
Synthesizable FPGA Fabrics Targetable by the
Verilog-to-Routing (VTR) CAD Flow

Jin Hee Kim and Jason H. Anderson
Dept. of Electrical and Computer Engineering
University of Toronto, Toronto, ON, Canada
Email: {kimjin14,janders}@ece.utoronto.ca

Abstract—We consider implementing FPGAs using a standard
cell design methodology, and present a framework for the
automated generation of synthesizable FPGA fabrics. The open-
source Verilog-to-Routing (VTR) FPGA architecture evaluation
framework [1] is extended to generate synthesizable Verilog for its
in-memory FPGA architectural device model. The Verilog can be
synthesized into standard cells, placed and routed using an ASIC
design flow. A second extension to VTR generates a configuration
bitstream for the FPGA; that is, the bitstream configures the
FPGA to realize a user-provided placed and routed design. The
proposed framework and methodology opens the door to silicon
implementation of a wide range of VTR-modelled FPGA fabrics.
In an experimental study, area and timing-optimized FPGA
implementations in 65nm TSMC standard cells are compared
with a 65nm Altera commercial FPGA.

I. INTRODUCTION

Standard cell design methodologies are prevalent in the
design of modern digital ICs, owing to the high costs associ-
ated with manual layout and increasingly complicated design
rules in deep sub-100nm technologies. Entire processors [2]
and other digital blocks such as PLLs [3] are nowadays mainly
synthesized from RTL, as opposed to hand designed at a lower
level of abstraction. Field-programmable gate arrays (FPGAs)
are one of the few remaining classes of digital IC incorporating
a considerable amount of custom layout. The core logic and
interconnect tiles in commercial FPGAs are laid out manually,
motivated by intense pressure to optimize area, delay and
power in the underlying circuitry, as such tiles are stamped
out hundreds-to-thousands of times on each die. In this paper,
we consider implementing FPGAs in standard cells and assess
the gap between a synthesized standard cell and a full custom
commercial FPGA implementation.

To realize a standard cell FPGA implementation, we have
developed a synthesizable FPGA fabric generator within the
open-source Verilog-to-Routing (VTR) [1] toolsuite from the
University of Toronto. VTR is capable of modelling and
mapping circuits into a wide variety of different FPGA ar-
chitectures. Our generator produces synthesizable Verilog for
VTR’s in-memory FPGA device model. As such, our generator
is not locked into a single FPGA architecture, but rather, is
able to produce Verilog for a spectrum of different FPGAs, for
example, with different numbers of look-up-tables (LUTs) per
logic block, different numbers of tracks per routing channel,
or even different switch block connectivities. In addition to
producing synthesizable Verilog, we have also extended VTR
to produce a configuration bitstream for a user design imple-
mented within the synthesizable FPGA. While the conventional
approach used by commercial vendors involves adding CAD
support for each new FPGA device; in our case, we have built
“silicon support” for an existing and well established FPGA
architecture/CAD evaluation toolsuite – VTR.

In addition to the advantages associated with synthesis
vs. custom layout, the proposed synthesizable FPGA fabric
generator offers a number of benefits. First, it enables VTR-
modelled FPGAs to be realized in silicon, democratizing
access to FPGA technology. Specifically, our VTR-based ap-
proach circumvents a major impediment to the development
of new FPGAs, namely, the complexity and cost associated
with building CAD tools that can map user circuits into them.
Second, the synthesizable FPGAs can be easily ported to
new process technologies, by re-synthesizing using a new cell
library. Third, the FPGA fabrics we generate are straightfor-
ward to incorporate into an SoC; the FPGA module can be
instantiated within the surrounding circuitry, and the layout
shape/aspect ratio of the FPGA tiles can be tailored according
to the overall SoC floorplan.

We synthesize FPGA fabrics into TSMC 65nm standard
cells. Through constraints supplied to the ASIC design tools
(Synopsys Design Compiler and Cadence Encounter), we
produce area-optimized, timing-optimized and balanced FPGA
fabric implementations. In an experimental study, we supply
VTR with an architecture model closely resembling Altera’s
Stratix III device, and compare the area and delay of the
synthesized standard cell FPGA with Stratix III, which is also
implemented in 65nm. The contributions of this paper are:

1) An FPGA fabric generator, built within VTR, capable
of producing synthesizable Verilog RTL for a variety
of architectures.

2) A configuration bitstream generator for the synthe-
sizable FPGAs.

3) An area/performance comparison between several
synthesized standard cell FPGAs and, to the authors’
knowledge, the first published study comparing a
full-custom commercial FPGA with a synthesized
standard cell FPGA.

The remainder of this paper is organized as follows: Sec-
tion II describes related work and provides background for the
subsequent sections. The VTR-based synthesizable fabric and
bitstream generation is introduced in Section III. Section IV
describes the ASIC flow we used to produce a standard cell
implementation. The experimental study appears in Section V.
Conclusions and future work are offered in Section VI.

II. BACKGROUND AND RELATED WORK

A. Verilog-to-Routing (VTR)

VTR [1] is an open-source FPGA architecture evalua-
tion/CAD framework from the University of Toronto, com-
prising of RTL synthesis, logic synthesis, packing, placement,
routing and timing/power analysis, as shown in Fig. 1. The
inputs to VTR are: 1) a description of an FPGA architecture,
and 2) an application benchmark for implementation in the

!"#$%&'()

*&+,-./)011-,#"2.')

3,+#4,5)

6780)

0+#9,56+&)

:&;#+,12.')

6,-&)

<-"=.+"2.')

>?'59&;,;)@)A)B"1)

7"#$,'/)

7-"#&C&'5)

D.42'/)

A,C,'/)@)0+&")<;2C"2.')

!"#$%&&%

'()%

*+,%

E4"-,5?).F)D&;4-5;)

Fig. 1. Verilog-to-Routing flow.

!"#$%&

'("%)&

!"#$%&

'("%)&

!"#$%&

'("%)&

!"#$%&

'("%)&

!"#$%&

'("%)&

!"#$%&

'("%)&

!"#$%&

'("%)&

!"#$%&

'("%)&

!"#$%&

'("%)&

*+& *+& *+&

*+& *+& *+&

*+
&

*+
&

*+
&

*+
&

*+
&

*+
&

,&

-.!/0&
11&

-.!/0&
11&

-.!/0&
11&

2345&

!"#$%&3("%)&

67$8%9&3("%)&

:";;<%=";&3("%)&

Fig. 2. FPGA architectural components.

FPGA. The architectural description is written in human-
readable XML, and through this, an architect can specify both
the interconnect and logic architecture of the target FPGA.
VTR’s internal CAD algorithms are “generic” in the sense
that specific architectural details are not hard-coded into the
algorithms themselves – the algorithms are designed to do a
reasonably good job implementing the application benchmark
in a range of architectures. Note that prior to the current
work, the VTR flow terminated at the routing stage; it was not
possible to realize a silicon implementation of a VTR-modelled
architecture. Our work extends VTR to produce synthesizable
Verilog for VTR’s in-memory architectural device model, as
well as a bitstream for the application benchmark implemented
in the device.

B. FPGA Architecture

VTR is able to model island-style FPGAs [4], a two
dimensional array of logic blocks with horizontal and vertical
routing channels, surrounded by a ring of I/Os. The key
architectural components necessary to understand this paper
are shown in Fig. 2. Switch blocks allow horizontal and vertical
routing tracks to be programmably connected with one another;
connection blocks allow logic block pins to connect to adjacent
routing tracks. Logic blocks generally contain one or more
look-up-tables (LUTs) and flip-flops (FFs), and an internal
crossbar for making local connections.

With respect to routing, VTR allows one to change the
number of tracks per channel, wire directionality, the wire
segment lengths and relative frequency of wires of a given
length, the connectivity between horizontal and vertical wires,
and the way wires connect to logic block pins. For logic,

VTR permits heterogeneity, where columns of blocks may be
of different types; for example, LUT-based soft logic blocks,
DSP blocks, and memories. Within each of these types, an
architect has a wide range of choices. For example, with soft
logic blocks, one can vary the # of LUTs/block, whether
the LUTs are fracturable [5] vs. non-fracturable, the richness
of the internal local crossbar, the number of FFs, and so
on. VTR also supports the notion of modes, which represent
mutually exclusive ways in which a block may function. For
example, a fracturable LUT may operate in single-output mode
(implementing a single logic function) or dual-output mode
(implementing two logic functions).

C. Related Work

Several recent works bear similarity to our own in that
they propose to synthesize FPGA fabrics targetable by VTR.
Chaudhuri et al. [6] focuses on embedding a reconfigurable
FPGA in a system-on-chip (SoC), and enhance the area and
performance through floorplanning [7]. Liu [8] studies the im-
pact of the FPGA architectural parameters on the synthesized
components of the FPGA. In both of these works, there is little
detail on the issues that arise from using ASIC design tools.
Moreover, none of these works show a suite of benchmark
designs being verified as functional within the synthesized
fabric, nor do they compare the synthesized standard cell
implementation with a commercial FPGA.

In another work, Aken’Ova [9] investigated island-style
FPGAs and improved area and delay gap by using “tactical
cells” [10] and floorplanning [11]. The author thoroughly
describes architecture changes and solutions to overcome ASIC
design flow problems. However, there is little discussion on the
generation of the architecture and bitstream.

Other work has focussed on standard cell implementations
of application-specific FPGA architectures. An early work
by Phillips and Hauck [12] synthesized the reconfigurable-
pipelined datapath (RaPiD) [13] architecture using standard
cells. The authors observe that customizing the architecture
for domain-specific applications, as well as including some
FPGA-specific standard cells into the library improves area
and performance. Kafafi et al. [14] synthesizes a combinational
and directional architecture and reports a large area difference
relative to a custom-layout design. In work by Wilton et
al. [15], the authors synthesize a datapath-oriented FPGA
fabric with a directional routing architecture. Unlike these
past works, which deal with non-standard FPGA architectures,
we focus on architectures that resemble today’s commercial
FPGAs and that are already supported by the VTR framework.

III. ARCHITECTURE AND BITSTREAM GENERATION

VPR [16] is the portion of the VTR flow that performs
packing, placement and routing. From the user-supplied archi-
tectural description, VPR builds an in-memory representation
of the entire FPGA device, including all logic and interconnect.
The packing, placement and routing steps in VPR implement
the application benchmark in the in-memory FPGA device
model. Our synthesizable Verilog generator is built within
VPR and executes at the end of the routing step. Essentially,
our generator code “walks” the in-memory device model to
produce synthesizable Verilog, and likewise, by examining
the application benchmark’s implementation in the device, we
produce a configuration bitstream for the FPGA. We elaborate
on these steps below.

Fig. 3. MUX inference within a logic block.

A. Generating Synthesizable Verilog

As a first step, we hand-wrote Verilog for two FPGA
primitives: a FF, and a Stratix III-like fracturable LUT (see
Section V). Subsequently, we automatically generate Verilog
for the entire FPGA device, a structural netlist of these
primitives, as well as other primitives which are generated by
our generator code: multiplexers (MUXs) of any size, LUTs
with any number of inputs. The generation must handle the
following: logic blocks, intra-logic block routing, inter-logic
block routing, and configuration cell memory.

Logic Blocks: Logic blocks in VPR are represented in
memory as a tree; the tree root represents the entire logic block,
nodes at intermediate levels of the tree represent levels of
hierarchy in the block, and the leaves represent the primitives
(LUTs and FFs). We generate the Verilog for each logic block
by first traversing to the leaf nodes. We then move up the tree
and, as we visit each node in the hierarchy, its child nodes
are defined and instantiated in the output Verilog. The Verilog
generated for a logic block has the same hierarchy specified
by the architect in the architecture file.

Intra-Logic Block Routing: Routing within a logic block is
stored in memory as a graph, where nodes represent pins (on
primitives or on intermediate levels of hierarchy) and directed
edges represent connections between pins. For a given pin,
if there is more than one incoming edge, a routing MUX
is inferred. The select inputs to the MUX will be driven by
configuration cells (discussed below). Fig. 3 highlights exam-
ples of routing MUX inference within a logic block. Crossbars
with varying degrees of connectivity can be generated, since
VPR only creates edges in its in-memory model for those
connections that exist.

Inter-Logic Block Routing: Routing that connects the logic
blocks is likewise represented in memory as a graph. In this
case, the nodes represent the wire segments and pins. Edges
represent programmable connections between such conductors.
As above, where there exists more than one edge to a node,
MUXs are inferred. These MUXs correspond to the connectiv-
ity within switch blocks and connection blocks (Fig. 2). VPR
does not model the inter-logic block routing hierarchically
– there is no notion of switch block or connection block
within VPR’s in-memory model. Consequently, each MUX is
instantiated in our Verilog without hierarchy.

Configuration Cells: As MUXs that implement pro-
grammable connectivity are being instantiated, configuration
cells that drive their select inputs must also be instantiated and
attached accordingly. We use “fully encoded” MUXs, meaning,
a 4-to-1 MUX will have two configuration bits. Other styles of
MUX (e.g. flattened MUXs that use more configuration cells
and have fewer levels from input-to-output) are left to consider
in future work. We use a FF to implement each configuration
cell. Then, the cells are connected in a chain, like a shift

!"#$%"&'()

*"#+,&)

-./012)

*"#+,&)

-34+,+&562)

7"4+68,)

9+4':+$)

./01)

.5%4+');!<)

=+$#$4"5>)
?&+@56+A")'8&B,:45@8&)'"66#)

C) D8E"6F+>)

;5&E8>)

7"'$84#)

7/;);!<)

5&E)

=+$#$4"5>)

0"&"45$84)

Fig. 4. Synthesizable FPGA verification flow.

register. Similarly, for the LUTs in logic blocks, we instantiate
configuration cells to hold the LUT’s truth table contents.

B. Bitstream Generation

The configuration bitstream is an ordered sequence of
0’s and 1’s that configures the FPGA according to the im-
plementation of the application benchmark. Since the con-
figuration cells are connected together in a chain, the 0/1
values shifted in for the benchmark’s implementation must
align exactly with the ordering of cells in the chain. Thus, to
create the configuration bitstream for a design, our generator
walks the device model in precisely the same order as is
used to generate the synthesizable Verilog. The in-memory
implementation of the benchmark is used to assign 0/1 values
in the bitstream. For example, consider a 4-to-1 interconnect
MUX whose inputs are numbered 0, 1, 2, 3. The path selected
through the MUX will be controlled by two configuration
cells. Assuming that VPR has routed a signal through input
#1, the two configuration cell values in the stream will be
01. Regarding bitstream generation, there were two challenges
worth highlighting discussed below.

Input and Output Equivalence: VPR supports input and
output pin equivalence (essentially “pin swapping”). This
means that as we generate the bitstream, we have to account
for any change in the ordering of the inputs or outputs that may
have occurred during routing. For example, consider a MUX
within the intra-logic block crossbar. At the packing stage,
VPR may have used the ith input to the MUX for a logic
signal; however, the VPR router may end up instead using the
jth input for the signal (e.g. for timing/routability reasons).
During bitstream generation, we account for such changes by
examining the routing paths actually used by nets and do not
rely on the packed (pre-routed) netlist.

Fracturable LUTs: When LUTs are not fracturable, we
may assume that unused inputs are grounded and we configure
the LUT truth table accordingly. However, with fracturable
LUTs, we must account for inputs that are shared between the
LUTs. For example, fracturable LUTs in Altera commercial
devices have 8 inputs, where two inputs are shared between
the two LUTs. When one of the shared inputs is used in the
first LUT, but unused in the second LUT, we can no longer
assume that input to be grounded when we specify the truth
table for the second LUT. The truth table for the second LUT
must be set in such a way that the unused input is a “don’t
care”: the LUT function must be correct regardless of whether
the unused input is a 0 or a 1. This involves replicating the
truth table contents for both possible logic states of the unused
input.

C. Functional Correctness

Fig. 4 shows the verification flow. We developed a test-
bench wherein the original application benchmark RTL is
simulated in ModelSim with random vectors. Within the same

testbench, the FPGA device RTL, configured with the gener-
ated bitstream, is simulated with the same random vectors.
Output values are checked for equality with each vector
applied. Note that this verification flow was used to check
correctness at all stages of the standard cell implementation:
RTL generated by our VPR generator, post-technology map-
ping with Synopsys (discussed below), and post-layout with
Cadence (also discussed below).

D. Supported Architectures

Presently, our tool is able to generate synthesizable Verilog
for FPGAs comprised of LUT/FF-based logic blocks, inter-
connect and I/Os. Support for other types of blocks, such as
DSP or RAM blocks, is left as future work. We support LUTs
that are either fracturable or non-fracturable. In fact, LUT
fracturability is the only form of VTR “modes” supported by
our tool. The modes feature in VTR allows an architect to de-
scribe mutually exclusive functionality for a given block. The
specification of modes does not contain information regarding
how such functionality should be implemented in hardware,
nor is it obvious how it could be inferred automatically by a
tool such as ours.

Aside from these limitations, our tool supports Ver-
ilog/bitstream generation for all VTR-targetable architectures
– made possible by the approach described above, which
walks VTR’s in-memory device model. For example, we
are able to handle: any # of LUTs/logic block, any switch
block/connection block connectivity, wire segments of various
lengths, fully or partially populated crossbars within logic
blocks.

IV. STANDARD CELL ASIC IMPLEMENTATION

We use an ASIC design flow to synthesize, place, route,
and analyze the circuit, as summarized in Fig. 5. We used
Synopsys Design Compiler to synthesize the FPGA to standard
cells. Cadence Encounter is used for placement and routing.
Synopsys PrimeTime is used for timing analysis.

A. Synthesis to Standard Cells

We evaluated several different synthesis strategies: top-
down, “uniquify”, or bottom-up. The top-down method is a
push-button approach where there entire design is synthesized
in “one shot”. However, since it processes the whole design at
once, it is too run-time and memory intensive to be a viable
approach for a large design. In fact, for a 20× 20 FPGA with
300 tracks per channel, Design Compiler could not success-
fully synthesize using the top-down approach. The uniquify
approach allows one to break up the design and compile
each instance separately. This approach worked, however, it is
again run-time intensive, as each instance of the same Verilog
module (e.g. a 6-LUT) is compiled individually. We therefore
chose the bottom-up approach, in which each required Verilog
module is synthesized just once, and the synthesized instances
are stitched together to compose the overall synthesized design.

While the bottom-up method produces a more regular
implementation and brings run-time benefits, its weakness is
that each type of module is synthesized in isolation; i.e. outside
of the context of the other modules it connects to when
instantiated in the overall FPGA. For example, consider that
for a length-16 wire, it may be truncated at the edge of the
FPGA, depending on the location from which it is driven.
Length-16 wires truncated at different points will all exhibit
different load capacitances, and it is undesirable to synthesize
a separate/different driver to be used for each variant of

Fig. 5. ASIC design flow.

truncated length-16 wire. Thus, to handle these issues that arise
from routing MUXs driving various-length wires, we did the
following: 1) we synthesize a single MUX of each size; 2)
we insert a fixed-size buffer1 on the output of each MUX to
create a consistent load on the MUX output; and 3) we insert a
fixed-size buffer every 2 tiles on inter-logic block interconnect
wires, ensuring a roughly uniform load for each buffer.

Design Compiler accepts area and timing constraints,
permitting one to trade-off performance vs. area for a sin-
gle RTL design by changing constraints. In our experimen-
tal study (Section V), we have synthesized area-optimized,
timing-optimized and balanced FPGAs. Optimizing for area is
straightforward: we direct Design Compiler to achieve a target
area of 0. Optimizing for timing is more involved, owing to
the fact that FPGAs contain many combinational loops before
being programmed. Such loops are problematic for timing
analysis, and they must be “broken” prior to timing-constrained
synthesis. The loops exist within both inter- and intra-logic
block routing, and combinations of these. Fig. 6 and Fig. 7
show examples of combinational loops and how we break
such loops (via generated constraints provided to Synopsys). In
essence, after breaking such loops and by using the bottom-up
synthesis approach, we are able to produce a timing-optimized
implementation of each module; however, all possible timing
paths through the overall FPGA (i.e. across modules) are not
optimized globally. Nevertheless, results in the next section
demonstrate significantly improved performance in the timing-
optimized implementations. Note that timing constraints are
only applied to paths through which logic signals may propa-
gate in an application implementation. We do not apply timing
constraints to the configuration cells, or paths to/from such
cells. The content of such cells only changes when the device
is configured; hence, they are not performance critical.

B. Place and Route

Placement and routing proceeds in a flat manner, allowing
optimization across the module boundaries. To help the placer,
we guide our design using floorplanning. By default, we set
floorplanning constraints assuming a chip aspect ratio of 1
(square die) and 85% utilization (as Kuon and Rose dis-
cussed [17]). Note that total cell area is known after synthesis
to standard cells, making it possible to define a die size with
any given utilization ratio.

1The Cadence Encounter router also has capabilities for automatic buffer
insertion (command optDesign), however, because of the size of the design
being placed and routed, the router-based buffer insertion repeatedly crashed
on our server. We therefore opted to insert buffers during synthesis.

Fig. 6. Combinational loop in inter-logic block routing.

Fig. 7. Combinational loop in logic block.

We found that floorplanning was mandatory to ensure that
the physical layout of logic and routing tiles, in terms of
ordering in the horizontal and vertical dimensions, matched
with that assumed by VPR. Without this, Encounter produced
layouts where, for example, logic blocks that VPR saw as
adjacent, were actually placed far apart in the layout. Fig. 8
is an example of how configuration cells will drift towards
each other due to their connectivity and how two logic blocks
that are intended to be adjacent to one another can get
separated. For floorplanning the individual modules, we evenly
divide up the chip and constrain our logic blocks and the
connection MUXs connected to these logic blocks in the
appropriate areas. On top of this grid, we overlay another
grid to floorplan the switch MUXs in the appropriate areas.
The Cadence placer allows one to control the rigidity of the
floorplanning constraints, specifically, whether cells are allow
to enter/exit each floorplanning region. We set this to the most
flexible scheme possible, where the floorplanning constraints
are used as a guide to the placer, but cells may exit/enter the
specified regions. All of the floorplanning TCL commands are
automatically generated at the same time Verilog description
of the FPGA is generated.

Once the designs have been placed and routed, parasitic
capacitances are extracted for use by PrimeTime to obtain ac-
curate post-layout timing analysis. Also, at this point, a GDSII
file can be written that contains all the mask information.

C. Timing Analysis

Synopsys PrimeTime is used for post-layout timing anal-
ysis of: 1) specific paths within the implementation, or 2)

Fig. 8. Floorplanned (left) and unfloorplanned (right) layouts.

an application benchmark programmed on the FPGA. Prime-
Time accepts as input the design, annotated with parasitic
capacitance information, as well as an SDC (Synopsys design
constraints) file. The SDC file specifies which timing paths
should be ignored. For 1), we ignore all paths but the specific
paths we wish to analyze (see next section) and run timing
analysis to obtain their delay. For 2) finding the critical path of
an application benchmark implemented within the fabric, the
process is more involved. Commercial FPGA vendors provide
static timing analysis tools that analyze the performance for
user designs implemented in their FPGAs, using delay models
of the underlying fabric. To mimic the behavior of such
tools for an application implemented within our synthesized
fabric, we devised the following approach: during bitstream
generation (Section III-B), we have precise knowledge about
which FPGA resources are used vs. unused. For each unused
resource, we automatically generate an SDC constraint to
disable timing analysis through the resource. When PrimeTime
is invoked to analyze performance of the FPGA device con-
figured with the application bitstream, PrimeTime “sees” only
those paths in the used part of the FPGA (which should be
free of combinational loops, assuming well-designed circuits).
The critical path reported by PrimeTime is then analogous to
that reported by the timing analysis tools of commercial FPGA
vendors. It is important to note that once the FPGA device has
been synthesized, placed and routed, timing analysis can be
done for any application benchmark by providing PrimeTime
with the bitstream and SDC file for that benchmark. Meaning,
it is not necessary to synthesize, place and route the FPGA
device on an individual benchmark-by-benchmark basis.

A challenge we had to deal with regarding PrimeTime arose
due to our bottom-up synthesis strategy and the delay model of
the standard cells. PrimeTime reported warnings (RC-009) that
in some cases, timing results may be inaccurate as cell drive
resistance was too small in comparison with the impedance
of the driven network. Recall that in the bottom-up synthesis
style, in some cases, Synopsys technology mapping must select
cells of a certain size without global context/knowledge of the
total RC load driven by such cells. This mainly occurred for
large cells driving long interconnect wires, and we were able
to eliminate all warnings through the buffer insertion discussed
previously.

V. EXPERIMENTAL STUDY

Table I summarizes the parameters of the FPGA archi-
tecture we synthesized into commercial TSMC 65nm stan-
dard cells. The architecture is designed to resemble Altera’s
Stratix III FPGA, which is also fabricated in TSMC’s 65nm
process, allowing us to make a (roughly) apples-to-apples
comparison. The architectural parameters are from a recently

Parameters Values
FPGA dimensions 20 x 20

K, LUT size 6
N, # of LUTs/logic block 10

Crossbar connectivity 50%
L, Wire length 4 (87%), 16 (13%)

W, Channel width 300
Fcin Input connectivity 0.055

Fcout Output connectivity 0.1
TABLE I. FPGA ARCHITECTURE PARAMETERS.

published Stratix IV architecture capture by Murray et al. [18],
where authors attempted to model Stratix IV within VTR2.
Our synthesized FPGA has dimensions of 20 × 20 logic
blocks, with 10 fracturable LUTs/block. There are 300 routing
tracks/channel, where 87% of tracks span 4 tiles, and 13% span
16 tiles. Fcin/Fcout refer to the fraction of adjacent tracks a
logic block input/output pin may programmably connect to.
Within the logic block, the crossbar is 50% populated. We
are using fracturable 6-LUTs with 8 inputs, which implies 2-
shared inputs in dual-output mode, similar to the extensive
architecture described in [19]. Such LUTs can implement any
single function of up to 6 variables, or any two functions that
together, use no more than 8 unique variables. We reinforce
that although in this study we focus on a particular synthesized
fabric comparable with Stratix III, our generator is able to
automatically produce RTL for a variety of VTR-supported
architectures.

We synthesized three variants of the architecture described
above: area-optimized, timing-optimized and balanced. For
area-optimized, we directed Synopsys to minimize area and
imposed no timing constraints. For the timing-optimized, we
conversely directed Synopsys to minimize delay, and imposed
no area constraints. For the balanced, we took the mid-point
of the achieved delays between the area and timing-optimized
and set these as the target delays for Synopsys. Fig. 9 shows
one of the synthesized FPGA fabric layouts.

In a first set of experiments, we examine the area and
performance (of specific paths) of the synthesized FPGA
and compare with analogous area and performance data for
Stratix III. This first set of experiments is thus agnostic to
any particular application design being implemented within
the fabric – it is a fabric-to-fabric comparison. In a second set
of experiments, we compare the performance of application
benchmark designs implemented on our fabric to those same
designs implemented on Stratix III.

We consider various combinational and sequential bench-
marks from the MCNC benchmark suite [20]. Since we are
using the full VTR flow, we omitted some designs from
the 20 largest MCNC benchmarks where VTR swept away
unconnected nodes (as these circuits caused problems for our
verification flow which relied on I/O matching). In addition to
the MCNC circuits, we added a finite state machine (FSM) that
detects a pattern, and also an adder connected to a shift register.
These latter two circuits were used mainly for debugging
purposes. We use the MCNC circuits in this initial study,
as these can be simulated with random vectors and verified
with the flow in Fig. 4. Other benchmark suites, such as the
VTR suite, contain DSP blocks and RAMs, and are more
challenging to simulate/verify, owing to the circuits having
reset/control inputs.

2While Stratix IV is on a more advanced process than Stratix III, the soft
logic block and routing architectures are similar.

Fig. 9. Synthesized FPGA.

A. Area Analysis

We compare the tile area of our synthesized FPGA to
Altera’s Stratix III. The tile area of our FPGA was obtained
by dividing total die area by the number of logic blocks
(20 × 20 = 400). Table II summarizes the tile area of the
three architectures. Stratix III LAB tile area is reported to be
0.0221mm2 by [21]. The area-optimized fabric resulted in the
smallest tile area of 0.0316mm2, which is 1.5× bigger than
Stratix III. As expected, the timing-optimized and balanced
fabrics were larger: 2.9× and 1.9× bigger than Stratix III, re-
spectively. We were encouraged by the area of the synthesized
fabrics, especially the area-optimized, which is relatively close
to Stratix III.

A number of factors contribute to the area difference
vs. Stratix III. First, there are architectural differences. For
example, our architecture does not support carry-chains nor
are our MUXs fully-decoded. Second, our implementation uses
only those standard cells in the TSMC library. In commercial
FPGAs, pass-transistors or transmission gates are commonly
used to implement MUXs and LUTs; however, we use full
CMOS implementations of these primitives. Likewise, we are
also using FFs for the configuration cells rather than SRAM
cells (as we expect is done in a commercial device). Perhaps
most importantly, the Stratix III LAB is custom laid-out.

Delving further into the area results, Fig. 10 shows the
breakdown of area into logic, inter- and intra-logic block rout-
ing, and configuration for each fabric type. In area-optimized
design, configuration cells built of costly FFs in our case,
occupy a large portion of the area: 42% of the total. It is
likewise not surprising that routing comprises 50% of the fabric
area, since we are using standard cell-based MUXs, instead of
pass-transistor-style MUXs.

In the timing-optimized FPGA fabric, we observe that
configuration cells are reduced to 21% of the total area. This
is because the configuration area is kept constant by applying
no timing constraints to the configuration cells (they are not
performance critical). Routing area has increased to 67% of the
area and logic area increased to 13%. Remember that in the
timing-optimized fabric, we inserted extra buffers on the inter-
logic block wires. However, buffer area is not appreciable: 2%
of the total.

FPGA Fabric # of Std. Total Area Tile Area
Cells (mm2) (mm2)

Area-Optimized 3,577,520 12.65 0.0316
Timing-Optimized 7,521,616 25.72 0.0643

Balanced 5,298,588 16.89 0.0422
TABLE II. AREA OF SYNTHESIZED FPGA.

Fig. 10. Area breakdown.

In the balanced FPGA fabric, both timing and area con-
straints were applied, however, we give a more relaxed timing
constraint to the routing circuitry to save area. This leads to
logic taking up 31% (logic + config for logic) and routing
taking up 69% (routing + config for routing + buffers) of the
total area. Note that in the balanced fabric, we keep the LUTs
timing constraint aggressive, since the LUT takes up a small
portion of the total area.

B. Timing Analysis

We first examine the delay of commonly-used paths in
the synthesized fabrics and Stratix III (application-agnostic
analysis). Specifically, we looked at the following three paths:

1) L0: FF → crossbar → LUT → FF (within a logic
block).

2) L4: FF → length-4 wire → crossbar → LUT → FF
(a path of length 4).

3) L16: FF → length-16 wire → crossbar → LUT →
FF (a path of length 16).

Table III is a summary of average delay of these paths
in 6 different areas of the FPGAs (in the four corners of
the fabric, and also on the middle of the left/right sides).
In the synthesized fabrics, we manually selected the 6 paths
by creating an SDC file that reports the delay for each. In
doing so, we are assured that our analysis reflects the use
of a length-4 or length-16 wire, accordingly. For the Altera
Stratix III delays, we use Altera’s LogicLock feature to place
two connected flip-flops 4 or 16 logic blocks away from one
another, and then use Altera’s TimeQuest tool ascertain the
path delay. For our fabrics, within the logic blocks, we apply
an SDC constraint so that we measure the path corresponding
to the fastest LUT input; this is to be comparable to Altera,

FPGA Fabric L0 (ns) L4 (ns) L16 (ns)
Area-Optimized 3.71 7.38 17.31

Timing-Optimized 1.79 2.90 4.92
Balanced 1.34 3.73 7.32
Stratix III 0.73 1.03 1.54

TABLE III. ARCHITECTURE DELAY.

Fig. 11. Delay breakdown.

since Quartus uses the input that results in the smallest delay.
Note that for the timing results in this paper, we use the slowest
speedgrade for Stratix III, and compare with slowest-process-
corner analysis for our fabric.

Comparing our timing-optimized implementation to
Stratix III, the delay is 2.3× to 3.5× slower, with the gap
being larger for longer wire lengths. The balanced fabric is
1.8× to 4.7× slower, and the area-optimized fabric is 5× to
11.2× slower than Stratix III. We believe the reason that the
delay gap vs. Stratix III grows with wire length is related to
the difficulty in handling long wires in the ASIC toolflow.
The relative results between the synthesized fabrics are as
expected: the area-optimized fabric is overall slower than the
balanced design, and the balanced design is slower than the
timing-optimized fabric, except for the L0 path. L0 reflects
timing within a logic block; the inter-logic block routing
MUXs are not included in the delay. The slightly lower delay
in the balanced design may be due to the heuristic nature of
ASIC mapping, placement, and routing tools. It may also be
because in our fabric (unlike Stratix III), one MUX drives
the output of a logic block to both feedback and inter-logic
block routing paths. That output MUX is timing optimized in
our balanced fabric implementation, yet it sees a smaller load
than in the timing-optimized fabric implementation. Similar
to the area analysis, Fig. 11 shows a delay breakdown for
the three types of paths for all architectures. The L4 and L16
fabric delays are dominated by routing delay. This confirms
that we need to use optimizations such as buffering to reduce
the routing delay.

In the second part of the performance study, we looked
at how benchmark circuits perform on the synthesized FPGA
vs. Stratix III. The same Verilog file is passed to each tool
for implementing the circuits on the FPGAs. We use the SDC
file generated with the bitstream to “program” our synthesized
FPGA as discussed in Section IV-C. Note that the results of
this experiment are not solely reflective of the fabric speed, but
also of the differences in architectures, and in the CAD tools
supporting the architectures: open-source VTR vs. Altera’s

Benchmark Area- Timing- Balanced Stratix
Circuits Optimized Optimized III

alu4 67.80 22.29 32.47 5.293
apex4 74.62 23.06 36.08 5.271

des 68.65 21.58 31.26 6.696
ex1010 103.59 31.36 48.09 7.248
ex5p 68.68 21.86 31.54 5.455

misex3 74.78 22.59 34.32 5.281
pdc 111.02 33.72 51.66 7.213
seq 69.79 22.66 32.66 5.742
spla 112.73 34.92 51.30 6.654

diffeq 69.42 23.28 29.74 4.391
dsip 35.94 11.71 17.75 5.918

elliptic 103.42 32.45 44.02 6.909
frisc 118.72 38.06 52.37 7.865
tseng 60.43 20.05 25.92 4.519

addshift16 37.01 13.43 16.61 4.31
fsm 5.75 1.71 2.85 1.113

Geo. Mean 63.13 20.10 28.97 5.25

TABLE IV. CRITICAL PATH DELAY (nS) OF DESIGNS ON FPGA.

Quartus II. Table IV lists the critical path delays reported by
the tools. The reported critical path delays do not include clock
skew nor I/O cell delays (only core logic and routing).

In combinational designs (top part of table), both designs
were given input-to-output delay constraints. On average, there
is a ∼3.8× increase in delay between the timing-optimized
and Stratix III FPGAs (see geo. mean row at bottom of
table). The delay gap between the two FPGAs increased
from our architecture delay study above, likely due to the
weaknesses of the open-source VTR flow vs. Quartus II. In
the sequential designs (bottom part of table), the critical path
delays reported include register-to-register and I/O paths. Most
circuits show similar increase in delay as the combinational
designs; however, the dsip and fsm benchmarks showed smaller
increases of 1.5× to 2×. The critical paths of these circuits
have fewer logic levels compared to the other designs.

It is worthwhile to mention that one of the key advantages
of a synthesizable FPGA fabric that is it permits the type of
exploration done here: the ability to realize fabrics with dif-
ferent area/delay trade-offs from a single RTL source, simply
by changing constraints provided to the ASIC tools. Such an
exploration is highly costly if manual layout is required for
each fabric.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we propose to automatically generate syn-
thesizable FPGA fabrics within the open-source FPGA CAD
tool, VTR. The fabrics we generate are then synthesized,
placed and routed using a standard ASIC design flow into a
commercial standard cell library. We synthesized 3 variants
of an FPGA fabric (modelled on Altera’s Stratix III) into
65nm TSMC standard cells: timing-optimized, area-optimized,
and balanced. We compared the tile area of our smallest
FPGA fabric (area-optimized) with Altera’s Stratix III and
found our fabric used 1.5× more area. Our timing-optimized
fabric required 3× more area than Stratix III. With respect
to performance, the critical paths of designs implemented in
our timing-optimized fabric are ∼3.8× longer, on average,
than in Stratix III; however, in some benchmarks the delay
gap was as low as 1.5×. Overall, we are encouraged by
the silicon area and performance of our fabric relative to

Altera’s, especially considering Stratix III is custom laid-out
and undoubtedly highly optimized. To our knowledge, this
work represents the first comparison of a standard cell FPGA
implementation to a commercial FPGA. The proposed VTR-
based synthesizable FPGA generator opens the door to actual
silicon implementation of FPGAs targetable by an established
CAD tool.

In the future, we would like to assess power consumption,
and extend architecture and bitstream generation to accept
all architectures supported by VTR, including those with
DSP blocks and memories. Further work is also needed to
support designs with multiple clocks. Finally, we would like
to explore the utility of adding custom library cells that are
specifically tailored for FPGAs, particularly for efficient MUX
and configuration cell implementations.

REFERENCES

[1] J. Rose et al., “The VTR Project: Architecture and CAD for FPGAs
from Verilog to Routing,” in FPGA. ACM, pp. 77–86.

[2] E. Fluhr et al., “Power8: A 12-core server-class processor in 22nm SOI
with 7.6tb/s off-chip bandwidth,” in ISSCC. IEEE, 2014, pp. 96–97.

[3] W. Deng et al., “A Fully Synthesizable All-Digital PLL With Inter-
polative Phase Coupled Oscillator, Current-Output DAC, and Fine-
Resolution Digital Varactor Using Gated Edge Injection Technique,”
JSSC, vol. 50, no. 1, pp. 68–80, Jan 2015.

[4] V. Betz et al., Architecture and CAD for Deep-Submicron FPGAs.
Kluwer Academic Publishers, 1999.

[5] “Stratix III ALM Logic Structure’s 8-Input Fracturable
LUT,” Altera Corp., Tech. Rep., 2015. [Online]. Available:
https://www.altera.com/products/fpga/features/st3-logic-structure.html

[6] S. Chaudhuri et al., “An 8x8 run-time reconfigurable FPGA embedded
in a SoC,” in DAC. ACM/IEEE, 2008, pp. 120–125.

[7] ——, “Efficient modeling and floorplanning of embedded-FPGA fab-
ric,” in FPL. IEEE, 2007, pp. 665–669.

[8] H. J. Liu, “Archipelago – An Open Source FPGA with Toolflow
Support,” Master’s thesis, University of California at Berkeley, 2014.

[9] V. Aken’Ova, “Bridging the gap between soft and hard eFPGA design,”
Master’s thesis, University of British Columbia, 2005.

[10] V. Aken’Ova et al., “An improved “soft” eFPGA design and implemen-
tation strategy,” in IEEE CICC, 2005, pp. 179–182.

[11] V. Aken’Ova and R. Saleh, “A “soft++” eFPGA physical design
approach with case studies in 180nm and 90nm,” in ISVLSI. IEEE,
2006.

[12] S. Phillips and S. Hauck, “Automatic layout of domain-specific recon-
figurable subsystems for system-on-a-chip,” in FPGA. ACM, 2002,
pp. 165–173.

[13] C. Ebeling et al., “RaPiD Reconfigurable pipelined datapath,” in Field-
programmable logic smart applications, new paradigms and compilers,
1996, pp. 126–135.

[14] N. Kafafi et al., “Architectures and algorithms for synthesizable em-
bedded programmable logic cores,” in FPGA. ACM, 2003, pp. 3–11.

[15] S. Wilton et al., “A synthesizable datapath-oriented embedded FPGA
fabric,” in FPGA. ACM, 2007, pp. 33–41.

[16] V. Betz and J. Rose, “VPR: A new packing, placement and routing tool
for FPGA research,” in FPL, 1997, pp. 213–222.

[17] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,”
Trans. on CAD, vol. 26, no. 2, pp. 203–215, 2007.

[18] K. E. Murray et al., “Titan: Enabling large and complex benchmarks
in academic CAD,” in FPL. IEEE, 2013.

[19] J. Luu, “Architecture-Aware Packing and CAD Infrastructure for Field-
Programmable Gate Arrays,” Ph.D. dissertation, University of Toronto,
2014.

[20] S. Yang, Logic Synthesis and Optimization Benchmarks User Guide
Version 3.0. Microelectronics Center of North Carolina, 1991.

[21] H. Wong et al., “Comparing FPGA vs. custom CMOS and the impact
on processor microarchitecture,” in FPGA. ACM, 2011, pp. 5–14.

