
SimpMask
Programmer’s Manual

— Version 1.0 —

A Simple API for Silicon Compilation
Tech Report TR-02-01-03

January, 2002

Jianwen Zhu
Electrical and Computer Engineering

University of Toronto, ON M5S 3G4, Canada
jzhu@eecg.toronto.edu

SimpMask Programmer’s Manual

Contents

1 Introduction . 3
1.1 Technology Information Query .4
1.2 Plain Mask Generation .5
1.3 Dealing with Hierarchy .5
1.4 Geometric Manipulation .6
1.5 Slicing-tree Based Tiling .6
1.6 Channel Connected Component .7
1.7 Gridless Routing .7
1.8 A Simple Example .8
1.9 An SRAM Show Case .10

2 SimpMask API — simpmask.h . 12
2.1 SimpMask —SimpMask Name Space. 12

2.2 SimpSlice —A helper class for tiling. 27

Class Graph .31

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling
Malte Zöckler

2

1 Introduction

1

Introduction

Names

1.1 Technology Information Query . 4

1.2 Plain Mask Generation . 5

1.3 Dealing with Hierarchy . 5

1.4 Geometric Manipulation . 6

1.5 Slicing-tree Based Tiling . 6

1.6 Channel Connected Component. 7

1.7 Gridless Routing . 7

1.8 A Simple Example . 8

1.9 An SRAM Show Case . 10

Layouts of integrated circuits are usually created using two approaches: custom
design using a layout editor, or automated design using placer and router.

The full-custom approach makes the best use of human expertise. While expe-
rienced designer can create area and speed efficent custom layout, this approach is
extremely laborious. Furthermore, custom layouts are not portable to processes with
different design rules. It requires major effort to migrate a legacy layout design to new
technology even with automation tools. Another disadvantage of this approach is that
the layout created using this approach is not parameterizable. Whenever a similar de-
sign with slightly different parameter, for example, bit width of an adder, new layout
needs to be created even though one can use the same layout architecture, design style,
and leaf cells.

The fully-automated approach treats every design as a random network of cells.
A “brute-forced” approach is used to find the ”optimal” layout. This approach has
become dominant for ASIC design due to its “simplicity” as compared to the full-
custom approach. However, as the placers and routers make little effort in preserving
the structure inherent in the design, the created layout is often unpredictable, leading
to unpredictable, uncontrollable performance.

A large class of VLSI circuits have well-defined, regular layout structures which
render the automated placers and routers unsuitable. Such circuits include ROMs,
PLAs, SRAMs, FIFOs, and datapaths. For these circuits, designer often has an al-
gorithm in mind to combine basic components, usually bytiling , into a large hard
intellectual-property (IP) components. Such algorithms are designed to work with dif-

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling
Malte Zöckler

3

1 Introduction

ferent parameters. Since each hard IP has its own specific algorithm, which is hard to
generalize, it is undesirable to write a tool that can generate them all. A better, ex-
tensible approach is to implement each hard IP in the form of a software component,
which can generate the layout when instantiated, possibly with parameters. This soft-
ware component can either be run locally as a dynamically loadable object module, as
is usually the case; or remotely as a CORBA object, if the IP is out-sourced from an IP
vendor.

The software components, however different they are, need a common set of ser-
vices, for example, the query of technology information, the manipulation of geometric
objects, and the generation of mask material. SimpMask is an API which provides such
service. It is designed in the form of C++ class, which contains a rich set of methods.
Hard IPs can be created by subclassing the SimpMask class and encapsulating its own
layout generation algorithm.

1.1

Technology Information Query

This first set of methods provided by SimpMask is for technology information
query.

The layout of a circuit can be considered as a hierarchical set of polygons, called
the masks. Masks in SimpMask are exclusively rectangles, calledtiles. Each mask
is of a differentmask material type. Such material type is uniquely identified by an
integer, which can be accessed by the methodsspace , poly , well , metal , ndiff ,
pdiff . Each material type is associated with a particularmask layer, called aplane.
Adding some complication to this simple concept, contacts are naturally associated
with two planes since each contact connects two mask material of different planes.
We use two identifiers for each contact type, each of which sits in the same plane
(called the home plane) as one material it connects, and serves as the mirror of the
other identifier. The identifier of a contact can be accessed by the methodcontact ,
with its first argument being the material on its home plane, and the second argument
being the other material.

To ensure the generated layout be portable to different processes, the layout genera-
tion needs to know the design rules in order to make decision on the location and shape
of the masks. The methodminwidth returns the minimum width of a mask material,
and the methodminspace returns the minimum space between two materials (can be
the same).

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling
Malte Zöckler

4

1 Introduction

1.2

Plain Mask Generation

Masks are generated by calling thepaint methods within the pair ofbegin-
Paint andendPaint method calls. To paint each mask, one needs to specify the
material type identifier, as well as a rectangle, detailing the position and the shape of
the mask.

It is often useful to attachlabels to the layout, which can be used to associate
layout masks with high-level circuit or netlist nodes. A label is generated using the
paintLabel method. A label is usually of rectangular shape, and attached to a
particular mask material type. A point or edge shape, which is a degenerated zero
width and/or zero height rectangle, is also allowed. The label nameobox , or the
overlapping box, is reserved by the SimpMask’s tiling service. This region identifies
the box according to which the layout of this cell can be abutted with others to form
larger cells.

1.3

Dealing with Hierarchy

Complex layout cannot be created without hierarchy. The basic unit of hierarchy in
SimpMask is called atype, represented bySimpType . Type is traditionally the basic
encapsulation unit of programming languages. Here we use that as the basic encap-
sulation unit of an IP. An IP type contains many differentfacets, among which is the
layout facet that SimpMask helps to create. One may find it convenient to consider a
type as the concept of cell found in traditional layout systems. However a type in Simp-
Mask can be polymorphic, or can be parameterized. The parameter can be either data
values, such as integer constants or string constants, or other types. The layout gen-
eration algorithm can access the type parameter using the methodsintParameter ,
stringParameter and typeParameter for integer, string or type parameters
respectively.

One can load the layout of a cell by using theloadMask method, which ex-
pects a type name as its argument. For example,loadMask("Inverter")
loads an inverter cell. Types can be defined under different name spaces (pack-
ages) the same way as Java does. For example, one can create the inverter
type usingloadMask("edu.toronto.eecg.Inverter") . If the inverter
type is a polymorphic and takes one integer value as a parameter value to spec-

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling
Malte Zöckler

5

1 Introduction

ify the desired driving strength, one can load the corresponding layout by using
loadMask("edu.toronto.eecg.Inverter[4]") .

One can createinstancesof types (or cells) by using thepaintInst method.
Other than specifying the type and name of the instance, the geometric information
needs to be specified by using a transform object, which defines anaffine transforma-
tion of the instantiated cell layout. The transformation not only captures the position
of the cell, but also allows one to rotate or mirror the instantiated cell in different di-
rections.

1.4

Geometric Manipulation

The creation of both masks and instances needs to use geometric objects such as
rectangles and transforms. SimpMask provides methods to create and manipulate these
objects.

One can create a null rectangle or a rectangle with specified position and dimension
using therect method. The binding box of a particular type (cell) can be obtained
with the bbox method. The overlapping box of a type can be obtained withobox
method. One can also obtain a rectangle by applying a transform on an existing rect-
angle using thetransformRect method.

SimpMask has a set of predefined transforms. The most frequently used is the iden-
tity transform, accessed by theidentityTransform method. Other predefined
transformations performs rotation or mirroring:mirrorX , mirrorY , rotate90 ,
rotate90 , rotate270 , ref45 , ref135 . One can obtain a composite transfor-
mation of two transforms by using thetransform . One can translate an existing
transform by a specified amount by using thetranslate method.

1.5

Slicing-tree Based Tiling

A large class of VLSI layout can be created using the so-calledtiling methodology.
Here a layout is created by the composition of a set of carefully crafted components,

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling
Malte Zöckler

6

1 Introduction

called the leaf cells. The leaf cells are planed in such a way that when they are abutted
appropriately, no additional wiring or routing is ever needed. Therefore, a floorplan of
the layout is good enough to complete the entire layout.

SimpMask provides theSimpSlice class to help create such a floorplan based on
the notion ofslicing tree. At each level, a slicing tree partitions the geometric space
it commands by performing acut in a particular direction. In SimpMask, the four
directions are identified asGEONORTHfor up,GEOSOUTHfor down,GEOWESTfor
right, andGEOEASTfor left.

Each SimpSlice object represents a slicing tree node, and the key service it provides
is theexpand method. A SimpSlice object claims a zero-sized rectangular geometric
space from its parent at the current position when it is initially created. The geometric
space can then be expanded according to a supplied rectangle and a transform. The
rectangle is usually the binding box or the overlapping box of a cell instance. It returns
a composite transform that can be used to instantiate the cell at the desired location.
Alternatively, the rectangle can be the geometric space claimed by a child slicing tree
node, therefore, the expansion can be carried out hierarchically. For a particular tree
node, the expansion can be performed only at the direction specified when the node is
created.

This hierarchical procedural expansion process has to be performed in a bottom-up
fashion along the tree. Without explicitly building the tree, it is best implemented with
a stack. SimpSlice goes one more step by eliminating the need of explicitly creating
a stack: it directly uses the program calling stack! To make this work, one needs to
embed each SimpSlice object either into a C++ scope (a block statement) or a sepa-
rate method. When the scope is entered, or a method is called, the constructor of the
SimpSlice object is called, which initializes the geometric space it commands into a
zero-sized rectangle at the current available position of its parent. When the algorithm
leaves the scope, or the method is returned, the destructor of the object will be called,
which expands its parent with the geometric space it commands.

1.6

Channel Connected Component

Under construction, stay tuned.

1.7

Gridless Routing

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling
Malte Zöckler

7

1 Introduction

Under construction, stay tuned.

1.8

A Simple Example

This example shows how SimpMask can be used to create layout facets.

For each cell, one needs to create a separate C++ file. Thesimpmask.h header
file must be included in the beginning.

Each cell corresponds to a C++ class derived from the SimpMask class, or its de-
rived classes. The cellLeaf is created as follows. The layout generation algorithm is
implemented in thego method. The algorithm uses SimpMask’s plain mask generation
service to create the layout. The generated layout is shown as follows.

class Leaf : public SimpMask {
public:

Leaf(IWorld iwld, IType ti) : SimpMask(iwld, ti) {}

Jerror go(void) {
begin();

// paint masks
beginPaint();
paint(metal(1), rect(2, 0, 4, 2));
paint(metal(1), rect(2, 8, 4, 2));

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling
Malte Zöckler

8

1 Introduction

paint(ndiff(), rect(0, 4, 8, 2));
endPaint();

// paint labels
paintLabel(ndiff(), rect(0, 4, 0, 2), GEO_WEST, "left");
paintLabel(ndiff(), rect(8, 4, 0, 2), GEO_WEST, "right");
paintLabel(space(), rect(2, 0, 4, 10), GEO_WEST, "obox");

end();
return 0;
}

};

TheComposite cell consists of a two dimensional tiling ofLeaf instances. To
create the layout, the layout generation algorithm first obtain theLeaf type by using
the parseType method ofSimpType . It then obtains its the binding/overlapping
box. It then using theSimpSlice class to help find the instantiation transform of
each instance. The top-level tree is responsible for expanding from left to right. And
the leaf-level tree is responsible for expanding from bottom to top.

class Composite : public SimpMask {
public:

Composite(IWorld iwld, IType ti) : SimpMask(iwld, ti) {}

Jerror go(void) {

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling
Malte Zöckler

9

1 Introduction

SimpType leafType = loadMask("Leaf");
// Rect box = bbox(leafType);

Rect box = obox(leafType);
SimpSlice root(NULL, GEO_EAST); // the roof tree expanding

// from left to right

begin();
for(int i = 0; i < 2; i ++) {

// the child slicing tree expanding up
SimpSlice cur(&root, GEO_NORTH);
char buffer[80];

for(int j = 0; j < 2; j ++) {
sprintf(buffer, "inst_%d_%d", i, j);
if(j & 0x1)

paintInst(leafType, buffer, cur.expand(box));
else

paintInst(leafType, buffer, cur.expand(box, mirrorX()));
}

}
end();
return 0;
}

};

1.9

An SRAM Show Case

As a more ambitious application of SimpMask API, a parameterized static RAM
example is created. One can create its layout by specifying the number of addressable
words, the data width of each word, and the number of columns. The layout is created
by the hierarchical tiling of about 50 leaf cells, which are in turn custom-designed.

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling
Malte Zöckler

10

1 Introduction

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling
Malte Zöckler

11

2 SimpMask API

2

SimpMask API

simpmask.h

Names

2.1 class SimpMask SimpMask Name Space. 12

2.2 class SimpSlice A helper class for tiling 27

Author: Jianwen Zhu
Version: 1.0

2.1

class SimpMask

SimpMask Name Space

Names

2.1.1 SimpType typeParameter(Jint i)
parameter access. 14

2.1.2 Jint intParameter (Jint i)
parameter access. 14

2.1.3 char* stringParameter (Jint i)
parameter access. 15

2.1.4 Jint space() material type identifier query. 15

2.1.5 Jint poly (Jint i) material type identifier query. 15

2.1.6 Jint metal (Jint i) material type identifier query. 16

2.1.7 Jint pwell (void) material type identifier query. 16

2.1.8 Jint nwell (void) material type identifier query. 16

2.1.9 Jint pdiff (void) material type identifier query. 17

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling
Malte Zöckler

12

2 SimpMask API

2.1.10 Jint ndiff (void) material type identifier query. 17

2.1.11 Jint contact (Jint i, Jint j)
material type identifier query. 17

2.1.12 Jint minwidth (Jint i) design rule query 18

2.1.13 Jint minspace(Jint i, Jint j)
design rule query 18

2.1.14 Rect rect (Jint xbot, Jint ybot, Jint width, Jint height)
geometric manipulation. 19

2.1.15 Rect rect (void) geometric manipulation. 19

2.1.16 Transform identity (void) geometric manipulation. 19

2.1.17 Transform mirrorX (void) geometric manipulation. 20

2.1.18 Transform mirrorX (Transform t)
geometric manipulation. 20

2.1.19 Transform mirrorY (void) geometric manipulation. 21

2.1.20 Transform mirrorY (Transform t)
geometric manipulation. 21

2.1.21 Transform rotate90(void) geometric manipulation. 21

2.1.22 Transform rotate90(Transform t)
geometric manipulation. 22

2.1.23 Transform rotate180(void) geometric manipulation. 22

2.1.24 Transform rotate180(Transform t)
geometric manipulation. 22

2.1.25 Transform rotate270(void) geometric manipulation. 23

2.1.26 Transform rotate270(Transform t)
geometric manipulation. 23

2.1.27 Transform translate (Transform from, Jint x, Jint y)
geometric manipulation. 24

2.1.28 Transform transform (Transform t1, Transform t2)
geometric manipulation. 24

2.1.29 Rect transformRect (Transform t, Rect r)
geometric manipulation. 24

2.1.30 void beginPaint (void) mask painting 25

2.1.31 void paint (Jint tt, Rect rect)
mask painting 25

2.1.32 void endPaint (void) mask painting 25

2.1.33 void paintLabel (Jint tt, Rect rect, Jint align, char* text)

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling
Malte Zöckler

13

2 SimpMask API

mask painting 26

2.1.34 void paintInst (SimpType type, char* name, Transform pos)
mask painting 26

2.1.35 Rect bbox (SimpType type)
cell information query 27

2.1.36 Rect obox (SimpType type)
cell information query 27

2.1.1

SimpType typeParameter(Jint i)

parameter access

This method obtains the ith parameter. The parameter has to be a type.

Return Value: a SimpType object
Parameters: i — the parameter number

2.1.2

Jint intParameter (Jint i)

parameter access

This method obtains the ith parameter. The parameter has to be an integer.

Return Value: the integer value of the parameter
Parameters: i — the parameter number

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling
Malte Zöckler

14

2 SimpMask API

2.1.3

char* stringParameter (Jint i)

parameter access

This method obtains the ith parameter. The parameter has to be a string.

Return Value: the string value of the parameter
Parameters: i — the parameter number

2.1.4

Jint space()

material type identifier query

This method obtains a special material type called space, which stands for empty
material.

Return Value: the identifier
Parameters: none —

2.1.5

Jint poly (Jint i)

material type identifier query

This method obtains the identifier for polysilicon.

Return Value: the identifier
Parameters: i — the ith layer of the poly

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling
Malte Zöckler

15

2 SimpMask API

2.1.6

Jint metal (Jint i)

material type identifier query

This method obtains the identifier for metal.

Return Value: the identifier
Parameters: i — the ith layer of the metal

2.1.7

Jint pwell (void)

material type identifier query

This method obtains the identifier for P type well.

Return Value: the identifier
Parameters: none —

2.1.8

Jint nwell (void)

material type identifier query

This method obtains the identifier for N type well.

Return Value: the identifier
Parameters: none —

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling
Malte Zöckler

16

2 SimpMask API

2.1.9

Jint pdiff (void)

material type identifier query

This method obtains the identifier for P type diffusion.

Return Value: the identifier
Parameters: none —

2.1.10

Jint ndiff (void)

material type identifier query

This method obtains the identifier for N type diffusion.

Return Value: the identifier
Parameters: none —

2.1.11

Jint contact (Jint i, Jint j)

material type identifier query

This method obtains the identifier for contact or via.

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling
Malte Zöckler

17

2 SimpMask API

Return Value: the identifier
Parameters: i — the first material (in the home plane of the contact) the

contact connects
j — the second material (in the home plane of the contact)
the contact connects

2.1.12

Jint minwidth (Jint i)

design rule query

This method obtains the minimum width of a material type.

Return Value: the width value in units ofλ
Parameters: i — the material type

2.1.13

Jint minspace(Jint i, Jint j)

design rule query

This method obtains the minimum space between two material types.

Return Value: the space value in units ofλ
Parameters: i — the first material type

j — the second material type

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling
Malte Zöckler

18

2 SimpMask API

2.1.14

Rect rect (Jint xbot, Jint ybot, Jint width, Jint height)

geometric manipulation

This method creates a rectangle with specified position and dimension.

Return Value: the created rectangle
Parameters: xbot — the x coordinate of the lower left corner

ybot — the y coordinate of the lower left corner
width — the width of the rectangle
height — the height of the rectangle

2.1.15

Rect rect (void)

geometric manipulation

This method creates a null rectangle.

Return Value: the created rectangle
Parameters: none —

2.1.16

Transform identity (void)

geometric manipulation

This method creates an identity affine transform.

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling
Malte Zöckler

19

2 SimpMask API

Return Value: the created transform
Parameters: none —

2.1.17

Transform mirrorX (void)

geometric manipulation

This method creates an mirror affine transform in the horizontal direction.

Return Value: the created transform
Parameters: none —

2.1.18

Transform mirrorX (Transform t)

geometric manipulation

This method creates a composite transform by applying the horizontal mirror trans-
form on a transform.

Return Value: the created transform
Parameters: t — the transform to be mirrored

2.1.19

Transform mirrorY (void)

geometric manipulation

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling
Malte Zöckler

20

2 SimpMask API

This method creates an vertical mirror affine transform.

Return Value: the created transform
Parameters: none —

2.1.20

Transform mirrorY (Transform t)

geometric manipulation

This method creates a composite transform by applying the vertical mirror trans-
form on a transform.

Return Value: the created transform
Parameters: t — the transform to be mirrored

2.1.21

Transform rotate90 (void)

geometric manipulation

This method creates a 90 degree rotation transform.

Return Value: the created transform
Parameters: none —

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling
Malte Zöckler

21

2 SimpMask API

2.1.22

Transform rotate90 (Transform t)

geometric manipulation

This method creates a composite transform by applying the 90-degree rotation
transform on a transform.

Return Value: the created transform
Parameters: t — the transform to be mirrored

2.1.23

Transform rotate180(void)

geometric manipulation

This method creates a 180 degree rotation transform.

Return Value: the created transform
Parameters: none —

2.1.24

Transform rotate180(Transform t)

geometric manipulation

This method creates a composite transform by applying the 180-degree rotation
transform on a transform.

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling
Malte Zöckler

22

2 SimpMask API

Return Value: the created transform
Parameters: t — the transform to be mirrored

2.1.25

Transform rotate270(void)

geometric manipulation

This method creates a 270 degree rotation transform.

Return Value: the created transform
Parameters: none —

2.1.26

Transform rotate270(Transform t)

geometric manipulation

This method creates a composite transform by applying the 270-degree rotation
transform on a transform.

Return Value: the created transform
Parameters: t — the transform to be mirrored

2.1.27

Transform translate (Transform from, Jint x, Jint y)

geometric manipulation

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling
Malte Zöckler

23

2 SimpMask API

This method creates a composite transform by translating a transform by a specified
amount.

Return Value: the created transform
Parameters: from — the transform to be translated

x — the horizontal amount to translate
y — the vertical amount to translate

2.1.28

Transform transform (Transform t1, Transform t2)

geometric manipulation

This method creates a composite transform by applying transform t1 to transform
t2.

Return Value: the created transform
Parameters: t1 — the transform to apply

t2 — the transform to be applied

2.1.29

Rect transformRect (Transform t, Rect r)

geometric manipulation

This method transforms a rectangle r using the affine transform t. transform t1 to
transform t2.

Return Value: the created transform
Parameters: t — the transform to apply

r — the rectangle ti be transformed

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling
Malte Zöckler

24

2 SimpMask API

2.1.30

void beginPaint (void)

mask painting

This method starts a painting session.

Return Value: none
Parameters: none —

2.1.31

void paint (Jint tt, Rect rect)

mask painting

This method paints a material of type tt at the given rectangular box rect.

Return Value: none
Parameters: tt — the material to be painted

rect — the geometric shape to be painted

2.1.32

void endPaint (void)

mask painting

This method ends a painting session.

Return Value: none
Parameters: none —

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling
Malte Zöckler

25

2 SimpMask API

2.1.33

void paintLabel (Jint tt, Rect rect, Jint align, char* text)

mask painting

This method paints a label attached to material type tt at the given rectangular box
rect.

Return Value: none
Parameters: tt — the material the label is to be attached

rect — the shape of the label
align — how the label is aligned with rect, can be one of
GEO WEST, GEOEAST, GEONORTH, GEOSOUTH, or
GEO CENTER
text — the label text

2.1.34

void paintInst (SimpType type, char* name, Transform pos)

mask painting

This method paints an instance of a particular type and particular name.

Return Value: none
Parameters: type — the type of the instance

name — the name of the instance. The name can be NULL,
in which SimpMask will automatically assign a name
pos — the transform to apply on the instance

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling
Malte Zöckler

26

2 SimpMask API

2.1.35

Rect bbox (SimpType type)

cell information query

This method obtains the binding box of a cell type.

Return Value: a rectangle defining the box.
Parameters: type — the type of the instance

2.1.36

Rect obox (SimpType type)

cell information query

This method obtains the overlapping box of a cell type.

Return Value: a rectangle defining the box.
Parameters: type — the type of the instance

2.2

class SimpSlice

A helper class for tiling

Names

2.2.1 SimpSlice(SimpSlice* parent, Jint direction)
SimpSlice constructor. 28

2.2.2 SimpSlice(SimpSlice* parent)

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling
Malte Zöckler

27

2 SimpMask API

SimpSlice constructor. 28

2.2.3 ˜ SimpSlice(void) SimpSlice destructor. 29

2.2.4 Transform expand(Rect bbox, Transform xform)
SimpSlice expansion. 29

2.2.5 Transform expand(Rect rect)SimpSlice expansion. 29

2.2.1

SimpSlice(SimpSlice* parent, Jint direction)

SimpSlice constructor

This constructor constructs a slicing tree node with specified direction and the iden-
tity transform.

Return Value: none
Parameters: parent — the parent of the tree node. can be NULL if root

of the tree.
direction — the direction for expansion. can be one of
GEO WEST, GEOEAST, GEONORTH or GEOSOUTH.

2.2.2

SimpSlice(SimpSlice* parent)

SimpSlice constructor

This constructor constructs a slicing tree node with specified the GEONORTH
direction and the identity transform.

Return Value: none
Parameters: parent — the parent of the tree node. can be NULL if root

of the tree.

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling
Malte Zöckler

28

2 SimpMask API

2.2.3

˜ SimpSlice(void)

SimpSlice destructor

The destructor expands the slicing tree node into its parent.

Return Value: none
Parameters: none —

2.2.4

Transform expand(Rect bbox, Transform xform)

SimpSlice expansion

This method expands the geometric region of a slicing tree node with the rectangle
bbox, which needs to be first transformed by the transform xform.

Return Value: the net transform to position the rectangle
Parameters: bbox — the rectangle

xform — the transform

2.2.5

Transform expand(Rect rect)

SimpSlice expansion

This method expands the geometric region of a slicing tree node with the rectangle
bbox.

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling
Malte Zöckler

29

2 SimpMask API

Return Value: the net transform to position the rectangle
Parameters: bbox — the rectangle

xform — the transform

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling
Malte Zöckler

30

Class Graph

Class Graph

This page has been automatically generated with DOC++

DOC++ is c©1995 by Roland Wunderling
Malte Zöckler

31

