MetaRTL: Raising the Abstraction Level of RTL Design

Jianwen Zhu

Electrical and Computer Engineering University of Toronto March 16, 2001

jzhu@eecg.toronto.edu http://www.eecg.toronto.edu/~jzhu

DATE 2001, Munich

Copyright © Jianwen Zhu, 2000, ECE, Univ. of Toronto

Outline

- **Motivation**
- Previous work
- Problems of synthesizable HDL
- MetaRTL
- Results

2

Importance of RTL Abstraction

- RTL abstraction
 - Semantics: FSMD (Gajski)
 - Synthesizable VHDL/Verilog (IEEE)
- Established industrial standard for ASIC design
- Backend interface for higher level design
- de facto soft IP exchange standard

DATE 2001, Munich

Copyright © Jianwen Zhu, 2000, ECE, Univ. of Toronto

Problems of Synthesizable HDLs

- Designed as a simulation language.
- Not designed with design reuse in mind.
- Not designed with a type system as powerful as that of software languages.
- Do not provide any abstractions for memories.
- Do not simulate fast enough at the RTL level.

4

Outline

- Motivation
- Previous work
- Problem of synthesizable HDL
- MetaRTL
- Results

DATE 2001, Munich

Copyright © Jianwen Zhu, 2000, ECE, Univ. of Toronto

Library-Based Approach

- Syntactically existing language:
 - Defines a programming style for hardware modeling
 - Simulation convenience: simulator for free (g++)
- Semantically new language:
 - Squeeze new semantics into old constructs
 - Synthesis headache: which semantics should I apply?
- Efforts:
 - SystemC: http://www.systemc.org
 - Cynlib: http://www.cynapps.com
 - OCAPI: Schaumont et. al. DAC'99

Language-Based Approach

- New language
 - Defines a computational model (semantics)
 - Defines language construct (syntax) to capture the model
- Compilation overhead: needs a new compiler
- Unambiguous synthesis

- Efforts
 - Numerous work on parallel extension of C/C++
 - OOVHDL: IEEE working group
 - VHDL+: extension of VHDL
 - Superlog: extension of Verilog with C constructs
 - V++: complete new language for synchronous reactive semantics

DATE 2001, Munich

Copyright © Jianwen Zhu, 2000, ECE, Univ. of Toronto

Our Approach

- Semantic level:
 - Rethink what should be abstracted away, what should not
 - Address the problems to be described
 - Raise the abstraction level of RTL design
- Syntax level
 - Can be applied to library-based SLDL
 - Can be embedded into C-based SLDL

Outline

- Motivation
- Previous work
- Problems of synthesizable HDLs
- MetaRTL
- Results

DATE 2001, Munich

Copyright © Jianwen Zhu, 2000, ECE, Univ. of Toronto

Simulation Semantics

- HDL designed for simulation
 - How to synthesize delay
 - How to synthesize signal
- synthesis subset
 - Problematic constructs excluded
 - Infer hardware that exhibits discrete event semantics

Design Reuse

Hardware reuse by component instantiation

Not sufficient for sequential components

No interface protocol captured

DATE 2001, Munich

Copyright © Jianwen Zhu, 2000, ECE, Univ. of Toronto

11

Type System

- Type system: most effective error prevention in software
- Untyped system in synthesizable HDL
 - enumerate type
 - bit vector
- More abstract data type needed at RTL level

Memory Abstraction

Outline

- Motivation
- Previous work
- Problems of synthesizable HDLs
- MetaRTL
- Results

MetaRTL Overview

- Syntactic-sugar-free, object-oriented, polymorphic language
- Difference from imperative program
 - Specifies hardware objects
 - Field has modifiers: storage class
 - always method: component logic
 - public method: interface protocol

DATE 2001, Munich

Copyright © Jianwen Zhu, 2000, ECE, Univ. of Toronto

15

MetaRTL Syntax

MetaRTL	::=	(Class)*	Stmt	::=	[LeftValue =] Expr ;
Class	::=	class ID [[Formal (, Formal)*]]			if (Expr) Stmt [else Stmt]
		{ (Field Method)* }			switch (Expr) (CaseStmt)+
Туре	::=	ID [[Actual (, Actual)*]]			[ID] : Stmt
Formal	::=	class ID Type ID			do Stmt while(Expr);
Actual	::=	Type Expr			while (Expr) Stmt
Field	::=	sclass Type ID [= Expr];			break ;
sclass	::=	in out inout reg wire latch Type			return Expr;
Method	::=	[always public] Type ID	CaseStmt	::=	case Expr : Stmt default : Stmt
		[(Param (, Param)*]) { (Stmt)* }	Expr	::=	Literal
Param	::=	[in out inout] Type ID			this
					LeftValue
					Expr . ID ([Expr (, Expr)*])
			LeftValue	::=	ID Type . ID
				1	Expr. ID

Synthesis Semantics

Field \mapsto Storage

- In, out, inout fields \mapsto ports
- wire field \mapsto wire
- latch, reg fields \mapsto registers
- $\blacksquare Normal field \mapsto memory$

 $\blacksquare Method \mapsto Logic$

- Assignment: predicated connection semantics
- Method dispatch: protocol inlining
- Statement: logic
- State label: state boundary

DATE 2001, Munich	Copyright © Jianwen Zhu, 2000, ECE, Univ. of Toronto	\$	17
-------------------	--	----	----

Type System

- Arithmetic data types used in place of bit vectors
- Polymorphism
 - Parameterize over constants
 - Parameterize over type
- Subtyping: extensible hardware design

Design Reuse

- Type system improves reuse
- Explicit capture of interface protocol
 - Combinational components: connection and glue logic
 - Sequential components: partial FSMD
- Port mapping is replaced by method dispatch

DATE 2001, Munich

Copyright © Jianwen Zhu, 2000, ECE, Univ. of Toronto

Memory Abstraction

- Object reference and array, field access
- Access by name vs access by explicit address
- Memory bank and address allocation left to synthesis tool
- Automatic insertion of memory interface protocol

20

Outline

- Motivation
- Previous work
- Problems of synthesizable HDLs
- MetaRTL
- **Results**

Implementation

- Embed MetaRTL in experimental SLDL
- MetaSyn: MetaRTL \mapsto synthesizable VHDL

Experimental Result

Toronto DSP	Benchmark	MetaC	VHDL	Area
benchmark set		(#lines)	(#lines)	(um^2)
	fft	45	1028	500652
	fir	29	355	272206
technology	iir	46	1201	476529
Completed by	latnrm	37	748	408111
Mr. Prakash: first year	lmsfir	39	796	405976
undergraduate before	mmult	28	451	331058
any digital logic courses	smult	12	94	57157
	sra	16	288	98599

DATE 2001, Munich

Copyright © Jianwen Zhu, 2000, ECE, Univ. of Toronto

23

Conclusion

- RTL semantics can be made more abstract
- RTL syntax can be as simple as one page
- Future work
 - Synthesis algorithms
 - Embedding in SLDL