
MetaRTL: Raising the Abstraction Level of RTL Design

Jianwen Zhu

Electrical and Computer Engineering

University of Toronto

March 16, 2001

jzhu@eecg.toronto.edu

http://www.eecg.toronto.edu/˜jzhu

DATE 2001, Munich Copyrightc
 Jianwen Zhu, 2000, ECE, Univ. of Toronto 1

Outline

Motivation

Previous work

Problems of synthesizable HDL

MetaRTL

Results

DATE 2001, Munich Copyrightc
 Jianwen Zhu, 2000, ECE, Univ. of Toronto 2

Importance of RTL Abstraction

RTL abstraction

Semantics: FSMD (Gajski)

Synthesizable VHDL/Verilog (IEEE)

Established industrial standard for ASIC design

Backend interface for higher level design

de factosoft IP exchange standard

DATE 2001, Munich Copyrightc
 Jianwen Zhu, 2000, ECE, Univ. of Toronto 3

Problems of Synthesizable HDLs

Designed as a simulation language.

Not designed with design reuse in mind.

Not designed with a type system as powerful as that of software

languages.

Do not provide any abstractions for memories.

Do not simulate fast enough at the RTL level.

DATE 2001, Munich Copyrightc
 Jianwen Zhu, 2000, ECE, Univ. of Toronto 4

Outline

Motivation

Previous work

Problem of synthesizable HDL

MetaRTL

Results

DATE 2001, Munich Copyrightc
 Jianwen Zhu, 2000, ECE, Univ. of Toronto 5

Library-Based Approach

Syntactically existing language:

Defines a programming style for hardware modeling

Simulation convenience: simulator for free (g++)

Semantically new language:

Squeeze new semantics into old constructs

Synthesis headache: which semantics should I apply?

Efforts:

SystemC:http://www.systemc.org

Cynlib: http://www.cynapps.com

OCAPI: Schaumont et. al. DAC’99

DATE 2001, Munich Copyrightc
 Jianwen Zhu, 2000, ECE, Univ. of Toronto 6

Language-Based Approach

New language

Defines a computational model

(semantics)

Defines language construct

(syntax) to capture the model

Compilation overhead: needs a

new compiler

Unambiguous synthesis

Efforts

Numerous work on parallel
extension of C/C++

OOVHDL: IEEE working group

VHDL+: extension of VHDL

Superlog: extension of Verilog

with C constructs

V++: complete new language for

synchronous reactive semantics

DATE 2001, Munich Copyrightc
 Jianwen Zhu, 2000, ECE, Univ. of Toronto 7

Our Approach

Semantic level:

Rethink what should be abstracted away, what should not

Address the problems to be described

Raise the abstraction level of RTL design

Syntax level

Can be applied to library-based SLDL

Can be embedded into C-based SLDL

DATE 2001, Munich Copyrightc
 Jianwen Zhu, 2000, ECE, Univ. of Toronto 8

Outline

Motivation

Previous work

Problems of synthesizable HDLs

MetaRTL

Results

DATE 2001, Munich Copyrightc
 Jianwen Zhu, 2000, ECE, Univ. of Toronto 9

Simulation Semantics

HDL designed for simulation

How to synthesize delay

How to synthesize signal

synthesis subset

Problematic constructs excluded

Infer hardware that exhibits discrete event semantics

a

b c

...
if(a = ’0’) then
 c <= b;
end if;
...

DATE 2001, Munich Copyrightc
 Jianwen Zhu, 2000, ECE, Univ. of Toronto 10

Design Reuse

Hardware reuse by component instantiation

Not sufficient for sequential components

No interface protocol captured

u1 : Comp(start, done, din, dout);
...
...
start = ’1’;
for in in 0 to 8 do
 wait until clk’event and clk = ’1’;
 din <= a(i);
end for;
while(done = ’0’) do
 wait until clk’event and clk = ’1’;
 start <= ’0’;
end while;
while(done = ’1’) do
 wait until clk’event and clk = ’1’;
 b(j) := dout;
 j := j + 1;
end while;
...

start done

din dout
Comp

Component user’s
 interface code

DATE 2001, Munich Copyrightc
 Jianwen Zhu, 2000, ECE, Univ. of Toronto 11

Type System

Type system: most effective error prevention in software

Untyped system in synthesizable HDL

enumerate type

bit vector

More abstract data type needed at RTL level

DATE 2001, Munich Copyrightc
 Jianwen Zhu, 2000, ECE, Univ. of Toronto 12

Memory Abstraction

Any interesting application
involves the use of memory

Multimedia: data sample storage

Networking: routing table,

protocol states

No abstraction of memory at
RTL level

Interface protocol with memory

Dynamic allocation: pointer

concept

Address calculation: array and

record access

...
struct {
 int field1;
 struct {
 char field3;
 } field2;
 } *p1;
short a, *p2;
char b[10];

...
a = 0;
b[3] = ‘a’;
p1−>field1 = 1;
p1−>field2.field3 = 2;
p2 = &a;
...

DATE 2001, Munich Copyrightc
 Jianwen Zhu, 2000, ECE, Univ. of Toronto 13

Outline

Motivation

Previous work

Problems of synthesizable HDLs

MetaRTL

Results

DATE 2001, Munich Copyrightc
 Jianwen Zhu, 2000, ECE, Univ. of Toronto 14

MetaRTL Overview

Syntactic-sugar-free, object-oriented, polymorphic language

Difference from imperative program

Specifies hardware objects

Field has modifiers: storage class

always method: component logic

public method: interface protocol

DATE 2001, Munich Copyrightc
 Jianwen Zhu, 2000, ECE, Univ. of Toronto 15

MetaRTL Syntax

MetaRTL ::= (Class)*

Class ::= class ID [[Formal (, Formal)*]]

f (Field j Method)*g

Type ::= ID [[Actual j (, Actual)*]]

Formal ::= class ID j Type ID

Actual ::= Typej Expr

Field ::= sclass TypeID [= Expr];

sclass ::= in j out j inout j reg j wire j latch j Type

Method ::= [alwaysj public] Type ID

[(Param (, Param)*]) f (Stmt)*g

Param ::= [in j out j inout] Type ID

Stmt ::= [LeftValue=] Expr ;

j if (Expr) Stmt [elseStmt]

j switch (Expr) (CaseStmt)+

j [ID] : Stmt

j do Stmtwhile(Expr) ;

j while (Expr) Stmt

j break ;

j return Expr ;

CaseStmt ::= caseExpr : Stmtj default : Stmt

Expr ::= Literal

j this

j LeftValue

j Expr . ID ([Expr (, Expr)*])

LeftValue ::= ID j Type. ID

j Expr . ID

DATE 2001, Munich Copyrightc
 Jianwen Zhu, 2000, ECE, Univ. of Toronto 16

Synthesis Semantics

Field 7! Storage

in, out, inout fields 7! ports

wire field 7! wire

latch, reg fields 7! registers

Normal field 7!memory

Method 7! Logic

Assignment: predicated connection semantics

Method dispatch: protocol inlining

Statement: logic

State label: state boundary

DATE 2001, Munich Copyrightc
 Jianwen Zhu, 2000, ECE, Univ. of Toronto 17

Type System

Arithmetic data types used in place of bit vectors

Polymorphism

Parameterize over constants

Parameterize over type

Subtyping: extensible hardware design

DATE 2001, Munich Copyrightc
 Jianwen Zhu, 2000, ECE, Univ. of Toronto 18

Design Reuse

Type system improves reuse

Explicit capture of interface protocol

Combinational components: connection and glue logic

Sequential components: partial FSMD

Port mapping is replaced by method dispatch

DATE 2001, Munich Copyrightc
 Jianwen Zhu, 2000, ECE, Univ. of Toronto 19

Memory Abstraction

Object reference and array, field access

Access by name vs access by explicit address

Memory bank and address allocation left to synthesis tool

Automatic insertion of memory interface protocol

DATE 2001, Munich Copyrightc
 Jianwen Zhu, 2000, ECE, Univ. of Toronto 20

Outline

Motivation

Previous work

Problems of synthesizable HDLs

MetaRTL

Results

DATE 2001, Munich Copyrightc
 Jianwen Zhu, 2000, ECE, Univ. of Toronto 21

Implementation

Embed MetaRTL in experimental SLDL

MetaSyn: MetaRTL7! synthesizable VHDL

MetaC

VHDL
Protocol
Inlining

 Memory
Allocation

Inter−proc.
Analysis

MetaJ

Parse

 FSMD
extraction

 HDL
export

DATE 2001, Munich Copyrightc
 Jianwen Zhu, 2000, ECE, Univ. of Toronto 22

Experimental Result

Toronto DSP

benchmark set

TSMC 0.35um

technology

Completed by

Mr. Prakash: first year

undergraduate before

any digital logic courses

Benchmark MetaC VHDL Area

(#lines) (#lines) (um2)

fft 45 1028 500652

fir 29 355 272206

iir 46 1201 476529

latnrm 37 748 408111

lmsfir 39 796 405976

mmult 28 451 331058

smult 12 94 57157

sra 16 288 98599

DATE 2001, Munich Copyrightc
 Jianwen Zhu, 2000, ECE, Univ. of Toronto 23

Conclusion

RTL semantics can be made more abstract

RTL syntax can be as simple as one page

Future work

Synthesis algorithms

Embedding in SLDL

DATE 2001, Munich Copyrightc
 Jianwen Zhu, 2000, ECE, Univ. of Toronto 24

