
MetaRTL: Raising the Abstraction Level of RTL Design

Jianwen Zhu

Technical Report ECE-00-xx
May 2000

(Version as of March 19, 2001)

Electrical and Computer Engineering
University of Toronto

Toronto, ON M5S 3G4, Canada

jzhu@eecg.toronto.edu

Abstract

The register transfer abstraction (RTL) has been established as the industrial standard for ASIC design,
soft IP exchange and the backend interface for chip design at higher level. Unfortunately, the \synthesizable"
VHDL/Verilog incarnation of the RTL abstraction has problems which prevent it from more productive use. For
example, the confusion as the result of using simulation semantics for synthesis purpose, the lack of facility for
component reuse at the \protocol" level, and the lack of memory abstraction. After a detailed discussion of these
problems, this paper proposes a new RTL abstraction, called MetaRTL, which can be implemented by a modest ex-
tension to the traditional imperative programming languages. The productivity gain is further demonstrated by the
description of a synthesis tool, called MetaSyn, which provides the \added-value". Experiments on the benchmark
set show that MetaRTL is far more concise than the \synthesizable" HDL speci�cation, and incurs no overhead
for synthesis result.

Contents

1 Introduction 1

2 Related Work 1

3 Problems with \Synthesizable" HDLs 1

3.1 Simulation Semantics . 1
3.2 Design Reuse . 2
3.3 Type System . 2
3.4 Memory Abstraction . 3

4 MetaRTL: a New RTL Abstraction 3

4.1 Synthesis Semantics . 4
4.2 Type System . 5
4.3 Design Reuse . 5
4.4 Memory Abstraction . 6

5 Experimental Result 6

6 Conclusion 6

7 Acknowledgment 6

8 References 6

i

1 Introduction

Due to their complexity, VLSI designs are performed
at di�erent levels of abstraction. Among them regis-
ter transfer level (RTL) is one of the most important.
For ASIC design, the dominant practicing methodol-
ogy starts at RTL. For the booming intellectual prop-
erty (IP) market, RTL is becoming the de facto soft IP
exchange standard. Furthermore, RTL serves as the
\assembly language", or the backend interface, for the
higher level (for example, the behavioral level) design
methodology.

In theory, the RTL design can be formalized as
Gajski's FSMD model [4], which is an extension of the
FSM model with the so-called register transfer opera-
tions, each of which can be considered as an assignment
of value, computed as an expression over a set of reg-
ister values, to another register. The FSM model can
be best visualized by the ASM chart, invented by IBM
in the 1960s.

In practice, a speci�cation language is needed to
capture the RTL design. Typically, an RTL language
is used to specify the FSMD model as well as some ad-
ditional information. Some information is considered
essential: for example, the mapping between expres-
sion operators and the actual hardware components.
Some information is considered only syntactical sugar:
for example, constructs to facilitate modular design.
The importance of syntactical sugar, however, cannot
be underestimated, since it is designed to combat de-
sign complexity, which becomes increasingly important
when one moves to systems-on-chip design.

The dominant RTL speci�cation languages in use
today are VHDL and Verilog, the IEEE standard hard-
ware description languages (HDLs). Unfortunately, the
current RTL design methodology based-on HDLs is not
without problems. Some of the fundamental problems
are listed as follows:

� HDLs are designed as a simulation language.
The gap between the simulation semantics and
the synthesis semantics causes unnecessary con-
fusion.

� HDLs are not designed with design reuse in mind.

� HDLs are not designed with a type system as
powerful as that of software languages.

� HDLs do not provide any abstractions for mem-
ories.

� HDLs do not simulate fast enough at the RTL
level.

In this paper, we �rst discuss related work in the
literature. We then extend the discussion on the im-
plications of the above-mentioned issues in Section 3.
We then propose in Section 4 a new RTL abstraction,
called MetaRTL, which extends the FSMD with a rich
set of constructs addressing the identi�ed issues. In
Section 5, we present a synthesis tool, which translates
MetaRTL into the industrial standard \synthesizable"
HDLs. To demonstrate the added-value of MetaRTL
over HDLs, we show their di�erence with a number of
benchmarks.

2 Related Work

A number of e�orts have emerged recently to use
software programming languages to model register
transfer level hardware. For example, CynApps an-
nounced its Cynlib [3], a C++ class library which pro-
vides features so that C++ can be used to model hard-
ware. The Open SystemC Initiative, announced a sim-
ilar library called SystemC [8] [10]. Another implemen-
tation with arguably superior simulation performance
is the OCAPI library [9] developed by IMEC. While
the expressive power of the software languages can be
leveraged to some extent, the goal of these approaches
is to repeat HDL semantics in C syntax, and the prob-
lems enumerated in this paper remain unsolved.

The V++ synchronous language [2] developed at
Cadence Berkeley Lab, as well as its predecessors, such
as Esterel [1] and Lustre [6], also try to employ a syn-
thesis semantics (synchronous reactive model) rather
simulation semantics. However, none of them is de-
signed with a strong type system, and no memory ab-
straction is supported.

The SpecC system level design language [5], sup-
ports protocol level component reuse the same way as
that is proposed in this paper, although it lacks the
polymorphic type system desired. With its powerful
type systems, the OpenJ language [11] has provided a
language framework to experiment with system level
design languages, although it did not explicitly de-
�ne an RTL abstraction. Nevertheless, both languages
seem to be suitable frameworks for MetaRTL to apply.

3 Problems with \Synthesizable"

HDLs

3.1 Simulation Semantics

VHDL and Verilog (HDLs in the text follows) were
designed as simulation languages for gate-level hard-
ware systems. To emulate the behavior of hardware,

1

a HDL programmer write a program which speci�es
a discrete event system (simulation semantics), rather
than how hardware is constructed (synthesis seman-
tics). While many constructs in HDLs can be conve-
niently mapped to hardware, the discrete event seman-
tics introduces artifacts which are hard, or even impos-
sible to map to hardware (synthesizable). For example,
delay is a concept that can neither be interpreted as
certain hardware nor certain design constraints. Sig-
nals imply potentially in�nite size of memory to hold
values.

Given that, the industry has devised the so-called
\synthesizable" subsets of HDLs, where problematic
constructs or problematic uses of certain constructs are
excluded. Still, one has to devise a discrete event sys-
tem to simulate the hardware one has in mind, only
to let the EDA tools to discover, or \infer" that hard-
ware later. This added level of indirection is not only
unintuitive but also error-prone.

a

b c

...
if(a = ’0’) then
 c <= b;
end if;
...

Figure 1. Problem with simulation semantics.

Example 1 Unwanted latch inferring. A wire or reg-
ister cannot simply be declared in HDLs, instead, they
have to be inferred through the use of signals. In or-
der for an output signal to be interpreted as a wire,
assignment has to be performed in all branches of a
process. A latch will be inferred otherwise, as is shown
in Figure 1. It is not uncommon for beginners to forget
the signal assignment for certain don't-care conditions,
which results in unwanted latches.

3.2 Design Reuse

HDLs provide support for design reuse only at a
low level through component instantiation. In order to
reuse a component, one has to instantiate the compo-
nent by mapping the ports of the component to corre-
sponding wires. While this procedure is good enough
for the reuse of combinational components, the reuse
of sequential components and more complex IP cores is
more complex. In these components, certain protocols,

are prede�ned to communicate with the components.
Typically, such protocol contains states and should be
speci�ed as an FSMD by itself. Lacking mechanism to
specify component protocol in HDLs, one has to con-
sult the data sheet of component and spent consider-
ate amount of time to design the component interface.
And every time the component is replaced by another
component with similar functionality during design ex-
ploration, the interface circuitry has to be redesigned.

u1 : Comp(start, done, din, dout);
...
...
start = ’1’;
for in in 0 to 8 do
 wait until clk’event and clk = ’1’;
 din <= a(i);
end for;
while(done = ’0’) do
 wait until clk’event and clk = ’1’;
 start <= ’0’;
end while;
while(done = ’1’) do
 wait until clk’event and clk = ’1’;
 b(j) := dout;
 j := j + 1;
end while;
...

Figure 2. Problem with design reuse.

Example 2 IP reuse. As shown in Figure 2, an IP
component needs to be reused in a design. Since using
the component involves a complex protocol with hand-
shaking before feeding the input data and obtaining the
output data cycle by cycle, the HDL designer has to de-
sign interface circuit conforming to this protocol spec-
i�ed in the data sheet, in addition to the instantiation
of the component. This tedious process is unnecessary.

3.3 Type System

While HDLs may have a fairly strong type system
(e.g., VHDL), their synthesis subset, can only be con-
sidered as an untyped system: all values are bits or
bit vectors. This is in contrast with most software lan-
guages, which contain a rich set of basic data types as
well as mechanism to de�ne abstract data types. With-
out a strong type system in HDLs, one has to rely on
human e�ort for type checking and type conversion, a
task only practiced at the stone age of programming.

Polymorphism in HDLs are only partially supported
by generic values. An RTL design can hence be pa-

2

rameterized with values: for example, bitwidth of data
and addresses. It is impossible, however, to parame-
terize an RTL design over the components it may use.
This restriction limits the granularity of IP o�ering,
especially for those who o�er system level IPs.

3.4 Memory Abstraction

It is fair to state that any interesting application will
involve the use of memories. For example, in signal pro-
cessing applications, memories are used extensively to
store data samples. In networking applications, memo-
ries are used to bu�er data packets as well as maintain
protocol states and routing tables.

Despite its importance, there is no memory abstrac-
tion in \synthesizable" HDLs. This is in contrast
to traditional programming languages, where abstract
data types as well as pointers are extensively used to
layout and access memory.

...
struct {
 int field1;
 struct {
 char field3;
 } field2;
 } *p1;
short a, *p2;
char b[10];

...
a = 0;
b[3] = ‘a’;
p1−>field1 = 1;
p1−>field2.field3 = 2;
p2 = &a;
...

Figure 3. Problem with memory abstraction.

Example 3 Memory abstraction in C. Consider the
C code segments in Figure 3, where memories can be

accessed via variables, arrays and pointers. None of
these programming abstractions exist in synthesizable
HDLs.

4 MetaRTL: a New RTL Abstraction

While RTL design has been widely regarded as a
\solved" problem, we reconsider the very �rst question
one should always ask, based on the observations made
in Section 3: Given the role of RTL design in the en-
tire VLSI design methodology, what exactly should the
RTL abstraction abstract away and what it should not.

A revisit to the FSMD model suggests that the RTL
abstraction is in fact conceptually \closer" to the tradi-
tional programming language based on the imperative
semantics than the HDLs based on the discrete-event
semantics. After all, both FSMD and imperative se-
mantics represent state machines, and the only funda-
mental di�erence between them is that states in FSMD
implies timing: state change is synchronized with an
outstanding clock; while state in imperative semantics
only indicates order. The other helpful abstractions
that people have developed for imperative languages
can be and should be safely borrowed.

MetaRTL ::= (Class)*
Class ::= class ID [[Formal (, Formal)*]]

f (Field j Method)* g
Type ::= ID [[Actual j (, Actual)*]]

Formal ::= class ID j Type ID
Actual ::= Type j Expr
Field ::= sclass Type ID [= Expr];
sclass ::= in j out j inout j reg j wire j latch j Type

Method ::= [always j public] Type ID
[(Param (, Param)*]) f (Stmt)* g

Param ::= [in j out j inout] Type ID
Stmt ::= [LeftValue =] Expr ;

j if (Expr) Stmt [else Stmt]
j switch (Expr) (CaseStmt)+
j [ID] : Stmt
j do Stmt while(Expr) ;
j while (Expr) Stmt
j break ;
j return Expr ;

CaseStmt ::= case Expr : Stmt j default : Stmt
Expr ::= Literal

j this
j LeftValue
j Expr . ID ([Expr (, Expr)*])

LeftValue ::= ID j Type . ID
j Expr . ID

Figure 4. MetaRTL syntax.

In Figure 4, we show the syntax of a \new" RTL
abstraction that we proposed. The abstraction is pre-
sented in the form of language, but as we show later,
the basic concepts can be used to extend existing lan-
guages. We give it a name, MetaRTL, for its multi-
lingual purpose.

3

MetaRTL is new in the sense that it di�ers signif-
icantly from the HDL-based RTL abstraction in use
today. It is not really that \new" in the sense that it is
in essence a syntactic-sugar-free, polymorphic, object-
oriented language.

More speci�cally, the basic unit of design encapsu-
lation in MetaRTL is called a type, speci�ed by the
class construct. A type represents either a set of data
values, called the value type, or a set of objects, called
the object type. A type contains a set of �elds and a
set of methods. A method contains a sequence of state-
ments, each of which consists of expressions. A type
and a class can be used interchangeable except when
a type is parameterized, in which case the class is the
\template", and the type is an instance of the tem-
plate. A class can be parameterized over other types
and constants.

class Alu1 f 1
in int i1, i2; 2
in bits[1] opcode; 3
out o; 4

5
... 6
public int abs(int a) f 7
i1 = a; opcode = 0; return o; 8
g 9

public int min(int a, int b) f 10
i1 = a; i2 = b; opcode = 1; return o; 11
g 12

g 13
14

Figure 5. A combinational component.

Nevertheless, MetaRTL di�ers from a traditional
programming language in the following ways:

� A MetaRTL object type can specify a set of hard-
ware objects. Each object represents a piece of
digital synchronous hardware.

� A �eld of value type in MetaRTL object type can
be pre�xed with a \storage class" modi�er. The
in, out, inout, wire, reg modi�ers indicate
that the corresponding �eld designates an input
port, an output port, an inout port, a wire and
a register respectively. All other modi�ers sug-
gest the kind of memory the corresponding �eld
should be mapped to.

� A �eld of a hardware object type in MetaRTL
instantiate the piece of digital hardware repre-
sented by the corresponding object type.

� A method in MetaRTL object type can be pre-
�xed with the always modi�er, indicating that

the method speci�es a piece of hardware belong-
ing to that object. Alternatively, it can be pre-
�xed with the public modi�er, indicating that
the method speci�es the piece of interface hard-
ware to communicate with the object in order for
certain functions to be performed.

� While the syntax is exactly the same as their soft-
ware counterpart, statements in MetaRTL are
not an abstraction of the instructions sequences
executed on processors, instead, they specify a
synchronous state machine. Section 4.1 gives a
more detailed description of the hardware seman-
tics.

In the sequel, we show how MetaRTL addresses the
issues that HDL-based RTL abstraction failed to ad-
dress using a set of examples, which leads to the de-
sign of the square root approximation unit (SRA). The
SRA unit computes

p
in12 + in22, as detailed in [4].

Figure 5 and Figure 6 show two combinational
components. Figure 7 shows a polymorphic constant
shifter, where the constant can be speci�ed as a param-
eter. Figure 8 shows the sequential SRA component.

class Alu2 f 15
in int i1, i2; 16
in bits[2] opcode; 17
out o; 18

19
... 20
public int abs(int a) f 21
i1 = a; opcode = 0; return o; 22
g 23

public int min(int a, int b) f 24
i1 = a; i2 = b; opcode = 1; return o; 25
g 26

public int add(int a, int b) f 27
i1 = a; i2 = b; opcode = 2; return o; 28
g 29

public int sub(int a, int b) f 30
i1 = a; i2 = b; opcode = 3; return o; 31
g 32

g 33
34

Figure 6. Another combinational component.

4.1 Synthesis Semantics

In MetaRTL, the hardware semantics for each con-
struct is exactly de�ned. Each object type speci�es a
hardware design unit. Fields in MetaRTL mean ex-
actly what they are declared for: the �elds with in,

out, inout modi�ers imply ports of the design unit;
the �elds with wire modi�er imply wires; while �elds

4

with regmodi�er imply registers. Other �elds are vari-
ables whose addresses will be automatically allocated
by the compiler.

The logic contained in the hardware unit is com-
pletely and only de�ned in the always methods. In
general, statements in a method imply a synchronous
state machine, where the labels and loop boundaries
indicate state boundaries. For example, the \:"s in
Line 66{72 indicates state boundaries, even though the
label names are implicit. When no such boundaries ex-
ist, the method represents a combinational circuit. For
example, in method main at Line 39, neither explicit
labels nor loops are present, which indicates that main
represents a combination circuit. Accesses and assign-
ments to wires, ports and registers imply connections
instead of the conventional value assignment.

class CnstShift[int op2] f 35
in int i; 36
out int o; 37

38
always void main() f o = i << op2; g 39
public int shift(int a) f 40
i = a; return o; 41
g 42

g 43
44

Figure 7. A polymorphic component.

4.2 Type System

The type system of MetaRTL resembles that of a
modern software programming language. This brings
several advantages over HDLs. First, Arithmetic data
types as well as others can be used in place of the HDL
bit vector data types. Even though their hardware se-
mantics are the same and hence brings no improvement
for synthesis quality, the type system can exclude a
number of design errors at compile time. In addition,
the tedious work of type conversion and promotion can
be assumed by the compiler. Second, since MetaRTL
has a polymorphic type system, a design unit can both
have constants and other data types as generic param-
eters. The latter adds another dimension of parame-
terizability over HDLs. Third, although not de�ned in
Figure 4, subtyping can be easily added to bring the
same bene�t as it does to software.

4.3 Design Reuse

While the powerful type system of MetaRTL
certainly improves reusability, another feature of

class Sra f 45
in bit start = 0; 46
out bit done = 0; 47
in int in1; 48
in int in2; 49
out int dout; 50

51
reg int R1, R2, R2; 52

53
Alu1 u1; 54
Alu2 u2; 55
CnstShift[1] u3; 56
CnstShift[3] u4; 57

58
always void output() f 59
dout = R1; 60
g 61

62
always void ctrl() f 63
while(start == 0); 64
R1 = in1; R2 = in2; 65

: R1 = u1.abs(R1); R2 = u2.abs(R2); 66
: R1 = u1.max(R1, R2); R2 = u2.min(R1, R2); 67
: R2 = u3.shift(R1); R3 = u4.shift(R2); 68
: R2 = u2.sub(R1, R2); 69
: R2 = u2.add(R3, R2); 70
: R1 = u1.max(R2, R1); 71
: done = 1; 72

g 73
74

public int sra(int a, int b) f 75
start = 1; in1 = a; in2 = b; 76
while(done == 0) f 77
in1 = a; in2 = b; 78
g 79

return dout; 80
g 81

g 82
83

Figure 8. A sequential component.

MetaRTL is the protocol method. Indicated by the
public keyword, protocol methods encapsulate inter-
facing mechanism to the design unit. For example,
at Line 7, the protocol method abs speci�es how to
interface with an Alu1 unit to perform the abs func-
tion (compute absolute value): one should connect the
operand a to the input port i1, and connect the in-
put opcode to constant 0, and get output at the out-
put port o. As a more complex example, the sra at
Line 75 shows how to interface an SRA unit to perform
the square root computation. Note that this method
speci�es a protocol which has to be implemented as an
FSMD.

With protocol methods, the user of a component
can simply make appropriate method calls to achieve
the desired operations. This tremendously reduces the
e�ort of using a component, in other words, increases
the reusability of the component.

5

4.4 Memory Abstraction

MetaRTL allows the use of memory variables and
pointers (object references). Designers can access
memory variable by their names instead of their ex-
plicit addresses, as in the case of HDLs. The synthesis
tool not only performs memory bank and memory ad-
dress allocation for these variables, but also transforms
each access to the memory (load and store) into appro-
priate calls to prede�ned memory component protocol
methods. Surprisingly, while this abstraction of mem-
ory is nothing but a restoring of what software com-
pilers have been doing since the beginning, it greatly
improves the productivity of designing memory inten-
sive applications.

5 Experimental Result

We have embedded the concepts de�ned in
MetaRTL into both a C-based and a Java-based re-
search SLDL. We have also developed a tool, called
MetaSyn, which synthesizes the SLDLs into synthesiz-
able VHDL.

MetaC

VHDL
Protocol
Inlining

 Memory
Allocation

Inter−proc.
Analysis

MetaJ

Parse

 FSMD
extraction

 HDL
export

Figure 9. MetaSyn block diagram.

As illustrated in Figure 9, MetaSyn performs a num-
ber of tasks. It �rst parses the source code into an
intermediate representation. It then performs a num-
ber of analysis tasks, which are referred to as \inter-
procedural" because they require computation across
class boundaries. One example of such analysis is
pointer analysis, which computes the storage class a
pointer value may point to. Global memory allocation
is in turn performed to assign addresses to variables. It
will then perform protocol inlining where all the calls
to protocols are recursively expanded into the caller.
Next, MetaSyn extracts the FSMD model from the in-
termediate representation and export it into the VHDL

Benchmark MetaC VHDL Area
(#lines) (#lines) (um2)

�t 45 1028 500652
�r 29 355 272206
iir 46 1201 476529

latnrm 37 748 408111
lms�r 39 796 405976
mmult 28 451 331058
smult 12 94 57157
sra 16 288 98599

Table 1. Experimental result.

format that is consistent with the industry's synthesiz-
able standard.

We have tested MetaSyn with a number of bench-
marks, most of which are taken from Lee and Chow's
DSP benchmark set [7]. Each benchmark is synthe-
sized into gate level implementation using a commer-
cial logic synthesis tool from the VHDL code produced
by MetaSyn. Table 1 shows the number of lines of
the benchmarks in MetaC and the generated VHDL
respectively. The area of the synthesized design using
the the TSMC's 0.35 micron technology is also shown.

It is observed that for all the benchmarks, the
MetaC code is signi�cantly shorter than the generated
VHDL.

6 Conclusion

We have presented a number of problems associated
with the RTL abstraction standard de�ned by HDLs.
We argue that these problems can be elegantly solved
by a new RTL abstraction, whose BNF de�nition can
be as short as half a page.

7 Acknowledgment

The author would like to thank Mr. Varo-
dayan David Prakash for his help in the experiment.

8 References

[1] G. Berry and G. Gonthier. The ESTEREL syn-
chronous programming language: Design, semantics,
implementation. Science of Computer Programming,
19:87{152, 1992.

[2] S. Cheng, P. McGeer, M. Meyer, T. Truman,
A. Sangiovanni-Vincentelli, and P. Scaglia. The V++
system design language. In Proceedings of the Design

Automation and Test Conference in Europe, 1998.

6

[3] CynLib Web Site. http://www.cynapps.com/

CynApps/products/cynlib/opensource.html.
[4] D. Gajski. Principle of Digital Design. Prentice Hall,

Upper Saddle River, NJ, 1997.
[5] D. Gajski, J. Zhu, D. Doemer, A. Gerstlauer, and

S. Zhao. SpecC: Speci�cation Language and Method-

ology. Kluwer Academic Publishers, Boston, March
2000.

[6] C. Halbwachs et al. The synchronous data ow pro-
gramming language LUSTRE. Proceedings of the

IEEE, 79(9):1305{1320, 1992.
[7] C. Lee and P. Chow. http: // www. eecg. toronto.

edu/ ~corinna .
[8] S. Liao, S. Tjiang, and R. Gupta. An e�cient imple-

mentation of reactivity for modeling hardware in the
Scenic design environment. In Proceeding of the 34th

Design Automation Conference, 1997.
[9] P. Schaumont, R. Cmar, S. Vernalde, M. Engels, and

I. Bolsens. Hardware reuse at the behavioral level. In
Proceeding of the 36th Design Automation Conference,
New Orleans, June 1999.

[10] SystemC Web Site. http://www.systemc.org.
[11] J. Zhu and D. G. Gajski. OpenJ: A system level design

language. In Proceedings of the Design Automation

and Test Conference in Europe, Munich, Germany,
March 1999.

7

