Symbolic Pointer Analysis

Jianwen Zhu

Electrical and Computer Engineering
University of Toronto

November 11th, 2002

jzhu@eecg.toronto.edu
http://www.eecg.toronto.edu/"jzhu

Outline

§ Background
B New Formalism
B New Efficiency

Engineering and Results
§ Conclusion

Synthesis from C-like Languages

B Traditional high-level synthesis
I Regretfully not embraced by design community
I Complexity
I Quality
B Commercial “C Synthesis” tools today
I RTL in C flavor

1 SystemC/SpecC

I Primarily used for system-level modeling

The Pervasive Pointers

1 All of them are pointers!
I C: addresses of global, local and heap block
I C++: plus addresses of class objects
I Java: reference to class objects
I Function pointers
1 Virtual methods, Interfaces

I Complex data structures

B Candidates for hardware synthesis
I Multimedia
I Networking
I 3-D Graphics

The Evasive Pointers

B Runtime valuesinknownat
compile time

Pointers maybeliasedo each

other

B Evil for optimization

I Dependency test for

parallelization

I Memory bank partition

I Memory sharing

State of the Art

B Pointer Analysis Problem B Hind 2001: “75 papers, 9 PhD
I Determine program state at thesis”
everyprogram point # Flow and Context-insensitive

I Cares only about pointer values I Steensgaard’96
I Undecidable problem 1 Andersen’94

B Flow and Context-sensitive
/ I Wilson and Lam’95

@ e I Liang and Harrold’01

B Applications in CAD

B Context and Flow sensitivity I Semeria and De Michel'01
I Pandaet. al’'01

1 Zhu'O1

Sources of Inefficiency

B Aggressive optimization needs accurate analysis

I Context-sensitive + Flow-sensitive + more!

I Best available algorithms have exponential complexity

I Cost for summarize procedure call
I Wilson’s partial transfer function
I Liang’s parameterized summary

I Cost for propagating call effect at call site

I Redundant program state representation

Outline

I Background
B New Formalism
B New Efficiency

Engineering and Results
§ Conclusion

B Representing instructions
I Only two types interesting

Program Modeling

store dest, src
call dest, [sr¢ ... srg)]

I dest, sre= (block level)

I Example:
store t &g; store(t,0), (g,—1)
store *r, *t; store(r, 1), (t,1)
callgetg, [q, g]; | call{getg0), [(q,0), (9,0)]
store *f, &m; store(f,1), (m —1)

char *g, a;
void main(){
call alloc, [p];

call getg, [q, g];

store g, &a;

}
getg([rl, g1]){
store t, &Q;

others
call alloc [*t];
store *r, *t;
}

alloc([f1]) {
store *f, &m:;

}

© 0 N ;n N PN R

10

12
13
14
15

Point-to Graph

B Captures program staf¥, E) B Basic algorithms
1 VerticesV I state query
1 Global block I evaluating store
1 Local block I evaluating call
1 Heap block

I Procedure block

I Initial block (A state@callsite)
| Edgest

I (u,v) € E = the content of

/
oo

block u may be the address of
locationv

10

A Symbolic Alternative

Key observation: edge set of a
graph captures Relation

0l Big idea: represent relation
using Boolean function

B Define Boolean space: domain
and range space

B Encoding memory locations
I initials —Boolean variable

I Others—minterms

11

Block | domain | range
a_ | XX | XuXeXs
g XPGX5 | XaXoXs
p XPXGoX5 | XaXoXs
q XiX5X5 | X1XoX3
t XPXoX3 | XaXeXs
r X;XoX5 | X1XoXs
f X;X5X5 | X1XoX3
m X]X5X5 X1X2X3
fl Y1 Y1
gl Y2 Y2
rl Y3 Y3

Symbolic Replacement of Point-to Graph

l L

e oo ooo

|
O L X o DO

XX

X3 X5 X5 X1 X2 X3
T XGX3Y3
RV
%k =% — =% x _|_ X1X2X3X]_X2X3
X1 X5X3Y1 + XpXoX3X1X2X3 e — —
+ Y1XaXoX3 + XXoX3Y2 .
+ Y3XaXeXs i
+ YaY2
(a) alloc (b) getg (c) main

12

Symbolic State Query

B Graph query: **r

S

L1
L2

R

B Symbolic query:

r‘a+r*b+a‘c
a'd+b'd+Db'e
a+b

S-mirror (L1)
c+d+e

Algorithm 1 State query.

spaQueryState func(

Spa, state, from, level
) : SpaDD {
if(level == 0) return from ;
return bddAndAbstract

spa, state,bddMirror(

spa, spaQueryStafe
spa, state, from, level-1

)

|
P

~N O O A W

10

13

Symbolic Evaluation of Stores

B Examples
1 S=rrl+g'm+g-gl
1t=&Qg:A=t*g
I «r=xt:A=r1"m+rl"gl

@K@ @X@

Algorithm 2 State update.

spaUpdateState func(
Spa, state, dst, src
) : SpaDD {
return bddOr(state, bddAnd
bddMirror(spa,
spaQueryStalespa, state,
dst.blk.range, dst.level)),
spaQueryStalespa, state,

src.blk.range, src.level+1))) ;

10

Now
Lo U

(00]

O

14

Symbolic Evaluation of Calls

B Examples

I Calleeallocwith tf = f1*m
I At callsite of getg:

fl*ml¢1/p=p*m

1 At callsite of main;

f1*mlty/g=g"m

0o
© ecoo oo

alloc getg

main

Algorithm 3 Evaluate call.

spaApply =func(
Spa, state, srcs, proc, tf
) : SpaDD {
var proj : SpaDD— SpaDD;

build projection;

return bddOr(
state, bddCompogespa, tf, proj)
);

}

10

15

Outline

I Background
B New Formalism
New Efficiency

Engineering and Results
§ Conclusion

16

Binary Decision Diagram (BDD)

I Summary

I Established a Boolean formalism for the manipulation of Point-to
relation

I Sounds elegant, how efficient?

1 Efficiency derive from Bryant's ROBDD
I Rooted directed graph based on Shannon expansion
I Small size for large amount of functions
I Canonical

I State query = Image computation?

17

BDD Representation of Point-To Graph

X1

X2

X3

x1

X2

x3

N

e]
83 }

X1
X2
X3
Y3
y2
x3
X2

x1

18

0p
. 3&@'

Y1

X3

X2

x1

o
©

BDD Seems to be Larger, Why Bother?

B Scale matters: the more #edgesll Symbolic states can be shared
we have, the simpler the BDD! among program points!

A Comment on Complexity

B Let G; andGs, be two BDDs

operation complexity
bddAnd O(|G1]|G2)

bddOr O(|G1]|G2])

bddCompose O(|G1|?|Gz|)
practically O(|G1]|G2|)

bddMirror O(|G1|)

20

B Compound efficiency
I Intra-procedural space sharing
I Inter-procedural space sharing

I Implicit batch processing

I Dynamic programming

B Scalability
gimp: 7M LOC, 131552 variables
—18 Boolean variables

An Example of Batch Processing

B Explicit evaluation B Implicit evaluation
A x1
0000
00 /9 ©

co00 ;

|
QG/G@ i

K3

Y1

Y2

21

*yl

y2

Outline

i Background
B New Formalism
B New Efficiency

Engineering and Results

B Conclusion

22

Engineering

B Relaxing simplifying
assumptions
I Records and classes
i Arrays
I Alias test of initial blocks
I Strong and weak update

I Recursive functions

B Engineering a fast algorithm
I Partitioning of Boolean space

I FastbddMirror operation
Consistent variable ordering
between domain and range space

I FastoddCompos®peration
use single variable for initials and
predicates

I Caching of BDD operation

23

A Context-Sensitive Flow-Insensitive Validation

1 Algorithm
I Bottom-up evaluation of procedures
I UsespaUpdateStattor store instruction
I UsespaApplhyfor call instruction

I Needs to iterate until fixed-point is reached

I Omissions
I Field independent
I No location set
I Hardwired libraries

I Ignore setimp/longjmp

24

Experimental Results

B Standard benchmark

from McGill and Landi

B While LOC is not

large, invocation grapl

can be very large

B All finished in secondg

Name Source LOC #procs density Run Time (s)
01.gbsort McGill 325 8 24.1% 0.10
06.matx McGill 350 7 13.5% 0.13
15.trie McGill 358 13 23.4% 0.21
04.bisect McGill 463 9 9.7% 0.10
17.bintr McGill 496 17 8.8% 0.13
05.eks McGill 1202 30 4.0% 0.20
\ 08.main McGill 1206 41 20.9% 1.33
09.vor McGill 1406 52 28.6% 5.54
allroots Landi 227 7 1.3% 3.02
football Landi 2354 58 1.8% 2.38
compiler Landi 2360 40 5.1% 5.3
assembler Landi 3446 52 16.6% 10.63
simulator Landi 4639 111 6.3% 4.03

25

Conclusion

1 Pointer analysis is a crucial problem for C-based
synthesis

Contribution
I Boolean algebra as new Formalism for pointer analysis
I Efficient algorithms for fundamental symbolic pointer evaluation
1 Validation of new concept

B Future work

I A scientific, comparative study of algorithm efficiency and
scalability

I Towards better precision
I Towards faster speed

I Towards application
26

