A Gentle Introduction to
High Level Synthesis

Jianwen Zhu

Electrical and Computer Engineering
University of Toronto

jzhu@eecg.toronto.edu
http://www.eecg.toronto.edu/"jzhu

[
Copyright© Jianwen Zhu, 2000, ECE, Univ. of Toront _;,

Outline

B Overview
B Scheduling
B Resource Sharing

§ Summary

[
Copyright© Jianwen Zhu, 2000, ECE, Univ. of Toront ‘;"

Y-chart

- Structural
Behevora
Cocuryént Architecture level CPUs, cores
progfam

oA
SS%LQ?“ cotroller/datapath

Logic level

FSM and
Bool. funcfio SEics
i NCircuit level
Z'gféﬁgtr']a transitors

leaf cell

standard cell
arrays

macros

floorplan and
assembly

 }
Geometric
Domain

L]
Copyright© Jianwen Zhu, 2000, ECE, Univ. of Toront _;,

High-level Synthesis

B Whatis Synthesis B What is High-level Synthesis
I Given a functional model of a I Given an algorithm model of a
design design
I Find a structural model of a I Find a micro-architecture
design I Controller: sequential random
I Such that some figure of merit is logic, ROM
optimized I Datapath: adder, ALU, mux,
! Speed register, register file
I Area
1 Power I Such that speed/area/power is
I Noise optimized
I Subject to some constraints I Subject to some constraints

L
Copyright© Jianwen Zhu, 2000, ECE, Univ. of Toront ,;,

High-level Function Model

I Can be captured by an imperative ¥ Can be transformed into
program control-dataflow graph (CDFG)

by synthesis front-end

I C/C++, Java, ...
I Ease for machine manipulation

1 Behavioral VHDL/Verilog I Control flow: statement

§ Untimed state machine I Data flow: expression

[
Copyright© Jianwen Zhu, 2000, ECE, Univ. of Toront _;,

Example of Dataflow Graph

while(x ja) {
X1 =x + dx;
ul=u-(3*x+u*dx)
- (3*y *dx);
yl=y+u*dx;
X = X1,
u=ul,
y =yl
}

O© 00 ~NO Ol WN P

e =
P O

[
Copyright© Jianwen Zhu, 2000, ECE, Univ. of Toront _;,

Micro-architecture

B Controller is responsible faorhenandwhatregister transfer
operations (assignments) to perform

B Datapath is responsible foowto perform the register transfer
operations

Control Datapath
inputs inputs

¢ Control ¢

, signals

_
COSrt]ri,? | Status Datapath
signals

Control Datapath
outputs outputs

L]
Copyright© Jianwen Zhu, 2000, ECE, Univ. of Toront _;,

Micro-architecture: Controller

B Controller is a sequential network

B Can be implemented using logic synthesis and layout tool

Control
inputs
__________________________ | e e e e e e e mmmmoo- -
: ¥ Y : :
! .‘"": :C_ontrol: :
p— 'ID Q : :S|gnals, |
1
| | . R < |
. , ! CIIIIE '
™ P B < :
I : I -1 - == I
1 . 1 1 1 1
| : 1. 1 1 !
il "D Qi R :
1 : 1 1 1 1
1 1 1 1 1
| Next— : l I | |
! state 'State | IOunout : I !
I 0gic registen ogic | | I
I === i 1 Status I
: A T | signals ;
1 1 1 1
. 1
 Controlunit . - L e e e oo :
Control
outputs

L]
Copyright© Jianwen Zhu, 2000, ECE, Univ. of Toront _;,

Micro-architecture: Datapath

B Datapath is a network of sequential and combinational components:

I Registers, register files
I Adders, Subtracters, ...

I Steering components: buses, selectors, ...

Control Datapath
| inputs mputs_l
1 1
1 Control!
| signals | Selecto
-g--- :': Regist Mem :
oo B Re I
I i 1
e v v _Bust
e \v4 AV Bus 2:
1
1
\/ \ !
Al / N\ T/
é 47 Bus 35
1

T : Status :

| signals,
| |
3 Datapath |

Datapath
outputs

L]
Copyright© Jianwen Zhu, 2000, ECE, Univ. of Toront _;, 9

Quality Metrics/Constraints

B Latency: the time it

Av4 Av4 Bus 2:

takes to process thedata | - o
E Y [L :Control:
—— :I_QH Esignalsi
B Throughput: the rate to :| | u | Rews [[er]
process the data 11— s v]| U euwi

logic 'registen| | || logic

307

DM [T -
l CyC|e tlme i {st?t(e_ I State E Output i E

----- : Status |
V2
X S|gnals:
1 1

B Area | Controlunt ... ‘I

Control
outputs

B Power

L
Copyright© Jianwen Zhu, 2000, ECE, Univ. of Toront #

Datapath
outputs

~——]
O

]

2

)

©

]

2
=y

10

Outline

B Overview
B Scheduling
B Resource Sharing

§ Summary

Lo
Copyright© Jianwen Zhu, 2000, ECE, Univ. of Toront #

11

Scheduling

B Have to decidevheneach operation is performed
untimed state machine timed state machine

flow graph— ASM chart
B Pretty much like the determine the class schedule

I Dependency constraint: ECE241 is a prerequisite of ECE451

I Resource constraint: Do not have enough #rooms to hold all classes
simultaneously

B Here

I Dependency constraint: A depends on the result of B

I Resource constraint: there are at most 3 adders

Lo
Copyright© Jianwen Zhu, 2000, ECE, Univ. of Toront #

12

Unconstrained Scheduling: List Scheduling

B As Soon As Possible (ASAP) B As Late As Possible (ALAP)
schedule schedule

Lo
Copyright© Jianwen Zhu, 2000, ECE, Univ. of Toront #

13

List Scheduling Example

B Keep alist a ready operations

whose predecessors are all scheduled
B Schedule an operation from the ready list
I Has no resource conflict
I Has higher priority
B Heuristics to determine the priority

1 Mobility
1 Out degree

I Distance to the sink

Lo
Copyright© Jianwen Zhu, 2000, ECE, Univ. of Toront ;1

14

Resource-constrained Scheduling: List Scheduling

ST T R e

ASAP Schedule Operator Mobility ALAP Schedule

Node: vl v2 v3 v4 v5 v6 v7 v8 v9 vi0vil

Mobility(op) = ASAP - ALAP Operation: * * * * * * — — 4+ 4+ <
Mobility: 0 0 1 2 0 1 0 0 2 2 2

S
1
Resources, : 2 - - -
Resources, : 1 s,
Resources_: 1 o
Resources : 1 s
3
S,
DFG with mobilities Resource Constraints Scheduled DFG

5
Copyright© Jianwen Zhu, 2000, ECE, Univ. of Toront ,;1 15

Outline

B Overview
B Scheduling
B Resource Sharing

§ Summary

Lo
Copyright© Jianwen Zhu, 2000, ECE, Univ. of Toront #

16

Square Root Approximation (SRA) Example

B ComputeO = +v/a2 + b?

B Approximation:

O = max(0.875«<+ 0.5y),x) where
x=max(|al,|bl),y = min(|al, |b[)

B A scheduled design

B ASM chart

(a) Block diagram

Lo
Copyright© Jianwen Zhu, 2000, ECE, Univ. of Toront ;1

t; =lal
ts=|b|

S

y=min(t,b)
|

$

t;=x>>3
t4: y >>1

s, |

t=x—t,

s |

tg=ty+§

> |

t; = max(g , x)

> |

Done =1

Out=t;

L 1

(b) ASM Chart of
square—root approximation

17

A Straight-forward Approach

B Map each variable to a distinct register

B Map each operations to a distinct combinational component

a b ta to X y ts ty ts te t;

read network

Llal [[fbl | [min|[max|[+ [[- [[>1 |[>3 |

L
Copyright© Jianwen Zhu, 2000, ECE, Univ. of Toront #

Solving Resource Sharing Problem

B Resources (registers, functional units) can be shared
B Cast resource sharing problem into a graph problem

I Graph nodes: subject objects to be shared

I Graph edges: sharing relation

I Dual problem:
I Coloring of conflict graph

1 Clique-partitioning of compatibility graph

Lo
Copyright© Jianwen Zhu, 2000, ECE, Univ. of Toront #

19

Resource Sharing Algorithm

B Graph coloring
I Color one node at atime
I Select the color different from its
neighbors
B Graph partitioning

I Select two compatible nodes at a
time

I Merge them into a supernode

I Update edges accordingly o

Lo
Copyright© Jianwen Zhu, 2000, ECE, Univ. of Toront #

20

Register Sharing

B Two variables can share the same register if and only if they have
non-overlapping life time

B Lifetime = [first time write, last time read]

B Casting register sharing into Graph partitioning problem

I Each vertex represents a variable

I There is adashed edgbetween two vertices if the corresponding
vertices have overlapping life time

I There is asolid edgebetween two vertices if the corresponding vertices
have non-overlapping life time

I The solid edge is annotated with #common src/#common dest

Lo
Copyright© Jianwen Zhu, 2000, ECE, Univ. of Toront ;1

21

Variable Compatibility Graph

S0S1S28%3 S S % § SOl ‘
X a=Inl
o b=In2
t, X
2 X 0
X X X S
y X
t X 1
ts X !
tS t1:|a|
te X t2 = [b|
t; X S, |
x=max(,b)
y=min(a, b)
s |
t;=x>>3
ty=y>>1
s, |
ts= X - t,
s |
tg=t,+%
s |
(@) Initial compatibility graph t; =max(, x)
s
Done=1
Out =ty
L

L
Copyright© Jianwen Zhu, 2000, ECE, Univ. of Toront #

Register Sharing by Graph Partitioning

(a) Initial compatibility graph (b) Compatibility graph after merging,,t, and

(d) Compatibility graph after mergingt, ang

............................

(e) Final compatibility graph

L
Copyright© Jianwen Zhu, 2000, ECE, Univ. of Toront #

SRA Implementation after Register Sharing

VX b]
Y88 4]

A 00
W N
o
Gt

(a) Register assignments

............ e

! 1
! 1
! 1
! 1
: Selector | |
! 1
| R | [[R] :
| :
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! Ll b | (Lmin | [max]|[+ |[- [[>>1[[>3][|]|
1

I .
:§7 !
! 1
! 1
U |

(b) Datapath

Lo
Copyright© Jianwen Zhu, 2000, ECE, Univ. of Toront #

Functional Unit Sharing

B Two Operations can share the same functional unit if they are
non-concurrent and has “similar” functionality

B Sharing priority: #common source, #common destinations

sy [a][c][b][d]
Xx=a+b la| [bl[lc] [d]
. | Selector| [Selector]|
; n -
S ¥ =
y=c-d [x] [y]
i
(a) Partial ASM Chart (b) Non-shared design (c) Shared design

L
Copyright© Jianwen Zhu, 2000, ECE, Univ. of Toront #

25

More Components in the Library

a b
¢ —> I
C, Gy | Operation
Sign bitl | Sign bit @der
0 1| absolute —]
1 0| minimum L 1 5
Selectot 1 1| maximum c, N >— Selector
[F
c 1 0 1 0
o ——) > Selectof Co Selecto

|

(a) Unit for computing minimum,
maximum and absolute value

a b
. D——h1 [
L
c, | O U
i) C, Gy | Operation
| — sign bit
1 0| addition {
0 1| absolute 1 0
1 1| subtraction Selector]
0 —
cp— Selector] c,) i ! 0
| Co Selector]
c, — |

(c) Unit for computing addition,
subtraction, and absolute value

Copyright© Jianwen Zhu, 2000, ECE, Univ. of

E]
Toront .;,

C, G | Operation

0 O addition
0 1| minimum
1 0] subtraction
1 1| maximum

(b) Unit for computing addition,
subtraction, minimum and maximum

C, C; G | Operation

addition
absolute
subtraction
minimum
maximum

RPRRRO
RrRrOOO
RPOROR

(d) Unit for computing addition, subtraction,
minimum, maximum and absolute value

26

(a) Compatibility graph

x=max(,b)
y=min(t, &)

(c) Merging alternative

ASM Chart - 'g"

Functional Unit Sharing by Graph Partitioning

Component
Unit Q,';E 'E)‘g?? EﬁéégR Adder Selector
[al 1 1 1
Ib] 1 1|
min 1 1 1
max 1 1 1
+ 1
- 1 1
Total 5 6 4
(b) Cost table
Component
Unit Q’;E I{L\éei(r;t EﬁéégR Adder Selector
[lal/min] 1 1 1 2
[Ibl/max/+/-] 1 1 1 2
Total 2 1 1 2 2
(d) Cost table
Component
U\ fogle Iogic g Adder Selector
[lal/min/+] 1 1 1 2
[Ib]/max/-] 1 1 1 2
Total 2 1 1 2 2

Lo
Copyright© Jianwen Zhu, 2000, ECE, Univ. of Toront #

27

SRA Implementation after Functional Unit Sharing

——————————— [ROy UG DGR UGG UG UG U U U U
I 1
% 6 | | |
a=Inl ! 1
b=In2 ' Selector] | |
1 1
0 E Ri | Ry | !
1 I
@ : | :
s | :
T, =al | I
tz = |b] ! !
s, | : IS_e"ecﬂI >>1 |_>>3 1
1
X =max(y ,) ! [abs/min] [abs/max/+/-] :
y = m|r|1(t1 k) ' |
S \ S SR !
ty=x>>3 B ittt ety !
t=y>>1 (a) Datapath schematic for unit allocation from Figure 8.22(c)
s, |
ts=x—t, FTTTTTT T 2
1 1
s | : ' :
I
tg=t, +t : Selector | E
$ | : R, R] |
1 I
t; = max(y , X) : | |
S, | : :
I 1
Done =1 ! !
- 1 1
out I_ i ! Selector] ’_>ll_‘ [>>3 !
1 1
| [abs/min/+] [abs/max/-] |
ASM Chart 1 1
1 I
1 1

(b) Datapath schematic for unit allocation from Figure 8.22(e)

[]
Copyright© Jianwen Zhu, 2000, ECE, Univ. of Toront ‘;’

Bus Sharing

B Wires can be expensive

B Different interconnections can be shared if they are not used at the
same cycle

B Pitfall: may end up longer wires

L
Copyright© Jianwen Zhu, 2000, ECE, Univ. of Toront # 29

Bus Sharing by Graph Partitioning

Inl

Al B C DSeIe(I:Etor F |:>611| |:>3 532% z % IC:: g H]
[abs/max] [abs/min/+/-] K |:‘;|
. - Bus3 = [I, K, M]
i Bus4 =[J, L, N]
out (a) Datapath for SRA (e) Bus assignment

S| S| S| S| S| 8] 8] 8
A X
B X X
C X |1 X X
D X X
E X
F X | X X | X
G X
H X
I X | X X
J X1 X X | X
K X
L X
M] X
N | X

(b) Connectivity usage table

O

(c) Compatibility graph (d) Compatibility graph
for input buses for output buses

L
Copyright© Jianwen Zhu, 2000, ECE, Univ. of Toront # 30

SRA Implementation after Bus Sharing

In1 In2
v M N
] [
[Selector] [Selector]
LR | LR | [[R_]
|
1 H !
! bL_ElF G i Busl=[A, C,D,E,H]
1A B C Selector] 1 I A et Bl
: - »>1][>3]) Bus2=[B,F, G
! [abs/max] [abs/min/+/-] K Lo
1 ! —
T [S L — T, ! Bus3 =[I, K, M]
N v Bus4=[J,L,N]
Out .
Datapath for SRA Bus assignment
In1 In2
--
[I
LR | [R |
BU% V
Bus \V4

[abs/min] [abs/max/+/-]

(f) Bus oriented datapath

Lo
Copyright© Jianwen Zhu, 2000, ECE, Univ. of Toront #

Summary

B High-level synthesis maps an imperative program into a
micro-architecture, which can be further synthesized by lower-level
tools

B Scheduling determines the control step at which each operation is
performed

B Binding determines how variables, operations, data transfered are
mapped into shared registers, functional units and buses.

L
Copyright© Jianwen Zhu, 2000, ECE, Univ. of Toront # 32

