; 72
g 73

74
public int sra(int a, int b) f 75
start = 1; in1 = a; in2 = b; 76
while(done == 0) f 77
in1 = a; in2 = b; 78
g 79

return dout; 80
g 81
g 82

83

Figure 8. A sequential component.

shows how to interface an SRA unit to perform the square
root computation. Note that this method specifies a protocol
which has to be implemented as an FSMD.

With protocol methods, the user of a component can sim-
ply make appropriate method calls to achieve the desired
operations. This tremendously reduces the effort of using a
component, in other words, increases the reusability of the
component.

4.4 Memory Abstraction

MetaRTL allows the use of memory variables and point-
ers (object references). Designers can access memory vari-
able by their names instead of their explicit addresses, as
in the case of HDLs. The synthesis tool not only performs
memory bank and memory address allocation for these vari-
ables, but also transforms each access to the memory (load
and store) into appropriate calls to predefined memory com-
ponent protocol methods. Surprisingly, while this abstrac-
tion of memory is nothing but a restoring of what software
compilers have been doing since the beginning, it greatly

5

improves the productivity of designing memory intensive
applications.

5 Experimental Result

We have embedded the concepts defined in MetaRTL
into both a C-based and a Java-based research SLDL. We
have also developed a tool, called MetaSyn, which synthe-
sizes the SLDLs into synthesizable VHDL.

MetaC

VHDL
Protocol
Inlining

 Memory
Allocation

Inter−proc.
Analysis

MetaJ

Parse

 FSMD
extraction

 HDL
export

Figure 9. MetaSyn block diagram.

As illustrated in Figure 9, MetaSyn performs a number
of tasks. It first parses the source code into an intermediate
representation. It then performs a number of analysis tasks,
which are referred to as “inter-procedural” because they re-
quire computation across class boundaries. One example of
such analysis is pointer analysis, which computes the stor-
age class a pointer value may point to. Global memory allo-
cation is in turn performed to assign addresses to variables.
It will then perform protocol inlining where all the calls to
protocols are recursively expanded into the caller. Next,
MetaSyn extracts the FSMD model from the intermediate
representation and export it into the VHDL format that is
consistent with the industry’s synthesizable standard.

We have tested MetaSyn with a number of benchmarks,
most of which are taken from Lee and Chow’s DSP bench-
mark set [7]. Each benchmark is synthesized into gate
level implementation using a commercial logic synthesis
tool from the VHDL code produced by MetaSyn. Table 1
shows the number of lines of the benchmarks in MetaC and
the generated VHDL respectively. The area of the synthe-
sized design using the the TSMC’s 0.35 micron technology
is also shown.

It is observed that for all the benchmarks, the MetaC
code is significantly shorter than the generated VHDL.

6 Conclusion

We have presented a number of problems associated with
the RTL abstraction standard defined by HDLs. We argue
that these problems can be elegantly solved by a new RTL
abstraction, whose BNF definition can be as short as half a
page.

Benchmark MetaC VHDL Area
(#lines) (#lines) (um2)

fft 45 1028 500652
fir 29 355 272206
iir 46 1201 476529

latnrm 37 748 408111
lmsfir 39 796 405976
mmult 28 451 331058
smult 12 94 57157
sra 16 288 98599

Table 1. Experimental result.

7 Acknowledgment

The author would like to thank Mr. Varo-
dayan David Prakash for his help in the experiment.

References

[1] G. Berry and G. Gonthier. The ESTEREL synchronous pro-
gramming language: Design, semantics, implementation.
Science of Computer Programming, 19:87–152, 1992.

[2] S. Cheng, P. McGeer, M. Meyer, T. Truman,
A. Sangiovanni-Vincentelli, and P. Scaglia. The V++
system design language. InProceedings of the Design
Automation and Test Conference in Europe, 1998.

[3] CynLib Web Site. http://www.cynapps.com/
CynApps/products/cynlib/opensource.html .

[4] D. Gajski.Principle of Digital Design. Prentice Hall, Upper
Saddle River, NJ, 1997.

[5] D. Gajski, J. Zhu, D. Doemer, A. Gerstlauer, and S. Zhao.
SpecC: Specification Language and Methodology. Kluwer
Academic Publishers, Boston, March 2000.

[6] C. Halbwachs et al. The synchronous data flow pro-
gramming language LUSTRE.Proceedings of the IEEE,
79(9):1305–1320, 1992.

[7] C. Lee and P. Chow.http://www.eecg.toronto.
edu/˜corinna .

[8] S. Liao, S. Tjiang, and R. Gupta. An efficient implementa-
tion of reactivity for modeling hardware in the Scenic design
environment. InProceeding of the 34th Design Automation
Conference, 1997.

[9] P. Schaumont, R. Cmar, S. Vernalde, M. Engels, and
I. Bolsens. Hardware reuse at the behavioral level. InPro-
ceeding of the 36th Design Automation Conference, New
Orleans, June 1999.

[10] SystemC Web Site. http://www.systemc.org .
[11] J. Zhu and D. G. Gajski. OpenJ: A system level design lan-

guage. InProceedings of the Design Automation and Test
Conference in Europe, Munich, Germany, March 1999.

6

