
Stacked FSMD: A Power Efficient Micro-Architecture
for High Level Synthesis

Khushwinder Jasrotia, Jianwen Zhu
Department of Electrical and Computer Engineering

University of Toronto, Ontario M5S 3G4, Canada
{ksj,jzhu}@eecg.toronto.edu

Abstract— In this paper, we argue that the classic micro-architecture
model, namely finite state machine with datapath (FSMD), cannot handle
procedure abstraction needed by complex applications. This presents one
of the major obstacles for the adoption of high-level synthesis technology in
practice. We propose a simple extension of FSMD, called stacked FSMD,
which mimics the procedure linkage concepts in software. We demonstrate
that the new micro-architecture can not only fully support procedure calls,
but also be made power efficient by a technique called region-based parti-
tioning, which can be applied directly at the behavioral level with the as-
sistance of simple metric evaluated at the behavioral level. With a rigorous
experimental procedure, we show that the controller power saving achieved
can range from 12% to 68% with modest overhead in area.

I. INTRODUCTION

With transistor densities of over one hundred million gates
and clock frequencies in the gigahertz range, digital systems
today are truly complex. Systems of such complexity are im-
possible to design at the transistor and gate level, and increas-
ingly difficult to design at the register-transfer level (RTL). It is
therefore natural to raise design automation to higher levels of
abstraction.

High-level synthesis (HLS) is an automated refining process
from an abstract description of a digital design at the algorithm
level to detailed implementation at the RTL level [?], [?]. De-
spite the intensive research efforts invested in the last decade, the
notion of HLS unfortunately remains in the hands of academia
and a few EDA companies, rather than the design community.
One of the reasons for such a reluctance is that the size or com-
plexity of the application that current academic or commercial
tools can accept is too small to justify the departure from the
mature RTL design flow.

More specifically, classic HLS tools accept only behavioral
VHDL or Verilog, which lack the expressive power of tradi-
tional programming languages, such as C/C++ and Java, to help
combat complexity. One of key constructs lacking is proce-
dure abstraction, where functionalities are encapsulated in pro-
cedures, also known as subroutines or functions. Even though
VHDL/Verilog have modest support for procedures, chances are
rare for system designers to write complex applications using
these languages. Furthermore, the classic HLS tools assume a
micro-architecture of FSMD, as formalized in [?], which con-
tains a controller and a datapath. The monolithic nature of FSMD
controller implies that only one procedure can be supported.
When synthesizing a complex application with multiple proce-
dures, HLS tools have to resort to inlining, or the expansion of
callee at every call site, resulting poor designs in terms of area
and power consumption.

In this paper, we make several new contributions. First, we
propose an extension of the FSMD micro-architecture, called

stacked FSMD, which contains a set of controllers, each corre-
sponding to a procedure; a hardware stack to support procedure
linkage; as well as a shared datapath. Second, we show that
by applying a technique called region-based partitioning at the
behavioral level to redefine the procedure boundary, the stacked
FSMD micro-architecture can be made power-efficient. Third,
we propose a simple metric, called the behavioral power index,
which can be evaluated at the behavioral level, to help assist the
partitioning decision. We experimentally demonstrate that this
metric has high fidelity, or correlates extremely well with the
real power figure measured at the gate level.

The rest of the paper is organized as follows. Section II dis-
cusses related work. Section III provides a detailed description
of the proposed micro-architecture. Section IV discusses the re-
gion based partitioning method as well as the behavioral power
index. We give experimental result in Section V to demonstrate
the power efficiency of the proposed method as well as the fi-
delity of the proposed metric. We conclude the paper in Sec-
tion VI with suggestions for future work.

II. RELATED WORK

Several previous work have addressed the support of proce-
dure abstraction. In [?], [?], procedures are synthesized into
independent hardware modules, with the calling mechanism im-
plemented by introducing a wait state in the control unit of the
calling module. A more comprehensive treatment is presented
in [?], where procedures with fixed delay and variable delay are
further distinguished. In [?], a common bus is used to transfer
address and parameter information between them. While useful
for a wide range of practical problems, these early efforts can-
not support nested or recursive calls. Furthermore, while always
mutual exclusive in time, different procedures always use sep-
arated datapaths, resulting unnecessary waste of hardware re-
sources.

A comprehensive survey of power reduction techniques is out
of the scope of this paper. The most relevant to ours are [?] and
[?], where a monolithic controller or FSMD is partitioned into
smaller ones, thereby achieving similar power reduction effect
as ours. The key difference we make in our method is that we
directly exploit the high-level loop information at the behavioral
level, whereas [?] and [?] have to recover the loop information
by expensive analysis.

III. THE STACKED FSMD MICROARCHITECTURE

The SFSMD model extends the classic FSMD microarchitec-
ture model to include support for procedure abstraction. Specif-
ically, this model supports sequential procedures (in the sense of

a sequential programming languages like C).
In the SFSMD model, procedures are implemented as sepa-

rate controllers (FSMs) sharing a common datapath unit. The
key feature is a special stack controller that controls the interac-
tions between the controllers and also allows the datapath unit to
be shared. The structure of the SFSMD model is shown in Fig-
ure 1. All components share the same clock. Note that the figure
omits the external input and output signals of the controllers and
datapaths for clarification purposes only.

CONTROLLER 1

Address

Call

Return

Enable

Datapath
Control

Status

Address

Call

Return

Enable

Datapath
Control

Status

CONTROLLER 2

Address

Call

Return

Enable

Datapath
Control

Status

CONTROLLER n

A
D

D
R

E
S

S
 B

U
S

C
A

LL
 S

IG
N

A
L

R
E

T
U

R
N

 S
IG

N
A

L

Status

Control

Address

Call

Return

STACK
CONTROLLER

TRI−STATE
BUFFERS

Ctrl #n
Enable

Cntll #2
Enable

Cntrl #1
Enable

DATAPATH

Fig. 1. Stacked FSMD Model

The stack controller is used to handle procedure calls and re-
turns in an analogous fashion to how stack mechanisms are used
for procedure linkage in microprocessors. The value stored on
the top of the stack represents the address of the currently active
FSM. This allows the stack controller to activate that particular
FSM and halt the rest. Procedure calls are performed by push-
ing the address of the called FSM onto the stack, and returns are
made by popping the stack so that control can be passed back to
the caller FSM.

The stack controller controls the activation of the FSMs through
the use of enable signals. It decodes the address value at the top
of its stack to generate a dedicated enable signal for each FSM.
Each enable signal is connected to the enable inputs of the state-
registers of its corresponding FSM. When the enable signal is
asserted, the FSM is able to operate normally, but when the sig-
nal is negated, the FSM is halted at the current state since its
state-registers are unable to update. Only one enable signal is
active at any time due to the sequential nature of procedures.

The enable signals are also used to control access to the dat-
apath unit. Each FSM’s datapath control signals are tri-state
buffered to the inputs of the datapath unit. The enable signals
are used to activate the tri-state buffer for the corresponding
FSM so that the datapath components can be accessed. Again,

due to the sequential nature of the procedures, only one set of
datapath control signal is always active and driving the datapath
components. The sharing of the datapath can also be imple-
mented by a multiplexor, in which case encoded values of the
enable signals are needed to drive the select inputs of the mul-
tiplexor. All controllers have access to the status signals of the
datapath. Unshared datapath components can be directly con-
trolled by their corresponding FSMs - these connections are not
indicated in Figure 1.

The FSMs transmit data to the Stack Controller via a shared
unidirectional bus consisting of an address bus, a call line, and a
return line. If the design consists of N FSMs, then address bus
consists of dlog2Ne lines, and is used to transfer the address
of the called FSM to the stack controller. Call is a single line
used to indicate a valid address on the address bus for a proce-
dure call. Return is a single line used to indicate a procedure
return. For procedure returns, only the return signal is used, the
address lines are not driven. Only one FSM controls the bus at a
time, with the others providing high-impedance values. For the
call and return signals, external pull-up or downs can be used
to provide valid logic levels for the inputs of the stack controller
when these signals are not being driven. The stack controller
generates N dedicated enable signals, one for each FSM and its
corresponding datapath control tri-state buffer.

Support for recursion would require a modification: A call-
ing FSM would need to additionally stack the identity of the
control-step succeeding a procedure call and the the identity of
the control-step in the called procedure. The stack-controller
can be used to stack this information or a memory device can be
instantiated in the datapath to implement the stack. Obviously,
support for recursion makes the design more complicated, but it
is nevertheless possible in the SFSMD model.

Since procedures may require the passing and returning of
parameters, a set of input and output registers can be defined
for each procedure. Prior to each procedure call, an additional
control step may be required to copy the actual parameters to
the input register, and another control step to receive any out-
puts stored by the procedure. In order to support recursion, the
parameters will need to be stacked in memory.

IV. REGION BASED PARTITIONING

A. Partitioning Methodology

Due to the prevalence of loops in a program, most of the exe-
cution time is spent computing a small number of operations. By
extracting such loops and implementing them as separate con-
trollers in the SFSMD model, significant power savings can be
achieved. This is because the controller for each loop is smaller
than the single controller implementing the entire system, and
since only one controller is running at any given time, the re-
maining ones can be deactivated, thus saving power [?].

We propose a partitioning scheme that operates at the behav-
ioral level prior to synthesis. The partitioner redefines the pro-
cedure boundaries for the original specification by first exlining
loops. Exlining can be defined as the inverse of inlining in which
a sequence of statements are replaced by procedure calls [?].
Each exlined loop is then implemented as a separate controller
in the SFSMD model.

If the loops account for a major portion of the overall ex-
ecution time, significant power savings can be achieved since
overall switching activity is reduced to the localized activities of
each smaller individual controller for the loops. The ability to
localize the controller activity is inherent in the SFSMD model
where each inactive controller can be disabled by stopping its
clock.

The partitioning scheme can be generalized by defining it as
a transformation of the original design via a series of exlining
and inlining operations. Inlining helps improve parallel-level
optimizations by incorporating acyclic instructions from exist-
ing procedures into the main body. Inlining also exposes loops
within the procedures. The result is a design where the main
body is composed entirely of either, a series of acyclic instruc-
tions, or procedure calls to exlined loops. This is illustrated in
Figure 2.

Call
Foo

Loop
1

Procedure
Foo

Loop
2

Main
Process

Loop
1

Loop
2

Main
Process

Loop2

Loop1

Call
Loop2

Call
Loop1

Main
Process

(a) (b) (c)

Fig. 2. Inlining and Exlining Transformations. (a) Original Specification, (b)
After inlining foo, (c) After loop exlining.

The extraction of loops introduces extra power overhead due
to inter-procedural communication between the controllers and
due to loss of control-step optimizations across procedure bound-
aries. Communication overhead occurs due to extra states 1 that
need to be inserted to implement procedure calls and returns,
switching activities involved in the stack-controller, and the ac-
tivities of tri-state buffers used for sharing the datapath. This
means that loop exlining cannot be done indiscriminantly since
high-power overhead loops can result in a design with increased
power requirements. What is required is a method for select-
ing a subset of loops for exlining, such that the reduction of of
power far outweighs the power increase due to communication
[?].

B. Behavioral Power-Index

The loops from a behavioral specification can be extracted
for SFSMD implementation in any number of ways. If there
are n loops at the root-level, then there are 2n possible ways of
partitioning the code - nested loops further increase this value.

The partitions can be represented by a tree structure as indi-
cated in Figure 3. Each node in the tree, except for the root,
corresponds to a loop region. A child of a node corresponds to
a nested loop within the node. The parent of a node corresponds
either to an outer loop or the main process in which the node
resides. The root of the tree always corresponds to the main
process. Each edge can be weighted with the accumulated num-

1Due to the shared datapath, extra states are not required for parameter passing
since all controllers have access to the same variables.

ber of iterations of the parent node. This represents the total
number of calls made to its child.

Main

Loop1 Loop2

Loop3 Loop4

Original Specification Tree

Main

Loop1 Loop2

Loop3 Loop4

Partition 1 Tree

Main

Loop1 Loop2

Loop3 Loop4

Partition 4 Tree

Main

Loop1 Loop2

Loop3 Loop4

Partition 2 Tree

Main

Loop1 Loop2

Loop3 Loop4

Partition 3 Tree

Fig. 3. Tree Representation of Partitioning

A partition can be simply considered as a “cut” across the
nodes of the tree. The cut can be made in any direction - side-
ways, vertically, diagonally, etc, so there are exponential number
of partitions possible. The regions of a partition are formed by
splitting the tree at points where the cut intersects the edges of
the nodes. At each split point, a call instruction has to be added
in the parent loop for each child. The total number of calls made
to each child is the same as the weight of the edge that was cut.

Assuming a set of candidate partitions exist, the problem then
is of selecting one that maximizes power reduction. Formally, a
partition is defined as a collection of k regions R.

P (S) = {R1, R2, . . . , Rk} such that Ri ∩Rj =
�

for i 6= j,

and
k
∪

i=1

Ri = S.

Where Ri consists of the set of basic-blocks corresponding to
an exlined loop or main process.

For each partition Pj , a power index is defined as:

�
=

k∑

i=1

|States(Ri)| · Cycles(Ri) + K · Calls(Ri) (1)

where Ri ∈ Pj

|States(Ri)| is the number of control-steps used in the FSM
of the controller for region i. It is used to represent the relative
“power complexity” of the region. Generating control-steps re-
quires that scheduling be performed on the basic-blocks of the
region. Scheduling is typically performed at a later stage during

high-level synthesis, and is strongly intertwined with with the
allocation phase. However, fast scheduling can be performed at
the behavioral level which does not require allocation. For ex-
ample, “as soon as possible” (ASAP) scheduling can be used to
get a quick estimate of the number of control-steps. It does not
take resource constraints into consideration (assumes unlimited
resources) and follows a simple rule that an assignment to a vari-
able can execute only after the values of its operands have been
computed. Cycles(Ri) is the accumulated number of control-
cycles spent in region i and can be determined by simulating the
original specification. Calls(Ri) represents the number of calls
made to region i, and K is a constant for controlling the relative
weight of the contribution. Calls(Ri) can be computed by sim-
ulating the original specification and measuring the frequency
of transitions to the region.

Since the regions are active only one at a time, the index ex-
presses the total power of a partition as a sum of the “energy”
contributions of the individual regions. The first term represents
the energy expended by the controller of the region, and the sec-
ond term adds the energy for communication. The partition with
the lowest power index should be chosen for SFSMD implemen-
tation.

V. EXPERIMENTAL RESULT

A. Experiment Procedure

The region based partitioning was applied to various C bench-
mark kernels in order to evaluate its impact on power consump-
tion. The benchmarks used were based on the Livermore kernels
[?]. These kernels were chosen because their loop-intensive na-
ture made them appropriate for loop extraction, and also because
they could be synthesized in reasonable amounts of time.

As discussed earlier, the number of partitions of a program is
exponential in the number of loops present. Since we were man-
ually extracting and processing the partitions, the search space
had to be decreased due to time constraints. This was done by
limiting the number of partitions of a kernel to the maximum
loop depth in the specification. For example, in a design with
three root-level loops, only two partitions would be considered:
The first partition would consist of only one region - the origi-
nal specification without exlining. The second partition would
be composed of four regions consisting of three exlined loops
along with the main procedure which calls the loops.

The partitioning strategy can also be visualized by using the
tree-representation that was described in the previous chapter.
The partitions are formed by making horizontal cuts across the
tree. Due to the tree-structure, horizontal cuts allow the widest
range of region-granularity to be exercised in the shortest num-
ber of steps. Therefore, for each kernel, power figures are avail-
able for partitions with regions ranging from the highest granu-
larity (unpartitioned) all the way to very low (the deepest level
nested loop have been exlined).

This strategy is effective in finding low power partitions for
designs in which most of the execution time is spent in the inner
most loops. This is because the horizontal cuts ensure that the
deepest nested level loops will be ultimately extracted and im-
plemented as separate controllers. Since these controllers rep-
resent regions of the finest granularity, their power consumption

will be very low.
The power of a partitioned design was calculated by summing

the energy contributions of the individual regions and dividing
it by the total time of the simulation. The equation used to cal-
culate the power for each partition is shown:

Power =
1

CyclesTot

k∑

i=1

CyclesRi·PwrRi+PwrStack·CallsRi

(2)

where Ri is a region of the partition

CyclesTot: This is the total number of cycles used to com-
plete the simulation of the unpartitioned design. Cycle overhead
for regions calls and returns were added for the different parti-
tions.

CyclesRi: This is the accumulated number of cycles spent
executing region i. This was obtained from simulations of the
unpartitioned design. Cycle overhead for region calls and re-
turns were added for the different partitions.

PwrRi: This is the intrinsic power of the controller associ-
ated with region i. This value was obtained by using Synopsys
Power Analyzer to report power for the synthesized controller
of the region. Power Analyzer calculates power based on the
switching activity of the nets in the design.

PwrStack : This is the intrinsic power of the Stack controller.
It was obtained by synthesizing a Stack controller and measur-
ing its power with Power Analyzer.

CallsRi: This is the number of calls made to region i. This
was obtained by profiling the kernels.

The value in the summation represents the total energy con-
tributed by each region i. The first term represents the energy
expended exclusively by the region’s controller, and the second
term adds the energy overhead of calling the region. Adding up
the energy contributions of all the regions and dividing it by the
total number of cycles gives the effective power of the partition.
Notice that for the unpartitioned design, this equation is simply
equal to the power of the unpartitioned controller.

B. Power Reduction Results

The power results for partition levels 1, 2, and 3 are shown
in Tables I, II, and III, respectively. The first column lists
the benchmark kernels used. The increase in execution time for
each partition over the unpartitioned implementation is shown
in the second column. The next two columns list the power and
energy values of the partitions, and the last two columns show
the power and energy decrease over the unpartitioned design.
Partition 1 consists of designs in which root level loops have
been extracted for separate implementation. Of the twenty-three
benchmarks2, only thirteen had nested loops, and were hence,
able to be partitioned into level 2. Of these, five kernels had
another level of loop nesting, and were able to be partitioned into
level 3. In this partition, the deepest nested loops were extracted
and implemented as separate controllers.

2LL17 int was not synthesized since the entire kernel consists of just one loop
and so partitioning cannot be applied.

Benchmark Partition 1
Time Power Energy Power Energy

Increase (mWatt) (nJoule) Decrease Decrease
(%) (%) (%)

LL1 int 4.6 1.1 10.3 13.2 9.2
LL2 int 0.7 2.7 154.7 12.0 11.4
LL3 int 7.0 1.2 7.1 19.2 13.6
LL4 int 1.7 2.0 47.7 14.6 13.1
LL5 int 3.4 1.2 13.9 16.5 13.6
LL6 int 1.1 1.9 69.9 12.3 11.4
LL7 int 2.1 2.0 38.4 33.6 32.2
LL8 int 1.8 6.9 511.6 20.0 18.6
LL9 int 5.0 2.8 47.0 19.6 15.6

LL10 int 1.6 3.3 85.0 31.4 30.3
LL11 int 6.3 1.0 6.4 31.9 27.6
LL12 int 6.5 1.0 6.4 33.4 29.1
LL13 int 1.1 2.7 104.8 32.9 32.1
LL14 int 0.8 1.5 85.0 42.7 42.2
LL15 int 1.3 2.3 73.0 48.7 48.1
LL16 int 6.0 2.5 26.2 56.7 54.1
LL18 int 0.3 6.5 1028.0 13.0 12.8
LL19 int 1.5 1.9 49.4 14.2 12.9
LL20 int 0.3 3.1 469.9 16.0 15.8
LL21 int 0.9 2.0 99.1 24.5 23.8
LL22 int 1.7 1.1 25.9 45.3 44.4
LL23 int 1.7 3.4 82.7 20.6 19.3
LL24 int 5.0 1.5 12.5 29.9 26.4

Average 2.7 2.4 132.8 26.2 24.2

TABLE I

CONTROLLER POWER RESULTS FOR PARTITION LEVEL 1

Benchmark Partition 2
Time Power Energy Power Energy

Increase (mWatt) (nJoule) Decrease Decrease
(%) (%) (%)

LL2 int 1.4 2.4 138.4 21.8 20.7
LL4 int 4.8 1.9 457.5 20.5 16.7
LL6 int 1.1 1.6 57.8 27.5 26.7
LL8 int 2.6 6.3 471.4 26.9 25.0

LL14 int 3.8 1.7 102.6 32.8 30.3
LL15 int 2.6 2.1 66.4 53.3 52.7
LL18 int 1.8 2.4 387.8 67.7 67.1
LL19 int 5.4 1.6 44.6 25.4 21.4
LL20 int 0.5 2.8 426.6 24.0 23.6
LL21 int 1.3 1.9 94.9 28.0 27.1
LL22 int 2.5 1.0 24.1 49.5 48.2
LL23 int 2.1 3.3 79.4 24.2 22.6
LL24 int 7.5 1.3 10.9 40.4 36.0

Average 2.9 2.3 150.0 34.0 32.1

TABLE II

CONTROLLER POWER RESULTS FOR PARTITION LEVEL 2

Benchmark Partition 3
Time Power Energy Power Energy

Increase (mWatt) (nJoule) Decrease Decrease
(%) (%) (%)

LL2 int 3.9 1.5 87.9 51.5 49.7
LL6 int 5.0 1.4 51.9 37.3 34.2

LL15 int 2.5 2.1 67.5 53.1 51.9
LL21 int 1.7 1.7 84.4 36.2 35.1
LL23 int 2.5 3.0 72.9 30.6 28.9

Average 3.1 1.9 72.9 41.8 40.0

TABLE III

CONTROLLER POWER RESULTS FOR PARTITION LEVEL 3

The reduction in power consumption across all partitions ranged
between 12.0% and 67.7%, with a corresponding reduction in
energy ranging between 11.4% and 67.1%. The average power

reduction for partition levels 1, 2, and 3, were 26.2%, 34.0%,
and 41.8%, respectively, while the energy reduction for the par-
titions were 24.2%, 32.1%, and 40.0%. Due to the low cycle-
time overhead for call and return operations, the energy reduc-
tion for each benchmark was very close to its power reduction
(averaging within 2%). As per the results, power reduction im-
proves with increased partitioning levels. This makes sense be-
cause the majority of execution time for the kernels was spent
in the inner-most loops. Since these loops represent the finest-
grained regions, they have the smallest controllers and conse-
quently consume the least amount of energy. Furthermore, the
power contribution of the stack controller was found to be very
small, so the communication overhead for the higher partition
were insignificant.

It is observed that partition level 3 out-performs partition level
2 for majority of the benchmarks. One exception is benchmark
LL15 int, in which partition level 2 results are slightly better
than level 3. This is a situation in which the power figure re-
ported for a larger circuit (partition 2) is lower than the power
reported for a smaller one (partition 3). This anomaly is gener-
ated because the power values happen to be outside the noise-
margins of the power measurement technique.

C. Behavioral Power Index Fidelity

The fidelity of the power-index is also evaluated. We define
the fidelity as a measure of how well the calculated power in-
dex value of a partition correlates with its actual power. This is
done by comparing the power plots of the partitions against the
power-index plots as indicated in Figure 4. Fidelity is checked
by confirming that for each benchmark, the ordering of the rel-
ative increase or decrease of the partitions in the index matches
the ordering of the partitions in the power plots.

In the majority of the cases, the results of the power-index
matched the partitioned power results. An exception was LL15 int,
for which the power index choose the wrong partition due to
the anomaly mentioned earlier for this particular benchmark.
Higher values for K were also tested for the power-index equa-
tion with no significant reduction in fidelity. This was due to the
low power consumption of the stack-controller and the relatively
few number of calls that were made.

D. Area Results

The area overhead plots for the different partitions are shown
in Figure 5, Figure 6 and Figure 7. The average area increase for
partitions 1, 2, and 3 over the unpartitioned design are 5.96%,
6.70%, and 3.96%, respectively.

Interestingly enough, partitions for benchmarks LL8 int, LL14 int,
LL15 int, LL16 int, LL20 int, and LL22 int, result in area de-
crease over the unpartitioned design. One possible explanation
for this phenomenon is that since the synthesis tool is dealing
with smaller designs, it can to a better job in terms of resource
sharing due to the smaller search space it has to deal with.

VI. CONCLUSION

We draw three main conclusions. First, the SFSMD model
provides a good basis for procedure abstraction. Second, by ex-
tracting loops with high execution count, the region-based par-
titioning technique can help to reduce controller power. Third,

Power for
Partition Levels 1, 2 & 3

3.
07

2.
18

4.
47

2.
60

4.
33

2.
70

1.
91

2.
29

1.
96

3.
43

2.
40

1.
58

2.
09

1.
87

3.
28

1.
49

1.
37

2.
10

1.
66

3.
00

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

LL2_int LL6_int LL15_int LL21_int LL23_int

Benchmarks

P
o

w
er

 (
m

W
at

t)

Unpartitioned Power Partition 1 Power
Partition 2 Power Partition 3 Power

 Power Index
 Partitions 1, 2 & 3

0

50000

100000

150000

200000

250000

300000

350000

LL2_int LL6_int LL15_int LL21_int LL23_int

Benchmarks

P
o

w
er

 In
d

ex

Unpartitioned Power Index Partition 1 Power Index
Partition 2 Power Index Partition 3 Power Index

Fig. 4. Power measurement vs Behavioral Power Index for Partition Levels 1,2
and 3

Area Increase
Partition Level 1

38

6

25

9

17
15

34

-5

13

2 1 1 3

-22 -22

4 5

-3

24

-8

8
5

-14

-30

-20

-10

0

10

20

30

40

50

LL
1_

in
t

LL
2_

in
t

LL
3_

in
t

LL
4_

in
t

LL
5_

in
t

LL
6_

in
t

LL
7_

in
t

LL
8_

in
t

LL
9_

in
t

LL
10

_i
nt

LL
11

_i
nt

LL
12

_i
nt

LL
13

_i
nt

LL
14

_i
nt

LL
15

_i
nt

LL
16

_i
nt

LL
18

_i
nt

LL
19

_i
nt

LL
20

_i
nt

LL
21

_i
nt

LL
22

_i
nt

LL
23

_i
nt

LL
24

_i
nt

Benchmarks

%
 In

cr
ea

se

Area Increase

Fig. 5. Area Overhead for Partition Level 1

due to the strong correlation between the power-index values
and the actual measured power, the proposed behavioral power-
index can be used to effectively guide the partitioning decisions
of a high-level partitioning tool.

There is a lot of scope for future work in this area. An im-
portant step would be the integration of the SFSMD model into
a synthesis engine. This would automate the transformation of
procedural descriptions into an SFSMD model, thereby enabling
more comprehensive studies of this model to be performed. Tools
could be developed to directly estimate the design area, speed,
and power of this implementation style, assisting the design-
ers in choosing the best design option. Similarly, a tool can be

Area Increase
Partition Levels 1 & 2

6
9

15

-5

-14

-22

4
5

-3

24

-8

8
55

9

17

-9

2

-20

-4

45

-1

30

-6

11 9

-30

-20

-10

0

10

20

30

40

50

LL
2_

int

LL
4_

int

LL
6_

int

LL
8_

int

LL
14

_in
t

LL
15

_in
t

LL
18

_in
t

LL
19

_in
t

LL
20

_in
t

LL
21

_in
t

LL
22

_in
t

LL
23

_in
t

LL
24

_in
t

Benchmarks

%
 In

cr
ea

se

Area Increase - Partition 1 Area Increase - Partition 2

Fig. 6. Area Overhead for Partition Levels 1 and 2

Area Increase Partition Levels 1, 2 & 3

6

15

-22

24

8
5

17

-20

30

11

-3

11

-22

27

7

-30

-20

-10

0

10

20

30

40

LL2_int LL6_int LL15_int LL21_int LL23_int

Benchmarks

%
 In

cr
ea

se

Area Increase - Parition 1 Area Increase - Partition 2
Area Increase - Partition 3

Fig. 7. Area Overhead for Partition Levels 1, 2 and 3

developed to perform loop region based partitioning. Such a
tool would partition the code into a power optimal configuration
before forwarding it to the synthesis engine for SFSMD imple-
mentation.

REFERENCES

[1] D. Gajski, N. Dutt, A. Wu, and S. Lin, High Level Synthesis: Introduction
to Chip and System Design, Kluwer Academic Publishers, 1992.

[2] G. De Micheli, Synthesis And Optimization of Digital Circuits, McGraw
Hill, 1994.

[3] R. Camposano, L. Saunders, and R. Tabet, “VHDL as input for high level
synthesis,” IEEE Design and Test of computers, pp. 43–49, March 1991.

[4] R. Camposano and J. van Eijndhoven, “Partitioning a Design in Structural
Synthesis,” Proceedings of the International Conference on Computer
Design, 1987.

[5] L. Ramachandran, S. Narayan, F. Vahid, and D. Gajski, “Synthesis of
Functions and Procedures in Behavioral VHDL,” Proceedings of the Eu-
ropean Design Automation Conference, 1993.

[6] F. Vahid, “I/O and Performance Tradeoffs with the FuctionBus during
Multi-FPGA Partitioning,” International Symposium on FPGAs, pp. 27–
34, February 1997.

[7] L. Benini, P.Vuillod, G. De Micheli, and C. Coelho, “Synthesis of low
power selectively-clocked systems from high-level specifications,” Inter-
national Symposium on System Synthesis, pp. 57–63, November 1996.

[8] F. Vahid, E. Hwang, and Y. Hsu, “FSMD Functional Partitioning for Low
Power,” Design Automation and Test In Europe, pp. 22–28, March 1999.

[9] F. Vahid, “Procedure Exlining: A New System-Level Specification Trans-
formation,” European Design Automation Conference, pp. 508–513,
September 1995.

[10] LiverMore Benchmark WebPage, http://parallel.ru/ftp/
benchmarks/livermore/livermorec.c.

