
Symbolic Pointer Analysis

Jianwen Zhu
Department of Electrical and Computer Engineering
University of Toronto, Ontario M5S 3G4, Canada

jzhu@eecg.toronto.edu

Abstract

One of the bottlenecks in the recent movement of hardware
synthesis from behavioral C programs is the difficulty in rea-
soning about runtime pointer values at compile time. The
pointer analysis problem has been investigated in the com-
piler community for two decades, which has yielded effi-
cient, polynomial time algorithms for context-insensitive anal-
ysis. However, at the accuracy level for which hardware
synthesis is desired, namely context and flow sensitive anal-
ysis, the time and space complexity of the best algorithms
reported grow exponentially with program size. In this pa-
per, we present our first step towards a new analysis technol-
ogy which potentially leads to almost-linear time complexity
and sub-linear space complexity algorithm even for the most
accurate analysis. The key idea that contributes to this effi-
ciency is to implicitly encode the pointer-to relation in the
Boolean domain, thereby capturing the procedure transfer
function completely, compactly and canonically. This repre-
sents a wide departure from the traditional techniques, all of
which explicitly capture pointer-to relation using variations
of point-to graph, which have to be re-evaluated for different
calling contexts. Experiments for our first flow-insensitive
algorithm on common benchmarks show promising result.

1 Introduction

Today’s system-on-chips are heterogeneous: while the ma-
jority of the functionality can be handled by software run-
ning on on-chip microprocessors, often times it is the set of
on-chip dedicated cores that defines the performance, and
therefore the competitiveness of the chip. The design of
such cores, however, is known to be time consuming un-
der the current commercial design methodology. The ef-
fort to automatically synthesize hardware from algorithm-

level specification, known as behavioral (high-level) synthe-
sis, has rarely gone beyond programs with simplistic data
structures, such as scalars and arrays. This constraint seri-
ously limits the applicability of behavioral synthesis technol-
ogy, since any interesting applications will involve the use of
complex data structures. This problem has become more ap-
parent in the recent movement of behavioral synthesis from
C/C++ programs, which encourage the use of pointers.

The presence of data pointers imposes challenges for tem-
poral optimization, since flow-dependency between opera-
tions have to be conservatively approximated whenever pointer
dereferences are involved, as well as spatial optimization,
since the life times of memory blocks can not be accurately
determined, and therefore their space cannot be aggressively
shared. The presence of function pointer makes it difficult
for whole-program analysis and therefore inter-procedural
optimization, since even the call graph cannot be readily
constructed. The degree at which these aggressive optimiza-
tion can be carried out for pointer-intensive programs largely
depends on the how well one can approximate the runtime
pointer values at compile-time, which unfortunately, is an
undecidable problem.

Luckily, the synthesis research community is not alone
for the so-calledpointer analysisproblem, or in a slightly
different formulation, thealias analysisproblem. In fact, the
optimizing compiler and programming language community
has attacked this problem for two decades and a rich set of
results have been yielded in the literature. The reported anal-
ysis algorithms vary with different accuracy speed tradeoff
and can be categorized according to two criteria:flow sen-
sitivity and context sensitivity. A flow-insensitive (FI) al-
gorithm ignores the order of statements when it calculates
pointer information, whereas a flow-sensitive (FS) algorithm
takes control flow within a procedure into account. A context-
insensitive (CI) algorithm does not distinguish the different
calling contexts of a procedure, whereas a context-sensitive
(CS) does.

Fast polynomial algorithms, such as derivatives of Steens-
gaard’s [1] and Andersen’s [2], have been developed for context-
insensitive analysis. However, the accuracy of such anal-
ysis, especially Steensgaard’s, is not acceptable for hard-

ware synthesis aiming for aggressive optimization. On the
other hand, the context-sensitive analysis algorithms devel-
oped in the literature suffer from a worst-case exponential
time complexity. The fundamental reasons for such com-
plexity is three fold: First, these algorithms cannot obtain
thecomplete transfer function(CTF) of a procedure, in other
words, summarize the effect of procedure on program state
with respect to arbitrary initial state. Therefore, each pro-
cedure has to be re-analyzed for each calling context. This
problem has been alleviated by the landmark work of Wilson
and Lam [3], who developed the concept ofpartial transfer
function. Nevertheless, this in-efficiency is not completely
eliminated. Second, the cost of propagating the effect of
callee to the caller is high, since the point-to relation of the
caller has to be duplicated at each call site. This cost remains
to be high even with the sparse representation [4]. Third, the
data structure that these algorithms use to capture program
state are inherently redundant, thereby causing in-efficiency
in space. For flow-sensitive analysis, where program state
for each program point has to be kept, the space in-efficiency
will eventually limit the size of the program one can analyze.

In this paper, we describe an analysis technology, called
symbolic pointer analysis, which starts a new direction in
combating the three sources of in-efficiencies. The contribu-
tions of this paper is as follows: First, we map each program
memory location of interest into a cube in a Boolean space,
called thedomain space, and a cube in another Boolean
space, called therange space. This allows us toimplicitly
represent sets of memory locations using Boolean functions,
thereby providing space efficiency and potentially speed ef-
ficiency. Second, instead of using set of alias pairs, or point-
to graph, we propose a new approach to represent the pro-
gram state using a Boolean function in the combined do-
main and range space. This allows us to perform state query
using implicit image computation originally developed for
reachability analysis in formal verification [5, 6], rather than
the explicit graph traversal. Third, we introduce theinitial
state blocks, a concept similar but different from Wilson’s
extended parameters, as well as the concept ofscalar pred-
icate, which is necessary if accuracy due to “strong update”
is not to be compromised. These two concepts allow us to
capture the transfer function of a procedurecompletelyas a
Boolean function, which was otherwise impossible. Forth,
we engineer a CSFI analysis algorithm based on the above
concepts using Bryant’s Binary Decision Diagram (BDD)
[7] and illustrate why the compactness and canonicality of
BDD can be exploited for efficiency.

The rest of the paper includes a detailed description of
the proposed representation (Section 3) and the fundamen-
tal algorithms (Section 4) under certain simplifying assump-
tions, which will later be relaxed. The engineering side of
the algorithm is discussed in Section 5. Lastly, while we are
not able to perform a comprehensive and thorough empirical
comparison with other works at this point due to the time
and resource constraint, we present our preliminary result

on standard benchmarks, which promisingly confirmed the
expected efficiency.

In the text that follows, we use theformal algorithm nota-
tion (FAN) to state definitions and describe algorithms. Un-
like pseudo-code based algorithm description, FAN relies on
a type system, where each type is represented by a set, to
present the algorithm in a formal, precise manner. For ex-
ample, we use the notation〈〉A to represent the power set of
A, therefore any value of type〈〉A must be a set of values
of type A. Similarly, we use the notation[]A to represent
the set of all sequences over elements ofA, therefore any
value of type[]A represents a sequence of values of typeA.
Readers are expected to find this notation very similar to any
strongly-typed programming languages and hence straight-
forward to be translated into implementation, yet abstract
enough to allow concise presentation.

2 Related Work

To quote a recent excellent survey by Hind [8], over seventy-
five papers and nine PhD thesis haven be published on pointer
analysis. So here we only review important milestones and
recent works that are relevant to ours.

In the category of FICI pointer analysis, Steensgaard’s
work [1] stands out as the first equality-based method, which
treats assignment as bidirectional and use a union-find data
structure. His analyzer is extremely fast and has analyzed
million lines of industrial code, however, the precision of
equality-based approach degrades very fast in general, even
with later improvement [9]. Andersen’s [2] popular subset-
based improves precision by treating assignment as a unidi-
rectional flow of values, yet still run’s in polynomial time.

Our algorithm primarily works in the research space of
accurate FS/CS analysis. Wilson and Lam [4] proposed the
concept of partial transfer function in an effort to reduce the
number of times a procedure has to be analyzed. Along the
same line, recently Liang and Harrold [10] has proposed to
use the local and global auxiliary blocks, similar to our initial
state block. However, their model cannot extend beyond FS
analysis since it is impossible to detect strong updates.

The application of pointer analysis algorithm for behav-
ioral synthesis is emerging. Semeria and De Micheli have
researched on how to encode C pointers in hardware [11].
By a combination of runtime test and compile time anal-
ysis, they can produce efficient, customized pointer imple-
mentation. Panda et. al. [12] applied pointer analysis to
optimally determine array memory layout for cache perfor-
mance. Zhu [13] applied pointer analysis to the problem of
memory block minimization.

3 Abstracting Program State

The goal of pointer analysis is to statically estimate the run-
time program state, or the set of values each program loca-
tion can hold. To trade accuracy for analysis speed, we often

g

m a

Figure 1: Program state on completion of program in Exam-
ple 1.

collapse related program locations together, thereby forming
ablock. Locations within a block are not distinguished. The
blocks can be global variables, or local variables, or proce-
dure parameters, or dynamically allocated memory blocks.
The values of interest are only the addresses of the blocks.

Example 1 A C program modified from [10]. Note that the
program contain global blocks g, a, local blocks p, q, r, t, f,
and dynamic block allocated at S3.

char *g, a; 1
void main(){ 2

char *p, *q; 3
4

S1: alloc(&p); 5
getg(&q); 6
g = &a; 7
} 8

9
void getg(char** r){ 10

char **t = &g; 11
if(g == NULL) 12

S2: alloc(t); 13
*r = *t; 14
} 15

16
void alloc(char** f) { 17
S3: *f = malloc(1); 18
} 19

(a) C source code

char *g, a; 1
void main(){ 2

3
4

call alloc, [&p]; 5
call getg, [&q,�]; 6
store g, &a; 7
} 8

9
getg([r1, g1]){ 10

store t, &g; 11
others 12
call alloc [t]; 13
store *r, *t; 14
} 15

16
alloc([f1]) { 17

store *f, &m; 18
} 19

(b) preprocessed

The program state is often abstracted as apoint-to graph,
whose vertices represent the set of blocks, and an edge〈u,v〉
from blocku to blockv indicates that it is possible that the
content of blocku is the address of blockv. The set of all
edges defines the point-to relation.

Example 2 Figure 1 shows a point-to graph capturing the
program state after the completion of the main procedure in
Example 1. Note here the block m represents the dynamically
allocated block in alloc.

The out degree of a vertex is potentially unbounded, as
in Andersen’s algorithm [2]. The size of the point-to graph
poses a serious problem, especially for FI analysis where a
program state has to be maintained for each program point.
Compromise has been made so that the out degree is K-
limited, as in Horowitz’s algorithm [14], or 1-limited, as in
Steensgaard’s algorithm [1]. For the latter two, further col-
lapsing of blocks into larger blocks is necessary and preci-
sion degrades quite rapidly during the process.

We now propose an alternative way to capture the point-
to relation. As shown in Definition 1, we associate each
block with two Boolean functions, called its domain and
range. The set of domain functions of all blocks form an
orthogonal function set in the Boolean space, called the do-
main space, spanned by the set of Boolean variablesX∗ =
{x∗1,x

∗
2, ...,x

∗
n}, such that∀u 6= v,u.domain× v.domain= 0.

Similarly, the set of range functions of all blocks form a
orthogonal function set in the companion Boolean space,
called the range space, spanned by the set of Boolean vari-
ablesX = {x1,x2, ...,xn}.

Definition 1 A block is a member of

SpaBlock =tuple { 1
kind : {heap, global, param, local, proc, init}; 2
domain : SpaDD; 3
range : SpaDD; 4
} 5

where SpaDD is the set of Boolean functions.

The domain and range functions of blocks are most con-
veniently selected as disjoint cubes in the Boolean spaces.
Example 3 shows the assignment of cubes to the blocks.

Example 3 Cube assignment for blocks in Example 1.

Block domain range
a x̄∗1x̄∗2x̄∗3 x̄1x̄2x̄3

g x̄∗1x̄∗2x∗3 x̄1x̄2x3

p x̄∗1x∗2x̄∗3 x̄1x2x̄3

q x̄∗1x∗2x∗3 x̄1x2x3

t x∗1x̄∗2x̄∗3 x1x̄2x̄3

r x∗1x̄∗2x∗3 x1x̄2x3

f x∗1x∗2x̄∗3 x1x2x̄3

m x∗1x∗2x∗3 x1x2x3

We can now capture the point-to relation by mapping
each edge〈u,v〉 in the point-to graph by a Boolean prod-
uct u.domain× v.range. In other words, given a program
state represented byE, it can be represented by a Boolean
functionΣ〈u,v〉∈Eu.domain×v.range.

Example 4 The program state in Example 2 can be repre-
sented by a Boolean function:̄x∗1x̄∗2x∗3x1x2x3 + x̄∗1x̄∗2x∗3x̄1x̄2x̄3.

The point-to graph can be used to represent the program
state in a procedure only when the program state before the
procedure is called is known. To safely capture the point-to
relation under all circumstances, one either resolve to the CI
approach where program states at all call sites are merged,
thereby sacrificing precision, or try to drive the so-called
transfer function, which can be intuitively considered as point-
to relation parameterized over different calling context. The
parameters of the transfer function are essentially thecontent
of all memory blocks that are accessed within the procedure,

f

f1

m

t

g

m g1

r

r1 p

m

q

a

g

x∗1x∗2x̄∗3y1

+ y∗1x1x2x3

x∗1x̄∗2x̄∗3x̄1x̄2x3

+ x∗1x̄∗2x∗3y3

+ x̄∗1x̄∗2x∗3x1x2x3

+ x̄∗1x̄∗2x∗3y2

+ y∗3x1x2x3

+ y∗3y2

x̄∗1x∗2x̄∗3x1x2x3

+ x̄∗1x̄∗2x∗3x1x2x3

+ x̄∗1x̄∗2x∗3x̄1x̄2x̄3

+ x̄∗1x∗2x∗3x1x2x3

+ x̄∗1x∗2x∗3x̄1x̄2x̄3

(a) alloc (b) getg (c) main

Figure 2: Transfer functions.

or the procedures directly or indirectly called by the proce-
dure. One can treat a parameter as if it is a separate block,
called theinitial state block.

Example 5 Consider the procedure alloc in Example 1, where
the parameter f is dereferenced. Since the value of f is not
known, what memory block will be updated after statement
S3 cannot be determined. With the introduction of the ini-
tial state block f1, the procedure can be summarized with a
transfer function as shown in the point-to graph of Figure 2
(a).

Again, we use disjoint cubes to encode initial state blocks
in the initial state domain space spanned byY∗ = {y∗1, ...y

∗
m}

and range space spanned byY = {y1, ...ym}. Example 6
shows one possible assignment.

Example 6 cube assignment for initial state blocks in Ex-
ample 1.

Block domain cube range cube
f1 y∗1 y1

g1 y∗2 y2

r1 y∗3 y3

Given this assignment, the transfer functions of the pro-
cedures are shown in Figure 2. Since local variables and pa-
rameters of a procedure are not visible outside their scope,
the related point-to relation shall not be propagated to its
caller. So often, the transfer function is pruned, as shown in
Figure 3.

4 Symbolic Pointer Analysis Algorithm

4.1 Program Modeling

We now describe our pointer analysis algorithm. In order to
focus on the fundamentals, rather than the implementation

f1

m

g

g1 m

r1 g

m a

y∗1x1x2x3

x̄∗1x̄∗2x∗3x1x2x3

+ x̄∗1x̄∗2x∗3y2

+ y∗3x1x2x3

+ y∗3y2

x̄∗1x̄∗2x∗3x1x2x3

+ x̄∗1x̄∗2x∗3x̄1x̄2x̄3

(a) alloc (b) getg (c) main

Figure 3: Transfer functions after pruning.

details, we made a number of simplifying assumptions for
the ease of presentation.

We assume a program is preprocessed so that it is avail-
able in the form defined in Definition 2, which contains a
set of blocks. The blocks can be globals, locals, parameters,
initial blocks and procedures, as discussed in Section 3. All
blocks are treated as scalars. The additional information for
procedure blocks can be obtained fromprocs. The program
also contains the Boolean environment necessary to define
symbolic point-to relation, as discussed in Section 3. Since
a block correspond to a cube in the Boolean space, a Boolean
function can be used to represent a set of blocks. The utility
functionspaEnumeratecan be used to enumerate all blocks
corresponding to a Boolean function.

Definition 2 A program is a member of

Spa =tuple { 6

blks : 〈〉SpaBlock; 7
procs : SpaBlock7→ SpaProc; 8

domainVars : []SpaDD; 9

rangeVars : []SpaDD; 10
cache : SpaDD× SpaDD× {bddAnd, bddOr, ...}7→ SpaDD;11
} 12

13
spaEnumerate =func(spa : Spa, l : SpaDD) :〈〉SpaBlock; 14

A procedure contains a set of parameter, local, heap al-
located blocks, and a series of instructions. Note that the
formals contains a sequence of initial state blocks which are
originally implicit in the source program.

Definition 3 A procedure is a member of

SpaProc =tuple { 15

formals : []SpaBlock; 16
params : 〈〉SpaBlock; 17

locals : 〈〉SpaBlock; 18

heaps : 〈〉SpaBlock; 19

instrns : 〈〉SpaInstrn; 20
} 21

As shown in Figure 4, we consider only two types of
instructions, assignment instruction (store), call instruction
(call), and ignore others. The destination and sources of the
instruction are in the form of access path.

Definition 4 An instruction is a member of

SpaInstrn =tuple { 22
opcode : {store, call, others}; 23
dst : SpaAccessPath; 24

srcs : []SpaAcessPath; 25
} 26

We assume an access path can be characterized by a block,
which indicates the root of access, and level, which indicates
the number of dereferences performed on the block. The C
expression &b corresponds to level -1, b corresponds to level
0, and ***b corresponds to level 3.

Definition 5 An access path is a member of

SpaAccessPath =tuple { 27
blk : SpaBlock; 28
level : Z; 29
} 30

We assume that the procedure does not contain recursive
calls. Also we do not distinguish memory allocated at the
same site under different calling contexts.

The program in Example 1 (a) is preprocessed into Ex-
ample 1 (b). Note that an important difference from its source
is that the formals refers to the initial state blocks, which are
not explicit in the source code before. The corresponding
actuals at the callsite, are also made explicit.

4.2 Pointer Analysis Algorithm

Algorithm 1 computes the Boolean CTF for a given proce-
dureroot. The parametertfs keeps track of the CTFs of the
procedures that have been analyzed. The algorithm starts
by computing the initial points-to relation, which involves
linking the blocks referenced in the procedures with their
initial state blocks present in the formals. It then evaluates
each instruction, after which it updates the current statestate.
Since this is a FI algorithm, the order of the instruction does
not matter. When it encounters a store instruction, it calls
spaUpdateStateto compute the new statenstate. When a
call instruction is encountered, the algorithm first callsspa-
QueryStateto find out the set of procedures that the call in-
struction may call. This process is necessary since we may
be accessing function pointers. The algorithm then iterate
through all the potential callees, and callspaApplyto ap-
ply the callsite point-to information to the CTF of the callee,
thereby propagating the point-to information of the callee

back to the call site. If the CTF is not available attfs, it re-
curs and obtain the CTF of the callee before proceed. This
process repeats until a fixed-point is reached, when there is
no further update of the state function. Note that while this
is an iterative process, each procedure needs to be analyzed
only once. Before it returns the result, a call tospaPrunewill
be performed in order to remove from CTF the set of point-
to edges emitting from local and parameter blocks, which,
by the language scoping rule, are not accessible outside.

Algorithm 1 Pointer analysis.

spaAnalysisFICS =func(31
spa : Spa, root : SpaBlock, tfs : SpaBlock7→ SpaDD 32
) : SpaDD { 33
var state, nstate : SpaDD; 34
var changed :{true, false}; 35

36
changed = true, state = spaInitState(spa, root); 37
while(changed == true){ 38

changed = false; 39
forall (instrn∈ spa.procs(root).instrns){ 40

if (instrn.opcode == store){ 41
nstate = spaUpdateState(spa, state, instrn.dst, instrn.srcs[0]); 42
if (nstate6= state) 43

changed = true, state = nstate; 44
} 45

else if(instrn.opcode == call){ 46
forall (callee∈ spaEnumerate(47

spaQueryState(spa, state, instrn.dst.blk.range, instrn.dst.level)48
)) { 49
if (tfs(callee) ==�) 50

spaAnalysisFICS(spa, callee, tfs); 51
nstate = spaApply(spa, state, instrn.srcs, callee, tfs(callee)); 52
if (nstate6= state) 53

changed = true, state = nstate; 54
} 55

} 56
} 57

} 58
state = spaPrune(state, root.params∪ root.locals); 59
tfs(root) = state; 60
return state ; 61
} 62

The following results ensures that the algorithm termi-
nates.

Lemma 1 A set of Boolean functions defined on the Boolean
spaceBn forms a lattice, where the bottom element is con-
stant 0 function, the top element is constant 1 function, and
the meet operator is the Boolean or operator.

Lemma 2 The program state in the form of a Boolean func-
tion computed by Algorithm 1 at each iteration is monotoni-
cally increasing with respect to the Boolean or operator.

Theorem 1 Algorithm 1 terminates.

4.3 State Query

Algorithm 2 is used to find out the set of all possible values
an access path may have under a program state. It is needed
to process every access path, be it a destination or source,
of an instruction. On the point-to graph, it is equivalent to

determining the envelop of the nth level breath-first search
starting from a block, when n is the level of the access path.
In our Boolean framework, the algorithm is similar to the im-
age computation algorithm in reachability analysis. For level
1 access *b, where b is a block, one only needs to multiply
the state function with the domain cube of the block. The
resultant Boolean function captures the set of blocks in the
range space. To access one more level, one needs to callbd-
dMirror to isomorphically map the computed range back to
the domain space, which can again be used to multiply with
the state function. This process continues until we reach the
desired level. Note that unlike algorithms based on point-to
graph, the image computation can be performed implicitly,
in other words, it can be performed purely logic operation
without resolving to explicit graph traversal.

Algorithm 2 State query.

spaQueryState =func(63
spa : Spa, state : SpaDD, from : SpaDD, level :Z 64
) : SpaDD { 65
if (level == 0) return from ; 66
return bddAndAbstract(67

spa, state, bddMirror(68
spa, spaQueryState(spa, state, from, level-1) 69
) 70

) ; 71
} 72

4.4 Evaluating Stores

We use Algorithm 3 to compute the new state whenever
a store instruction is encountered. Consider a simple case
where the access paths for both the destination and the source
of the instruction are simple blocks, which correspond to
adding an edge in point-to graph based algorithms. Here we
simply need to add a product term to the current state, which
is the product of the domain cube of the destination and the
range cube of the source. The operation holds equally well
with complex access paths, whose net effect will still amount
to adding a product of two Boolean functions. Note that this
corresponds to collectively adding many point-to edges at
the same time!

Algorithm 3 State update.

spaUpdateState =func(73
spa : Spa, state : SpaDD, dst : SpaAccessPath, src : SpaAccessPath 74
) : SpaDD { 75
return bddOr(76

state, bddAnd(77
bddMirror(spa, 78

spaQueryState(spa, state, dst.blk.range, dst.level) 79
), 80

spaQueryState(spa, state, src.blk.range, dst.level+1) 81
) 82

) ; 83
} 84

4.5 Evaluating Calls

The pointer information of the callee has to be propagated
back to the caller by applying the program state at the call
site to the transfer function of the callee. This is achieved by
Boolean function composition, in other words, substituting
the Boolean variables that construct the initial state blocks
by a set of Boolean functions. Such projection map can be
obtained from the binding of actuals to the formal. If we
use a single variable for each initial state block, it can be
computed trivially.

Algorithm 4 Evaluate call.

spaApply =func(85

spa : Spa, state : SpaDD, srcs :[]SpaAccessPath, 86
proc : SpaBlock, tf : SpaDD 87
) : SpaDD { 88
var bind, proj : SpaDD7→ SpaDD; 89
var actual, formal : SpaDD; 90

91
forall (i ∈ [0..‖srcs‖-1]) { 92

actual = spaQueryState(spa, state, srcs[i].blk.range, srcs[i].level+1);93
formal = proc.formals[i].range; 94
bind(formal) = actual; 95
bind(bddMirror(spa, formal)) = bddMirror(spa, actual); 96
} 97

proj = bddFindProjection(spa, bind); 98
return bddOr(99

state, bddCompose(spa, tf, proj) 100
) ; 101

} 102

4.6 State Pruning

Algorithm 5 first computes the Boolean function that corre-
sponds to the set of all blocks need to be pruned. It then
predicates the state with the inversion of the computed func-
tion.

Algorithm 5 State pruning.

spaPrune =func(103

spa : Spa, state : SpaDD, vars :〈〉SpaBlock 104
) : SpaDD { 105
var sum : SpaDD; 106

107
sum = bddFalse(spa); 108
forall (v ∈ vars) 109

sum = bddOr(sum, v.domain); 110
return bddAnd(spa, state, bddNot(spa, sum)) ; 111
} 112

4.7 Relaxing Assumptions

We now discuss how the basic algorithms described can be
modified if the simplifying assumptions are relaxed.

C extensively uses aggregates such as arrays and structs.
The notions of block as well as access path need to be re-
fined so that different fields of a struct can be distinguished.
Wilson [4] developed the concept of alocation set, which

characterizes a set of grouped location using a pair of nor-
malized integers, called offset and stride. The use of loca-
tion set won’t change our algorithm, however, in order to
maintain the invariant that blocks are disjoint, some block
collapsing needs to be performed as the algorithm proceeds.
Note that this tradeoff is also made in [4].

The basic algorithm does not handlestrong update, which
concerns the assignment of a unique location. Global and lo-
cal scalar blocks are always unique. Dynamic blocks are
never unique. When a strong update happens, instead of
merging the new value with the original value as the new
point-to set, as in the case ofweak update, the original value
stored in the location under current state needs to be re-
moved. Under our symbolic framework, this removal can
be easily carried out the same way as Algorithm 5. The
real challenge, however, is that for initial state blocks, the
knowledge of whether they are unique scalars is not avail-
able. This factor alone leads to the failure of true CTF in
previous efforts [4, 15]. On the other hand, under our sym-
bolic framework, it is just as simple as introducing an extra
Boolean variable, called thescalar predicate, for each initial
block.

Some extra care needs to be exercised to handle pro-
grams with recursive functions. We follows the usual path:
whenever a calling cycle is hit, we use the transfer function
computed so far as an approximation, and will iterate until a
fixed-point is reached.

5 Engineering a Fast Algorithm

In addition to many implementation details that we choose
to omit in the algorithm presentation, one extremely impor-
tant issue left undiscussed is how we actually represent and
manipulate the Boolean functions which forms the founda-
tion of our algorithm. A poor choice of the Boolean func-
tion representation may invalidate the entire methodology.
Our use of Bryant’s Binary Decision Diagram (BDD) [7] is
rather an obvious decision. It is a canonical, compact, and
high-quality manipulation package is freely available [16].

Some considerations during the construction of BDD prove
to be extremely helpful for the algorithm efficiency. One
of the most commonly used BDD operation isbddMirror,
which maps a Boolean function in range space to an equiv-
alent one in domain space. We keep this operation cheap
by aligning the variable ordering between the two variable
sets: while the variable order within a set can be dynam-
ically changed to reduce overall BDD size, they keep the
same order across two different set.

An interesting argument for discussion is that since BDD
is a graph-based representation of a Boolean function, why
don’t we use the point-to graph in the first place, which
seems to be much more intuitive? Our observations are as
follows: First of all, point-to graphs need to be maintained
for every procedure, each of which may share many com-
mon edges. In other words, there are a large amount of

redundancy. In contrast, BDD enables the maximum shar-
ing among graph nodes, and point-to information in different
procedures, at different program points can be reused. This
space efficiency becomes crucial for the accurate analysis of
large programs.

Second, many otherwise expensive operations can be per-
formed implicitly using BDD. The complexity of an opera-
tion now depends on the size of the BDD, rather than the
size of the point-to graph. Just like image computation, op-
erations in BDD can be batch processed on a large collection
of blocks.

Third, an often overlooked factor is the canonicality of
BDD representation. The ease of defining a signature on
an operation applied on two BDDs allows us to cache and
reuse the result easily and on a large scale. This efficiency
is in essence the same as the principle of dynamic program-
ming: if a subproblem can be uniquely identified, it should
be solved only once and its result should be shared by other
upper-level problems.

6 Experimental Result

We implemented an FICS pointer analysis tool based on the
ideas outlined in this paper using a synthesis/compiler in-
frastructure we developed. Our infrastructure includes sev-
eral frontends such as C, Java, Verilog as well as a C-based,
objected oriented, polymorphic language developed specifi-
cally for System-on-chip. We also leverage Somenzi’s CUDD
package [16] for BDD manipulation.

Our first implementation wasn’t intended for comprehen-
sive comparison with what has been published in the litera-
ture, but rather a validation of a new idea. We have impor-
tant omissions: e.g., we do not yet distinguish field elements,
and have not fully implement Wilson’s location set concept.
Our transfer functions for libraries are hardwired, and we
still do not have a strategy to summarize library function
without analyzing the library source code. We have not yet
handle non-local control transfers such as setjmp/longjmp.
All these complications have prevented us from attempting
large industrial benchmarks. Also we are not even close to
reaching the last miles of performance improvement using
symbolic technology. Therefore, at this stage we are not
ready for a fair, direct performance comparison with tradi-
tional techniques.

Nevertheless, we were able to apply our implementation
on the benchmark set commonly used in the pointer anal-
ysis research community: one set from McGill university
[17], and the other from Dr. Landi [18]. The statistics of the
benchmarks are shown in Table 1, where the third column
indicates the lines of code, the fourth column indicates the
number of procedures (not including libraries), and the fifth
column indicates the percentage of control flow nodes that
have pointer assignment. The last column shows the run-
time of our algorithm obtained on a Ultra-SPARC 5. The
result is very encouraging: all experiments finish in seconds.

Name Source LOC #procs density Run Time (s)
01.qbsort McGill 325 8 24.1% 0.10
06.matx McGill 350 7 13.5% 0.13
15.trie McGill 358 13 23.4% 0.21
04.bisect McGill 463 9 9.7% 0.10
17.bintr McGill 496 17 8.8% 0.13
05.eks McGill 1202 30 4.0% 0.20
08.main McGill 1206 41 20.9% 1.33
09.vor McGill 1406 52 28.6% 5.54
allroots Landi 227 7 1.3% 3.02
football Landi 2354 58 1.8% 2.38
compiler Landi 2360 40 5.1% 5.3
assembler Landi 3446 52 16.6% 10.63
simulator Landi 4639 111 6.3% 4.03

Table 1: Experimental results

7 Conclusion

In this paper, we described an idea for accurate pointer anal-
ysis in a way significantly different from traditional approaches.
We discuss the rationale of this approach by first analyzing
sources of in-efficiency in traditional methods. We demon-
strated our preliminary implementation and experiment, which
confirmed our expectation. In the future, we will provide
a thorough implementation of a comparative framework so
that solid empirical data can be obtained for different meth-
ods. We will also apply pointer analysis techniques in high-
level and system-level synthesis.

References

[1] Bjarne Steensgaard, “Points-to analysis in almost lin-
ear time,” inSymposium on Principles of Programming
Languages, 1996, pp. 32–41.

[2] O. Andersen,Program Analysis and Specialization for
the C Programming Language, Ph.D. thesis, Computer
Science Department, University of Copenhagen, 1994.

[3] R. Wilson and M. Lam, “Efficient context-sensitive
pointer analysis for c programs,” inProceedings of
the ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, June 1995, pp. 1–
12.

[4] Robert P. Wilson and Monica S. Lam, “Efficient
context-sensitive pointer analysis for C programs,” in
SIGPLAN Conference on Programming Language De-
sign and Implementation, 1995.

[5] O. Coudert, C. Berthet, and J. C. Madre, “A unified
framework for the formal verification of sequential cir-
cuits,” in Proceedings of the International Conference
on Computer-Aided Design, November 1990, pp. 126–
129.

[6] O. Coudert and J. C. Madre, “The implicit set
paradigm: a new approach to finite state system ver-
ification,” Formal Methods in System Design, vol. 2,
no. 6, pp. 133–145, 2001.

[7] Randal E. Bryant, “Graph-based algorithms for
Boolean function manipulation,”IEEE Transactions
on Computers, vol. C-35, no. 8, pp. 677–691, Aug.
1986.

[8] Michael Hind, “Pointer analysis: Haven’t we solved
this problem yet,” inACM SIGPLAN-SIGSOFT Work-
shop on Program Analysis for Software Tools and En-
gineering (PASTE), June 2001.

[9] Sean Zhang, Barbara G. Ryder, and William Landi,
“Program decomposition for pointer aliasing: A step
toward practical analyses,” inFoundations of Software
Engineering, 1996, pp. 81–92.

[10] Donglin Liang and Mary Jean Harrold, “Efficient com-
putation of parameterized pointer information for in-
terprocedural analyses,” inStatic Analysis Symposium,
2001, pp. 279–298.

[11] L. Semeria and G. De Micheli, “Resolution, opti-
mization, and encoding of pointer variables for the
behavioral synthesis from c,”IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, February 2001.

[12] P. Panda, L. Semeria, and G. De Micheli, “Cache-
efficient memory layout of aggregate data structures,”
in Proceedings of the International Symposium on Sys-
tem Synthesis, September 2001.

[13] J. Zhu, “Static memory allocation by pointer analysis
and coloring,” inDesign Automation and Test in Eu-
rope, March 2001.

[14] Susan Horwitz, Thomas W. Reps, and David Brinkley,
“Interprocedural slicing using dependence graphs,” in
SIGPLAN Conference on Programming Language De-
sign and Implementation, 1988, pp. 35–46.

[15] Donglin Liang, Maikel Pennings, and Mary Jean Har-
rold, “Extending and evaluating flow-insenstitive and
context-insensitive points-to analyses for java,” in
Workshop on Program Analysis For Software Tools and
Engineering, 2001, pp. 73–79.

[16] F. Somenzi, “CUDD: Binary decision diagram pack-
age release,” http://vlsi.Colorado.EDU/
˜fabio/CUDD/cuddIntro.html , 1998.

[17] L. Hendren et al, “Mccat compiler project,”
http://www-acaps.cs.mcgill.ca/
˜benadmin/benchmarks/ .

[18] W. Landi et al, “Prolangs analysis framework,”http:
//www.prolangs.rutgers.edu .

