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System level timing closure increasingly 

difficult!
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• RTL changes are error prone

• Re-compile can take hours or days

• No guarantee of convergence



Key Problem & Potential Solutions
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• Limited by Synchronous Assumption:

• Computation and communication occur in a single clock cycle (if not 

pipelined)

• Reasonable when local-global speed gap was small, but not when 

large

• Many different proposed design schemes:

• Over-pipelining

• Asynchronous

• Globally Asynchronous Locally Synchronous (GALS)

• Latency Insensitive



What is Latency Insensitive Design?
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Latency Insensitive System Implementation

8

• Key Idea: Make sub-modules insensitive to their communication latency

• Create a LI module by placing a designer’s synchronous module (Pearl) in a 

wrapper (Shell), which is also synchronous

• Use Relay Stations (RS) to pipeline interconnect

• Deadlock free and applicable to (nearly) any synchronous module [1]

Logical System LI Implementation
[1] Carloni et. al, “Theory of Latency-Insensitive Design”, TCAD, 2001 



Latency Insensitive Communication Protocol
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• Tag each module port with ‘Valid’ and ‘Stop’ bits

• Pearl is paused until all inputs are ‘valid’

• ‘Stop’ signal provides back-pressure to prevent FIFO overflow

ReceiverSender

Valid

FIFO
Data

Stop
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Latency Insensitive Design
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Advantages:

• Interconnect pipelining does not affect correctness

• Designers can still reason about system synchronously

• Easy to pipeline late in the design flow

• Enhanced module re-use & composability

• Suitable for automation

• Use existing CAD tools
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Advantages:

• Interconnect pipelining does not affect correctness

• Designers can still reason about system synchronously

• Easy to pipeline late in the design flow

• Enhanced module re-use & composability

• Suitable for automation

• Use existing CAD tools

• Fold interconnect pipelining into physical CAD Tools [Future work]

Disadvantages:

• Area/Speed overhead versus hand-tuned design

• Must verify sufficient throughput



Latency Insensitive Design
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Trade off:

• Implementation efficiency for designer productivity

Key question of this work:

• What are the overheads of LI design on FPGAs?



Latency Insensitive Implementation

15



Baseline Shell Implementation
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• ASIC LI design stalls modules by clock gating

• Use ‘Clock Enable’ on FPGAs
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• ASIC LI design stalls modules by clock gating

• Use ‘Clock Enable’ on FPGAs

• ‘Clock Enable’ becomes timing critical

• Fans out to all registers in pearl

• Connected to upstream and downstream modules

High Fan-out
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Optimized Shell Implementation
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• Break timing path before it becomes high fan-out

• Insert additional registers in Shell

• Improves Timing

• Adds additional cycle of latency to shell

Single-bit

Multi-bit



Relay Station (RS) Implementation
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• Analogous to conventional pipeline register

• Additional logic to:

• Handle ‘valid’ and ‘stop’ bits

• Store in-flight data when facing backpressure (avoids stalling)



FIR Design Example
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Cascaded FIR Case Study
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• Pearl: FIR filter

• Design: 49 cascaded FIR filters

• Used as a high speed design example

• Investigate the frequency impact of LI 

design

• Allow comparison of LI and non-LI 

pipelining

Resources EP4sGX230 Utilization

Logic Blocks 51%

DSP Blocks 99%

M9K Blocks <1%

M144K Blocks 0%



Cascaded FIR Case Study - Area
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1.08 x

1.09 x

1.00 x
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22

0.67 x

0.92 x

1.00 x
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Cascaded FIR Case Study - Frequency

28



Pipelining Overhead Cause
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• Extra control logic adds delay overhead to each Shell or RS
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• Extra control logic adds delay overhead to each Shell or RS

Increased effective Tsu



Generalized LI Scaling
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Generalized LI Shell Scaling
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• Identify what makes Shells expensive

• Leads to design guidelines to minimize overhead

• Consider impact of scaling three main shell characteristics

• FIFO Depth

• Number of Input Ports

• Port Width



FIFO Depth Scaling
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• Scaling FIFO Depth costs minimal area

• Block RAMs are underused at shallow depths
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• Scaling FIFO Depth costs minimal area

• Block RAMs are underused at shallow depths

Use deep FIFOs to minimize stalling



Port Width and Input Port Scaling
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• Increasing port width or input ports costs significant area
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Port Width and Input Port Scaling
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• Increasing port width or input ports costs significant area

• Frequency degrades faster as input ports are increased

2048 input bits 160 input bits

Favour wider ports instead of more ports to 

maximize frequency
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LI Design Granularity
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• How fine or coarse should we make LI Systems?

• Trade-off between:

• Flexibility and productivity benefits

• Area overhead

• Local communication (e.g. 40K LEs) is still fast

• Flexibility most beneficial for slow system-level communication
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Rent’s Rule
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• Use Rent’s Rule to relate design size to pin count:

P = KNR

• R: Rent parameter

• Typical circuits:

0.50 < R < 0.75

P pins

K pins N blocks

R = 0.0 R = 1.0



Rent’s Rule Overhead Projections
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• Combine shell area scaling numbers for various design sizes and 

ranges of Rent parameters
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Rent’s Rule Overhead Projections
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• Combine shell area scaling numbers for various design sizes and 

ranges of Rent parameters

Cascaded FIR

(2.4K LE) 



Hypothetical Design Example 20% Overhead
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• Consider a 4M LE FPGA at 20% area overhead



Hypothetical Design Example 20% Overhead
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• Consider a 4M LE FPGA at 20% area overhead

71 Modules

(56K LEs)

307 Modules

(13K LEs)

5 Modules

(700K LEs)



LI Design Granularity
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• Area overhead is strongly related to communication locality (Rent Parameter)

• Designs with well localized communication will result in low overhead

• Rent parameter varies within different parts of a design

• Careful choice of module boundaries may further reduce overhead



Conclusion and Future Work
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• Illustrated the growing gap between local and global communication speed

• 3.6x and growing

• Developed optimized LI building blocks for FPGAs

• Reduced frequency overhead from 33% to 8% 

• Quantified the area and frequency overhead of LI communication on FPGAs

• Provided design guidelines to minimize the overheads of LI communication

Conclusion
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• Explore the benefits of LI design

• LI aware CAD Tools

• Investigate architectural enhancements

• Hardened FIFOs

• Fine-grained clock gating

• Embedded NoC

• Evaluate LI design on a broader range of designs

• Develop lower area/speed overhead LI design techniques

Future Work
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Thanks! Questions?
Email: kmurray@eecg.utoronto.ca


