Color Permutation: an Iterative Algorithm for Memory Packing

Jianwen Zhu

%

Technical Report 01-04-01
June 2001

10 King’s College Road
Edward S. Rogers Sr.
Department of Electrical and Computer Engineering
University of Toronto
Toronto, Ontario, M5S 111, Canada

jzhu@eecg.toronto.edu

Abstract

One of the bottlenecks in the recent movement of hardware synthesis from behavioral C programs is the difficulty
in reasoning about runtime pointer values at compile time. The pointer analysis problem has been investigated
in the compiler community for two decades, which has yielded efficient, polynomial time algorithms for context-
insensitive analysis. However, at the accuracy level for which hardware synthesis is desired, namely context and flow
sensitive analysis, the time and space complezity of the best algorithms reported grow exponentially with program
size. In this paper, we present our first step towards a new analysis technology which potentially leads to almost-
linear time complexity and sub-linear space complexity algorithm even for the most accurate analysis. The key
idea that contributes to this efficiency is to implicitly encode the pointer-to relation in the Boolean domain, thereby
capturing the procedure transfer function completely, compactly and canonically. This represents a wide departure
from the traditional techniques, all of which explicitly capture pointer-to relation using variations of point-to graph,
which have to be re-evaluated for different calling contexts. FExperiments for our first flow-insensitive algorithm on
common benchmarks show promising result.



Contents

1 Introduction
2 Related Work

3 Problem Formulation

4 Symbolic Pointer Analysis Algorithm

4.1 Program Modeling . . . . . . . . . L e
4.2 Pointer Analysis Algorithm . . . . . . . . ... L
4.3 State QUErY . . . . . L e e e
4.4 Evaluating Stores . . . . . . . ... e
4.5 Evaluating Calls . . . . . . . . .
4.6 State Pruning . . . . . . . .

4.7 Relaxing Assumptions
5 Experimental Result

6 Conclusion

S UL OO R W W

(=]



1 Introduction

Today’s system-on-chips are heterogeneous: while
the majority of the functionality can be handled by
software running on on-chip microprocessors, often
times it is the set of on-chip dedicated cores that de-
fines the performance, and therefore the competitive-
ness of the chip. The design of such cores, however, is
known to be time consuming under the current com-
mercial design methodology. The effort to automat-
ically synthesize hardware from algorithm-level spec-
ification, known as behavioral (high-level) synthesis,
has rarely gone beyond programs with simplistic data
structures, such as scalars and arrays. This constraint
seriously limits the applicability of behavioral synthe-
sis technology, since any interesting applications will
involve the use of complex data structures. This prob-
lem has become more apparent in the recent movement
of behavioral synthesis from C/C++ programs, which
encourage the use of pointers.

The presence of data pointers imposes challenges
for temporal optimization, since flow-dependency be-
tween operations have to be conservatively approxi-
mated whenever pointer dereferences are involved, as
well as spatial optimization, since the life times of mem-
ory blocks can not be accurately determined, and there-
fore their space cannot be aggressively shared. The
presence of function pointer makes it difficult for whole-
program analysis and therefore inter-procedural opti-
mization, since even the call graph cannot be read-
ily constructed. The degree at which these aggressive
optimization can be carried out for pointer-intensive
programs largely depends on the how well one can ap-
proximate the runtime pointer values at compile-time,
which unfortunately, is an undecidable problem.

Luckily, the synthesis research community is not
alone for the so-called pointer analysis problem, or in a
slightly different formulation, the alias analysis prob-
lem. In fact, the optimizing compiler and program-
ming language community has attacked this problem
for two decades and a rich set of results have been
yielded in the literature. The reported analysis algo-
rithms vary with different accuracy speed tradeoff and
can be categorized according to two criteria: flow sen-
sitivity and context sensitivity. A flow-insensitive (FI)
algorithm ignores the order of statements when it cal-
culates pointer information, whereas a flow-sensitive
(FS) algorithm takes control flow within a procedure
into account. A context-insensitive (CI) algorithm does
not distinguish the different calling contexts of a pro-
cedure, whereas a context-sensitive (CS) does.

Fast polynomial algorithms, such as derivatives of
Steensgaard’s [15] and Andersen’s [1], have been de-

veloped for context-insensitive analysis. However, the
accuracy of such analysis, especially Steensgaard’s, is
not acceptable for hardware synthesis aiming for ag-
gressive optimization. On the other hand, the context-
sensitive analysis algorithms developed in the literature
suffer from a worst-case exponential time complexity.
The fundamental reasons for such complexity is three
fold: First, these algorithms cannot obtain the com-
plete transfer function (CTF) of a procedure, in other
words, summarize the effect of procedure on program
state with respect to arbitrary initial state. Therefore,
each procedure has to be re-analyzed for each calling
context. This problem has been alleviated by the land-
mark work of Wilson and Lam [16], who developed the
concept of partial transfer function. Nevertheless, this
in-efficiency is not completely eliminated. Second, the
cost of propagating the effect of callee to the caller is
high, since the point-to relation of the caller has to be
duplicated at each call site. This cost remains to be
high even with the sparse representation [17]. Third,
the data structure that these algorithms use to capture
program state are inherently redundant, thereby caus-
ing in-efficiency in space. For flow-sensitive analysis,
where program state for each program point has to be
kept, the space in-efficiency will eventually limit the
size of the program one can analyze.

In this paper, we describe an analysis technology,
called symbolic pointer analysis, which starts a new di-
rection in combating the three sources of in-efficiencies.
The contributions of this paper is as follows: First, we
map each program memory location of interest into a
cube in a Boolean space, called the domain space, and a
cube in another Boolean space, called the range space.
This allows us to implicitly represent sets of memory
locations using Boolean functions, thereby providing
space efficiency and potentially speed efficiency. Sec-
ond, instead of using set of alias pairs, or point-to
graph, we propose a new approach to represent the pro-
gram state using a Boolean function in the combined
domain and range space. This allows us to perform
state query using implicit image computation originally
developed for reachability analysis in formal verifica-
tion [3, 4], rather than the explicit graph traversal.
Third, we introduce the initial state blocks, a concept
similar but different from Wilson’s extended parame-
ters, as well as the concept of scalar predicate, which
is necessary if accuracy due to “strong update” is not
to be compromised. These two concepts allow us to
capture the transfer function of a procedure completely
as a Boolean function, which was otherwise impossible.
Forth, we engineer a CSFI analysis algorithm based on
the above concepts using Bryant’s Binary Decision Di-
agram (BDD) [2] and illustrate why the compactness



and canonicality of BDD can be exploited for efficiency.

The rest of the paper includes a detailed descrip-
tion of the proposed representation (Section ??) and
the fundamental algorithms (Section 4) under certain
simplifying assumptions, which will later be relaxed.
The engineering side of the algorithm is discussed in
Section ?7?7. Lastly, while we are not able to perform
a comprehensive and thorough empirical comparison
with other works at this point due to the time and
resource constraint, we present our preliminary result
on standard benchmarks, which promisingly confirmed
the expected efficiency.

In the text that follows, we use the formal algorithm
notation (FAN) to state definitions and describe algo-
rithms. Unlike pseudo-code based algorithm descrip-
tion, FAN relies on a type system, where each type is
represented by a set, to present the algorithm in a for-
mal, precise manner. For example, we use the notation
()" to represent the power set of A, therefore any value
of type ()# must be a set of values of type A. Similarly,
we use the notation [ |4 to represent the set of all se-
quences over elements of A, therefore any value of type
[ ] represents a sequence of values of type A. Read-
ers are expected to find this notation very similar to
any strongly-typed programming languages and hence
straightforward to be translated into implementation,
yet abstract enough to allow concise presentation.

2 Related Work

To quote a recent excellent survey by Hind [7], over
seventy-five papers and nine PhD thesis haven be pub-
lished on pointer analysis. So here we only review im-
portant milestones and recent works that are relevant
to ours.

In the category of FICI pointer analysis, Steens-
gaard’s work [15] stands out as the first equality-based
method, which treats assignment as bidirectional and
use a union-find data structure. His analyzer is ex-
tremely fast and has analyzed million lines of indus-
trial code, however, the precision of equality-based ap-
proach degrades very fast in general, even with later
improvement [18]. Andersen’s [1] popular subset-based
improves precision by treating assignment as a unidi-
rectional flow of values, yet still run’s in polynomial
time.

Our algorithm primarily works in the research space
of accurate FS/CS analysis. Wilson and Lam [17] pro-
posed the concept of partial transfer function in an ef-
fort to reduce the number of times a procedure has to
be analyzed. Along the same line, recently Liang and
Harrold [8] has proposed to use the local and global
auxiliary blocks, similar to our initial state block. How-

ever, their model cannot extend beyond FS analysis
since it is impossible to detect strong updates.

The application of pointer analysis algorithm for be-
havioral synthesis is emerging. Semeria and De Micheli
have researched on how to encode C pointers in hard-
ware [11, 12, 13]. By a combination of runtime test
and compile time analysis, they can produce efficient,
customized pointer implementation. Panda et. al. [10]
applied pointer analysis to optimally determine array
memory layout for cache performance. Zhu [19] ap-
plied pointer analysis to the problem of memory block
minimization.

3 Problem Formulation

In the text that follows, we use the formal algorithm
notation (FAN) to state definitions and describe algo-
rithms. Unlike pseudo-code based algorithm descrip-
tion, FAN relies on a type system, where each type
is represented by a set, to present the algorithm in a
formal, precise manner. Readers are expected to find
this notation very similar to any strongly-typed pro-
gramming languages and hence straightforward to be
translated into implementation, yet abstract enough to
allow concise presentation.

The input of the memory allocation problem is a set
of memory blocks, as defined in Definition 1, as well as
a conflict relation between these blocks, which indicate
whether or not that any pair of the memory blocks can
be shared, or having an overlapping memory address
space. The memory block is characterized by its size,
which can be any natural numbers. The conflict re-
lation is derived by discovering the “life time” of the
memory blocks using dataflow analysis, which is not
the subject of this paper.

Definition 1 A memory block v : Block is a mem-
ber of

Block = tuple {
size N
} 3

O~

An allocation, as defined by Definition 2 is then the
assignment of address location, represented by an inte-
ger, to each of the memory block, such that the conflict
relation is honored.

Definition 2 Given a set of memory blocks' V

1Here we use the notation <>A to represent a power set of A,
and the notation [ |4 to represent the set of all sequences over
elements of A.



(Block  and o conflict relation E : ()V*V between the
memory blocks, a memory allocation, or ¢ memory
packing, is a mapping A : V — N, such that (u,v) €
E — [A(u), A(u) + u.size] N [A(v), A(v) +v.size] = @.

Obviously, one allocation can be better or worse
than another, depending on whether or not the total
memory size occupied by all memory blocks is smaller.
According to Definition 3, the allocation that results
in the smallest total memory size is the optimal allo-
cation.

Definition 3 For an allocation A :V — N, its mem-
ory size || A|| is defined to be mazx,cv A(v)+v.size. An
allocation Ay is said to be optimal if VA, ||A|l > || Ao]|-

4 Symbolic Pointer Analysis Algorithm
4.1 Program Modeling

We now describe our pointer analysis algorithm. In
order to focus on the fundamentals, rather than the im-
plementation details, we made a number of simplifying
assumptions for the ease of presentation.

We assume a program is preprocessed so that it is
available in the form defined in Definition 4, which con-
tains a set of blocks. The blocks can be globals, lo-
cals, parameters, initial blocks and procedures, as dis-
cussed in Section ?7. All blocks are treated as scalars.
The additional information for procedure blocks can
be obtained from procs. The program also contains
the Boolean environment necessary to define symbolic
point-to relation, as discussed in Section ??7. Since
a block correspond to a cube in the Boolean space,
a Boolean function can be used to represent a set of
blocks. The utility function spaEnumerate can be used
to enumerate all blocks corresponding to a Boolean
function.

Definition 4 A program is a member of

Spa = tuple { 4
blks . <>SpaBlock; 5
procs : SpaBlock — SpaProc; 6
domainVars : | ]SpaDD; 7
range Vars | ]SpaDD; 8

cache : SpaDD x SpaDD X

{bddAnd, bddOr, ...} SpaDD; 9
} 10

11

spaEnumerate = func( spa : Spa, l : SpaDD ) : ()SpaBlOCk
; 12

A procedure contains a set of parameter, local, heap
allocated blocks, and a series of instructions. Note that
the formals contains a sequence of initial state blocks
which are originally implicit in the source program.

Definition 5 A procedure is a member of

SpaProc = tuple { 13
formals SpaBlock; 14
params SpaBlock; 15
locals O SpaBlock’; 16
heaps SpaBlOCk; 17
instrns ) Spalnstrn : 18

19

As shown in Figure 6, we consider only two types
of instructions, assignment instruction (store), call in-
struction (call), and ignore others. The destination and
sources of the instruction are in the form of access path.

Definition 6 An instruction is a member of

Spalnstrn = tuple { 20
opcode : {store, call, others}; 21
dst : SpaAccessPath; 22
sres O ]SpaAcessPath; 23
} 2

We assume an access path can be characterized by
a block, which indicates the root of access, and level,
which indicates the number of dereferences performed
on the block. The C expression &b corresponds to level
-1, b corresponds to level 0, and ***b corresponds to
level 3.

Definition 7 An access path is a member of

SpaAccessPath = tuple { 25
blk : SpaBlock; 26
level D Z; 27

28

We assume that the procedure does not contain re-
cursive calls. Also we do not distinguish memory allo-
cated at the same site under different calling contexts.

The program in Example ?? (a) is preprocessed into
Example ??7 (b). Note that an important difference
from its source is that the formals refers to the initial
state blocks, which are not explicit in the source code
before. The corresponding actuals at the callsite, are
also made explicit.



4.2 Pointer Analysis Algorithm

Algorithm 1 computes the Boolean CTF for a given
procedure root. The parameter ifs keeps track of the
CTFs of the procedures that have been analyzed. The
algorithm starts by computing the initial points-to rela-
tion, which involves linking the blocks referenced in the
procedures with their initial state blocks present in the
formals. It then evaluates each instruction, after which
it updates the current state state. Since this is a FT al-
gorithm, the order of the instruction does not matter.
When it encounters a store instruction, it calls spaUp-
dateState to compute the new state mstate. When a
call instruction is encountered, the algorithm first calls
spaQueryState to find out the set of procedures that
the call instruction may call. This process is necessary
since we may be accessing function pointers. The al-
gorithm then iterate through all the potential callees,
and call spaApply to apply the callsite point-to infor-
mation to the CTF of the callee, thereby propagating
the point-to information of the callee back to the call
site. If the CTF is not available at tfs, it recurs and
obtain the CTF of the callee before proceed. This pro-
cess repeats until a fixed-point is reached, when there
is no further update of the state function. Note that
while this is an iterative process, each procedure needs
to be analyzed only once. Before it returns the result,
a call to spaPrune will be performed in order to remove
from CTF the set of point-to edges emitting from local
and parameter blocks, which, by the language scoping
rule, are not accessible outside.

Algorithm 1 Pointer analysis.

spaAnalysisFICS = func( 29
spa : Spa, root : SpaBlock, tfs : SpaBlock — SpaDD30

) : SpaDD { 31

var state, nstate : SpaDD; 32

var changed : {true, false}; 33

34

changed = true, state = spalnitState( spa, root ); 35
while( changed == true ) { 36
changed = false; 37

forall( instrn € spa.procs(root).instrns ) { 38

if( instrn.opcode == store ) { 39

nstate = spaUpdateState(spa, state, instrn.dst,
instrn.srcs[0]); 40
if( nstate # state ) 41

changed = true, state = nstate; 42

43

else if( instrn.opcode == call ) { 44

forall( callee € spaEnumerate( 45
spaQueryState( spa, state, instrn.dst.blk.range,
instrn.dst.level ) 46

)) | 47
if( tfs(callee) == @ ) 48
spaAnalysisFICS(spa, callee, tfs); 49

nstate = spaApply(spa, state, instrn.srcs,

callee, tfs(callee)); 50
if( nstate # state ) 51

changed = true, state = nstate; 52

}
} 54
} 55
state = spaPrune( state, root.params U root.locals );57
tfs(root) = state;

return state ; 59
} 60

The following results ensures that the algorithm ter-
minates.

Lemma 1 A set of Boolean functions defined on the
Boolean space B™ forms a lattice, where the bottom el-
ement is constant 0 function, the top element is con-
stant 1 function, and the meet operator is the Boolean
or operator.

Lemma 2 The program state in the form of a Boolean
function computed by Algorithm 1 at each iteration is
monotonically increasing with respect to the Boolean or
operator.

Theorem 1 Algorithm 1 terminates.
4.3 State Query

Algorithm 2 is used to find out the set of all possible
values an access path may have under a program state.
It is needed to process every access path, be it a des-
tination or source, of an instruction. On the point-to
graph, it is equivalent to determining the envelop of
the nth level breath-first search starting from a block,
when n is the level of the access path. In our Boolean
framework, the algorithm is similar to the image com-
putation algorithm in reachability analysis. For level 1



access *b, where b is a block, one only needs to mul-
tiply the state function with the domain cube of the
block. The resultant Boolean function captures the set
of blocks in the range space. To access one more level,
one needs to call bddMirror to isomorphically map the
computed range back to the domain space, which can
again be used to multiply with the state function. This
process continues until we reach the desired level. Note
that unlike algorithms based on point-to graph, the im-
age computation can be performed implicitly, in other
words, it can be performed purely logic operation with-
out resolving to explicit graph traversal.

Algorithm 2 State query.

spaQueryState = func( 61
spa : Spa, state : SpaDD, from : SpaDD, level : Z 62

) : SpaDD { 63

if( level == 0 ) return from ; 64
return bddAndAbstract( 65
spa, state, bddMirror( 66

spa, spaQueryState(spa, state, from, level-1) 67

) 68

) 69

1 70

4.4 Evaluating Stores

We use Algorithm 3 to compute the new state when-
ever a store instruction is encountered. Consider a
simple case where the access paths for both the des-
tination and the source of the instruction are simple
blocks, which correspond to adding an edge in point-to
graph based algorithms. Here we simply need to add a
product term to the current state, which is the prod-
uct of the domain cube of the destination and the range
cube of the source. The operation holds equally well
with complex access paths, whose net effect will still
amount to adding a product of two Boolean functions.
Note that this corresponds to collectively adding many
point-to edges at the same time!

Algorithm 3 State update.

spaUpdateState = func( 71
spa : Spa, state : SpaDD, dst : SpaAccessPath, src :
SpaAccessPath 72
) : SpaDD { 73
return bddOr( 74
state, bddAnd( 75
bddMirror( spa, 76
spaQueryState( spa, state, dst.blk.range, dst.level

) 77
s 78
spaQueryState( spa, state, src.blk.range, dst.level+1

) 79
) 80

)i 81

} 82

4.5 Evaluating Calls

The pointer information of the callee has to be prop-
agated back to the caller by applying the program state
at the call site to the transfer function of the callee.
This is achieved by Boolean function composition, in
other words, substituting the Boolean variables that
construct the initial state blocks by a set of Boolean
functions. Such projection map can be obtained from
the binding of actuals to the formal. If we use a single
variable for each initial state block, it can be computed
trivially.

Algorithm 4 FEvaluate call.

spaApply = func( 83
spa : Spa, state : SpaDD, srcs : | ]SpaAcceSSPath, 84
proc : SpaBlock, tf : SpaDD 85
) : SpaDD { 86
var bind, proj : SpaDD +— SpaDD; 87
var actual, formal : SpaDD; 88

89

forall( i € [0..||sres||-1] ) { 90
actual = spaQueryState(spa, state, srcs[i].blk.range,
srcsfif.level+1 ); 91
formal = proc.formals[i].range; 92
bind(formal) = actual; 93
bind(bddMirror(spa, formal)) = bddMirror(spa, ac-

tual); 94
95

proj = bddFindProjection(spa, bind); 96
return bddOr( 97
state, bddCompose( spa, tf, proj ) 98

) ; 99

} 100

4.6 State Pruning

Algorithm 5 first computes the Boolean function
that corresponds to the set of all blocks need to be
pruned. It then predicates the state with the inversion
of the computed function.

Algorithm 5 State pruning.

spaPrune = func( 101
spa : Spa, state : SpaDD, vars : <>SpaBlock 102

) : SpaDD { 108
var sum : SpaDD; 104
105

sum = bddFalse(spa); 106
forall( v € vars ) 107
sum = bddOr( sum, v.domain); 108
return bddAnd( spa, state, bddNot( spa, sum ) ) ; 109
110




4.7 Relaxing Assumptions

We now discuss how the basic algorithms described
can be modified if the simplifying assumptions are re-
laxed.

C extensively uses aggregates such as arrays and
structs. The notions of block as well as access path
need to be refined so that different fields of a struct can
be distinguished. Wilson [17] developed the concept of
a location set, which characterizes a set of grouped lo-
cation using a pair of normalized integers, called offset
and stride. The use of location set won’t change our
algorithm, however, in order to maintain the invariant
that blocks are disjoint, some block collapsing needs
to be performed as the algorithm proceeds. Note that
this tradeoff is also made in [17].

The basic algorithm does not handle strong update,
which concerns the assignment of a unique location.
Global and local scalar blocks are always unique. Dy-
namic blocks are never unique. When a strong update
happens, instead of merging the new value with the
original value as the new point-to set, as in the case of
weak update, the original value stored in the location
under current state needs to be removed. Under our
symbolic framework, this removal can be easily carried
out the same way as Algorithm 5. The real challenge,
however, is that for initial state blocks, the knowledge
of whether they are unique scalars is not available. This
factor alone leads to the failure of true CTF in previous
efforts [17, 9]. On the other hand, under our symbolic
framework, it is just as simple as introducing an extra
Boolean variable, called the scalar predicate, for each
initial block.

Some extra care needs to be exercised to handle pro-
grams with recursive functions. We follows the usual
path: whenever a calling cycle is hit, we use the trans-
fer function computed so far as an approximation, and
will iterate until a fixed-point is reached.

5 Experimental Result

We implemented an FICS pointer analysis tool
based on the ideas outlined in this paper using a syn-
thesis/compiler infrastructure we developed. Our in-
frastructure includes several frontends such as C, Java,
Verilog as well as a C-based, objected oriented, poly-
morphic language developed specifically for System-on-
chip. We also leverage Somenzi’s CUDD package [14]
for BDD manipulation.

Our first implementation wasn’t intended for com-
prehensive comparison with what has been published
in the literature, but rather a validation of a new idea.

Name Source | LOC | #procs | density | Run Time (s)
01.gbsort | McGill 325 8 24.1% 0.10
06.matx McGill 350 7 13.5% 0.13
15.trie McGill 358 13 23.4% 0.21
04.bisect McGill 463 9 9.7% 0.10
17.bintr McGill 496 17 8.8% 0.13
05.eks McGill 1202 30 4.0% 0.20
08.main McGill | 1206 41 20.9% 1.33
09.vor McGill | 1406 52 28.6% 5.54
allroots Landi 227 7 1.3% 3.02
football Landi 2354 58 1.8% 2.38
compiler Landi 2360 40 5.1% 5.3
assembler | Landi 3446 52 16.6% 10.63
simulator | Landi | 4639 111 6.3% 4.03

Table 1. Experimental results

We have important omissions: e.g., we do not yet dis-
tinguish field elements, and have not fully implement
Wilson’s location set concept. Our transfer functions
for libraries are hardwired, and we still do not have
a strategy to summarize library function without ana-
lyzing the library source code. We have not yet handle
non-local control transfers such as setjmp/longjmp. All
these complications have prevented us from attempting
large industrial benchmarks. Also we are not even close
to reaching the last miles of performance improvement
using symbolic technology. Therefore, at this stage we
are not ready for a fair, direct performance comparison
with traditional techniques.

Nevertheless, we were able to apply our implemen-
tation on the benchmark set commonly used in the
pointer analysis research community: one set from
McGill university [5], and the other from Dr. Landi [6].
The statistics of the benchmarks are shown in Table 1,
where the third column indicates the lines of code, the
fourth column indicates the number of procedures (not
including libraries), and the fifth column indicates the
percentage of control flow nodes that have pointer as-
signment. The last column shows the runtime of our
algorithm obtained on a Ultra-SPARC 5. The result is
very encouraging: all experiments finish in seconds.

6 Conclusion

In this paper, we described an idea for accurate
pointer analysis in a way significantly different from
traditional approaches. We discuss the rationale of this
approach by first analyzing sources of in-efficiency in
traditional methods. We demonstrated our preliminary
implementation and experiment, which confirmed our
expectation. In the future, we will provide a thorough
implementation of a comparative framework so that




solid empirical data can be obtained for different meth-

ods.

We will also apply pointer analysis techniques in

high-level and system-level synthesis.

References

(1]

[10]

[11]

[12]

[13]

O. Andersen. Program Analysis and Specialization for
the C Programming Language. PhD thesis, Computer
Science Department, University of Copenhagen, 1994.
R. E. Bryant. Graph-based algorithms for Boolean
function manipulation. [IEEE Trans. Comput., C-
35(8):677-691, Aug. 1986.

O. Coudert, C. Berthet, and J. C. Madre. A unified
framework for the formal verification of sequential cir-
cuits. In Proceedings of the International Conference
on Computer-Aided Design, pages 126129, November
1990.

O. Coudert and J. C. Madre. The implicit set
paradigm: a new approach to finite state system veri-
fication. Formal Methods in System Design, 2(6):133—
145, 2001.

L. H. et al. Mccat compiler project. http://
www-acaps.cs.mcgill.ca/ benadmin/benchmarks/.
W. L. et al. Prolangs analysis framework. http://
www.prolangs.rutgers.edu.

M. Hind. Pointer analysis: Haven’t we solved this
problem yet. In ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineer-
ing (PASTE), June 2001.

D. Liang and M. J. Harrold. Efficient computation of
parameterized pointer information for interprocedural
analyses. In Static Analysis Symposium, pages 279—
298, 2001.

D. Liang, M. Pennings, and M. J. Harrold. Ex-
tending and evaluating flow-insenstitive and context-
insensitive points-to analyses for java. In Workshop on
Program Analysis For Software Tools and Engineering,
pages 7379, 2001.

P. Panda, L. Semeria, and G. D. Micheli. Cache-
efficient memory layout of aggregate data structures.
In Proceedings of the International Symposium on Sys-
tem Synthesis, September 2001.

L. Semeria and G. D. Micheli. Spc: Synthesis of point-
ers in C: Application of pointer analysis to the behav-
ioral synthesis from C. In Proceedings of the Interna-
tional Conference on Computer-Aided Design, pages
321-326, November 1998.

L. Semeria and G. D. Micheli. Resolution, optimiza-
tion, and encoding of pointer variables for the be-
havioral synthesis from c. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, February 2001.

L. Semeria, K. Sata, and G. D. Micheli. Synthesis of
hardware models in C with pointers and complex data
structures. IFEE Transactions on Computer-Aided
Design of Integrated Clircuits and Systems, February
2001.

(14]

(15]

(16]

F. Somenzi. CUDD: Binary decision diagram package
release. http://vlsi.Colorado.EDU/~fabio/CUDD/
cuddIntro.html, 1998.

B. Steensgaard. Points-to analysis in almost linear
time. In Symposium on Principles of Programming
Languages, pages 32-41, 1996.

R. Wilson and M. Lam. Efficient context-sensitive
pointer analysis for ¢ programs. In Proceedings of
the ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 1-12, June
1995.

R. P. Wilson and M. S. Lam. Efficient context-
sensitive pointer analysis for C programs. In SIG-
PLAN Conference on Programming Language Design
and Implementation, 1995.

S. Zhang, B. G. Ryder, and W. Landi. Program de-
composition for pointer aliasing: A step toward practi-
cal analyses. In Foundations of Software Engineering,
pages 81-92; 1996.

J. Zhu. Static memory allocation by pointer analy-
sis and coloring. In Design Automation and Test in
FEurope, March 2001.



